登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
4.3 冷却设计
PET中的冷却技术与高频变压器类似,一般也包括自然冷却、强迫风冷、水冷和油冷等方法。但是,PET中不同的元器件发热情况不同,其对散热系统的要求也不尽相同,需要采用不同的冷却设计。例如:
1)功率半导体器件。
相比于PET的其他部分,功率半导体器件的损耗一般最大,也是PET产生损耗的主要来源。对于一些中小功率场合,可以采用强迫风冷的方式实现功率半导体器件的冷却[49,55]。在绝大多数情况下,尤其是对功率密度要求较高的场合,PET中的功率半导体器件一般均采用冷却效率较高的水冷方 式[27-28,30,64],即在固定开关器件的散热片上安装水冷板,通过外部水冷装置的循环实现开关器件冷却。此外,在某些特殊场合,如机车牵引[22],对PET的功率密度要求极高,一般需要采用油浸式变压器,为了尽量减少散热系统的体积,可直接采用油冷的方式实现功率半导体器件的冷却。
2)高频变压器。
高频变压器的损耗,包括铁心损耗、绕组损耗等,是PET损耗的另一个主要来源,其典型的冷却方式在前文已经总结,此处不再赘述。
3)其他部分。
其他部分主要包括直流电容、谐振电容、滤波电抗器等元件。这些元件在实际工作过程中自身发热量一般较小,通常采用自然冷却的方式即能满足设计要求。在发热量较大的场合,这些元件也可以通过增加绝缘后与功率半导体器件或高频变压器共用散热系统。
综上所述,PET功率电路的紧凑设计主要包括子模块紧凑设计技术、绝缘设计和高效率冷却技术等。但是,现有的PET功率密度仍然较低,这一方面是受到商用功率半导体器件发展水平的限制,导致在中高压场合应用的PET均含有大量的子模块和储能电容,极大的增加了PET的体积。另一方面,对于中高压场合,单纯提高高频变压器工作频率并不能显著降低其体积,原副边绕组的隔离电压也是影响高频变压器体积的主要因素[70]。因此,采用耐压等级更高的功率半导体器件和减少高频变压器使用数量是提高PET功率密度的主要途径。
4.4 宽禁带功率半导体在PET中的应用
由前文关于PET电路拓扑的分析可见,为承受高电压,已有的PET拓扑大多采用了级联型的变流器实现电能的交直流变换。在此情况下,显然可以通过采用更高耐压的功率半导体减少级联的功率单元数量,以及功率半导体器件和功率单元中储能电容的数量,从而可以简化PET的电路结构,提高功率密度。但是,目前的电力电子器件水平下,硅基可关断器件,尤其是应用最广泛的IGBT商用产品一般不超过6.5kV[31-32,56-57,87,101]。这就导致中高压的PET采用硅基IGBT时不得不采用大量的功率单元。为解决这一问题,近年来,宽禁带功率半导体,尤其是基于SiC材料的功率半导体器件在PET相关的应用得到较广泛的关注[56-58,77,82-83,87,96,100]。
一般说来,相对于硅基器件,宽禁带半导体,尤其是SiC器件具有如下优点:1)耐压等级高,更适合高压器件;2)开关速度快,适合高频应用;3)热导率高,使得它们非常适用于高温及高功率领域;4)损耗小,可以提高变流器的运行效率。因此,高压SiC器件特别适用于高效率、高功率密度的PET系统。现有的PET中,主要采用的高压SiC器件包括金属-氧化物半导体场效应晶体管(metal-oxide-semiconductor field-effect transistor,MOSFET)和IGBT。
2011年,美国GE公司联合Cree公司、Powerex公司等基于10kV耐压的SiC MOSFET研制了1 MVA的PET(文中称为固态变电站:solid state power substation,SSPS),部分SiC MOSFET的开关频率达到了20kHz[96]。相对于基于传统工频变压器的变电站,该PET比其重量减少了75%,而体积减少了约50%,运行效率达到了约97%。美国北卡罗来纳州立大学分析了基于SiC IGBT的PET在面向无工频变压器的智能变电站(transformerless intelligent power substation,TIPS)中应用优势,采用15 kV SiC MOSFET构建H桥,无需级联即可实现高压侧直接接入,分别开发了Gen-II和Gen-III两代小功率样机,并完成了实验验证[56-57]。在SiC器件的高频化应用方面,2017年,美国GE公司采用1.7kV的SiC MOSFET实现PET中的谐振软开关型DAB,研制的50kW级别的DAB样机在实验中的开关频率达到了175 kHz[77]。
高压、高频、低损耗的SiC器件在PET中的应用可以显著提高PET的功率密度和运行效率。但是相对于电压较低的硅基器件来说,高压SiC器件的应用也给PET的设计带来了一些新的问题。例如,单个子模块的额定工作电压在采用硅基器件时一般从几百V到不超过3kV,而10kV以上耐压的SiC器件使得单个功率模块的工作电压就达到了中压的水平,有限空间内的绝缘处理技术、高压器件的供电及电气隔离技术等比采用硅基器件时的低压场合更加困难。另外,SiC器件工作频率高且开通、关断速度快——dv/dt(电压变化率)可高达50kV/μs,远高于硅器件的情况(硅器件一般小于10kV/μs)[77-78]。这给器件本身及驱动电路、供电电源、控制电路、散热及接地系统等都带来了非常大的电磁干扰,也给高频变压器的寄生参数,尤其是高频下的寄生电容设计及优化带来了挑战。因此,高dv/dt下的PET系统电磁兼容设计比硅器件的情况也更加复杂和困难。
5 PET发展总结及展望
近十年来,PET相关的理论和技术研发在学术界和工业界已经获得了广泛关注,并先后研制了多台实验样机。但是,PET总体上仍然处于关键理论及技术攻关研究阶段,其性能与实际应用还有一定距离。综合分析PET的发展过程及现有技术,可以得到以下结论:
1)由于PET功能远多于传统的工频变压器,将PET仅与工频变压器本身进行效率、造价、功率密度等性能的直接比较不尽合理。实际上,与集成了工频变压器及电能质量治理功能的综合电能管理装置相比,目前的PET功率密度已经达到了相当甚至更高的水平,但运行效率和经济性仍需进一步提高。
2)由于PET电气连接端口形式多样灵活,PET更加适合于交流输入、直流输出的场合应用,而非直接替代现有的工频变压器。尤其是应用于以低压直流为主的配电网时,PET可以取消原有交流低压配电网中各种直流设备前端的并网逆变器,优化整个系统的结构和运行效率。
3)对我国的机车牵引系统来说,现有的车载牵引变压器额定工作频率为50Hz,比欧洲的部分铁路系统的16.7Hz已经高出很多,即车上的牵引变压器本身体积已经减小很多。在此种场合通过PET来替代车载牵引变压器的困难更大。而机车上的空间有限、震动明显、冷却方式受限等问题也给此种替代方案带来了更大的挑战,相关技术也需更加深入的研究。
4)PET的电路拓扑是决定其多方面性能的关键因素。在目前的技术水平下,PET的各种拓扑一般均需要大量的电力电子半导体器件和电容、电感等无源器件,导致其效率、功率密度、可靠性和经济性指标一般较低,这是限制其推广和应用的主要因素。而目前的研究表明,对于中高压应用的PET来说,高频变压器在整个PET系统中的体积和重量比重很小。提高高频变压器的工作频率,例如达到20kHz以上带来的功率密度指标提升十分有限,而综合考虑散热、绝缘等问题后甚至会降低系统功率密度。因此,电能变换环节数量少、运行效率高且结构紧凑的新型电路拓扑是提高PET多方面性能最亟需解决的问题。
5)宽禁带功率半导体,尤其是SiC功率半导体具有耐压等级高、损耗小等突出优势。高压SiC器件对于减少现有PET中功率半导体及无源器件数量、提高系统运行效率和功率密度具有显著的效果。对于中高压的PET来说,10kV以上的高压SiC器件应该会获得越来越广泛的应用。但是,因高压SiC器件应用带来的PET高频电磁场下的绝缘技术、高dv/dt下的电磁兼容设计技术、新型的冷却技术及系统优化技术也需进一步深入研究。
参考文献
[1] She Xu,Huang A Q,Burgos R.Review of solid-state transformer technologies and their application in power distribution systems[J].IEEE Journal of Emerging and Selected Topics in Power Electronics,2013,1(3):186-198.
[2] Feng Jianhua,Chu W Q,Zhang Zhixue,et al.Power electronic transformer-based railway traction systems:challenges and opportunities[J].IEEE Journal of Emerging and Selected Topics in Power Electronics,2017,5(3):1237-1253.
[3] 赵争鸣,冯高辉,袁立强,等.电能路由器的发展及其关键技术[J].中国电机工程学报,2017,37(13):3823-3834. Zhao Zhengming,Feng Gaohui,Yuan Liqiang,et al.The Development and Key Technologies of Electric Energy Router[J].Proceedings of the CSEE,2017,37(13):3823-3834(in Chinese).
[4] Kolar J W,Ortiz G I.Solid-state-transformers:key components of future traction and smart grid systems[C]//Proceedings of the International Power Electronics Conference.Hiroshima,Japan:IPEC,2014.
[5] Huang A Q,Crow M L,Heydt G T,et al.The Future Renewable Electric Energy Delivery and Management (FREEDM) system:the energy internet[J].Proceedings of the IEEE,2011,99(1):133-148.
[6] She Xu,Huang A Q,Lukic S,et al.On integration of solid-state transformer with zonal DC microgrid[J].IEEE Transactions on Smart Grid,2012,3(2):975-985.
[7] McMurray W.Power converter circuits having a high frequency link:US,3517300[P].1970-06-23.
[8] McMurray W.The thyristor electronic transformer:a power converter using a high-frequency link[J].IEEE Transactions on Industry and General Applications,1971,IGA-7(4):451-457.
[9] Harada K,Anan F,Yamasaki K,et al.Intelligent transformer[C]//Proceedings of the 27th Annual IEEE Power Electronics Specialists Conference.Baveno,Italy:IEEE,1996:1337-1341.
[10] Kang M,Enjeti P N,Pitel I J.Analysis and design of electronic transformers for electric power distribution system[C]//Proceedings of the 32th IAS Annual Meeting,Conference Record of the 1997 IEEE Industry Applications Conferenc.New Orleans,LA,USA:IEEE,1997:1689-1694.
[11] Manjrekar M D,Kieferndorf R,Venkataramanan G.Power electronic transformers for utility applications [C]//Proceedings of the Conference Record of the 2000 IEEE Industry Applications Conference.Rome,Italy:IEEE,2000:2496-2502.
[12] Ronan E R,Sudhoff S D,Glover S F,et al.A power electronic-based distribution transformer[J].IEEE Transactions on Power Delivery,2002,17(2):537-543.
[13] 邓卫华,张波,胡宗波.电力电子变压器电路拓扑与控制策略研究[J].电力系统自动化,2003,27(20):40-44,48. Deng Weihua,Zhang Bo,Hu Zongbo.Research on the topology and control scheme of power electronic transformer[J]. Automation of Electric Power Systems,2003,27(20):40-44,48(in Chinese).
[14] 方华亮,黄贻煜,范澍,等.配电系统电力电子变压器的研究[J].电力系统及其自动化学报,2003,15(4):27-31. Fang Hualiang,Huang Yiyu,Fan Shu.Study on power electronic transformer (PET) for distribution power system[J]. Proceedings of the EPSA,2003,15(4):27-31(in Chinese).
[15] 毛承雄,范澍,王丹,等.电力电子变压器的理论及其应用(I)[J].高电压技术,2003,29(12):4-6. MaoChengxiong,Fan Shu,Wang Dan,et al.Theory of power electronic transformer and its application (I)[J]. High Voltage Engineering,2003,29(12):4-6(in Chinese).
[16] 毛承雄,范澍,黄贻煜,等.电力电子变压器的理论及其应用(Ⅱ)[J].高电压技术,2003,29(12):1-3. MaoChengxiong,Fan Shu,Wang Dan,et al.Theory of power electronic transformer and its application (II)[J]. High Voltage Engineering,2003,29(12):1-3(in Chinese).
[17] 赵剑锋. 输出电压恒定的电力电子变压器仿真[J].电力系统自动化,2003,27(18):30-33,46. ZhaoJianfeng.Simulation study of a power electronics transformer with constant output voltage[J].Automation of Electric Power System,2003,27(18):30-33,46(in Chinese).
[18] Heinemann L.An actively cooled high power,high frequency transformer with high insulation capability[C]// Proceedings of the 17th Annual IEEE Applied Power Electronics Conference and Exposition.Dallas,TX,USA:IEEE,2002:352-357.
[19] Kjellqvist T,Norrga S,Ostlund S.Design considerations for a medium frequency transformer in a line side power conversion system[C]//Proceedings of the 35th Annual Power Electronics Specialists Conference.Aachen,Germany:IEEE,2004:704-710.
[20] Glinka M.Prototype of multiphase modular-multilevel- converter with 2 MW power rating and 17-level-output- voltage[C]//Proceedings of the 35th Annual Power Electronics Specialists Conference.Aachen,Germany:IEEE,2004:2572-2576.
[21] Glinka M,Marquardt R.A new AC/AC multilevel converter family[J].IEEE Transactions on Industrial Electronics,2005,52(3):662-669.
[22] Hugo N,Stefanutti P,Pellerin M,et al.Power electronics traction transformer[C]//Proceedings of 2007 European Conference on Power Electronics and Applications.Aalborg,Denmark:IEEE,2007:1-10.
[23] Steiner M,Reinold H.Medium frequency topology in railway applications[C]//Proceedings of 2007 European Conference on Power Electronics and Applications.Aalborg,Denmark:IEEE,2007:1-10.
[24] Martin J,Ladoux P,Chauchat B,et al.Medium frequency transformer for railway traction:soft switching converter with high voltage semi-conductors[C]//Proceedings of 2008 International Symposium on Power Electronics,Electrical Drives,Automation and Motion.Ischia,Italy:IEEE,2008:1180-1185.
[25] Carpita M,Marchesoni M,Pellerin M,et al.Multilevel converter for traction applications:small-scale prototype tests results[J].IEEE Transactions on Industrial Electronics,2008,55(5):2203-2212.
[26] Dujic D,Mester A,Chaudhuri T,et al.Laboratory scale prototype of a power electronic transformer for traction applications[C]//Proceedings of the 14th European Conference on Power Electronics and Applications.Birmingham,UK:IEEE,2011:1-10.
[27] Zhao Chuanhong,Weiss M,Mester A,et al.Power electronic transformer (PET) converter:Design of a 1.2MW demonstrator for traction applications[C]// Proceedings of 2012 International Symposium on Power Electronics Power Electronics,Electrical Drives,Automation and Motion.Sorrento,Italy:IEEE,2012:855-860.
[28] Dujic D,Zhao Chuanhong,Mester A,et al.Power electronic traction transformer-low voltage prototype[J].IEEE Transactions on Power Electronics,2013,28(12):5522-5534.
[29] Besselmann T,Mester A,Dujic D.Power electronic traction transformer:efficiency improvements under light-load conditions[J].IEEE Transactions on Power Electronics,2014,29(8):3971-3981.
[30] Zhao Chuanhong,Dujic D,Mester A,et al.Power electronic traction transformer—medium voltage prototype[J].IEEE Transactions on Industrial Electronics,2014,61(7):3257-3268.
[31] Weigel J,Ag A N S,Hoffmann H.High voltage IGBTs in medium frequency traction power supply[C]//Proceedings of the 13th European Conference on Power Electronics and Applications.Barcelona,Spain:IEEE,2009:1-10.
[32] Hoffmann H,Piepenbreier B.High voltage IGBTs and medium frequency transformer in DC-DC converters for railway applications[C]//Proceedings of the 2010 International Symposium on Power Electronics Electrical Drives Automation and Motion.Pisa,Italy:IEEE,2010:744-749.
[33] Gu Chunyang,Zheng Zedong,Xu Lei,et al.Modeling and control of a multiport power electronic transformer (PET) for electric traction applications[J].IEEE Transactions on Power Electronics,2016,31(2):915-927.
[34] Lai J S,Maitra A,Mansoor A,et al.Multilevel intelligent universal transformer for medium voltage applications [C]//Proceedings of the Fourtieth IAS Annual Meeting.Conference Record of the 2005 Industry Applications Conference.Hong Kong,China:IEEE,2005:1893-1899.
[35] Lai J S,Maitra A,Goodman F.Performance of a distribution intelligent universal transformer under source and load disturbances[C]//Proceedings of the Conference Record of the 2006 IEEE Industry Applications Conference Forty-First IAS Annual Meeting.Tampa,FL,USA:IEEE,2006:719-725.
[36] Jiang Wei,Fahimi B.Multi-port power electric interface for renewable energy sources[C]//Proceedings of the 24th Annual IEEE Applied Power Electronics Conference and Exposition.Washington,DC,USA:IEEE,2009:347-352.
[37] Sabahi M,Goharrizi A Y,Hosseini S H,et al.Flexible power electronic transformer[J].IEEE Transactions on Power Electronics,2010,25(8):2159-2169.
[38] Sabahi M,Hosseini S H,Sharifian M B,et al.Zero-voltage switching bi-directional power electronic transformer[J].IET Power Electronics,2010,3(5):818-828.
[39] Bifaretti S,Zanchetta P,Watson A,et al.Advanced power electronic conversion and control system for universal and flexible power management[J].IEEE Transactions on Smart Grid,2011,2(2):231-243.
[40] She Xu,Huang A Q,Wang Gangyao.3-D space modulation with voltage balancing capability for a cascaded seven-level converter in a solid-state transformer[J].IEEE Transactions on Power Electronics,2011,26(12):3778-3789.
[41] Shi Jianjiang,Gou Wei,Yuan Hao,et al.Research on voltage and power balance control for cascaded modular solid-state transformer[J].IEEE Transactions on Power Electronics,2011,26(4):1154-1166.
[42] Liu Xiaohu,Li Hui,Wang Zhan.A start-up scheme for a three-stage solid-state transformer with minimized transformer current response[J].IEEE Transactions on Power Electronics,2012,27(12):4832-4836.
[43] Zhu Haibin,Li Yaohua,Wang Ping,et al.Design of power electronic transformer based on modular multilevel converter[C]//Proceedings of 2012 Asia-Pacific Power and Energy Engineering Conference.Shanghai,China:IEEE,2012:1-4.
[44] 张明锐,王之馨,黎娜.下垂控制在基于固态变压器的高压微电网中的应用[J].电力系统自动化,2012,36(14):186-192. Zhang Mingrui,Wang Zhixin,Li Na.Application of droop control in high-voltage based on solid state transformer[J].Automation of Electric Power System,2012,36(14):186-192(in Chinese).
[45] Falcones S,Ayyanar R,Mao Xiaolin.A DC-DC multiport-converter-based solid-state transformer integrating distributed generation and storage[J].IEEE Transactions on Power Electronics,2013,28(5):2192-2203.
[46] Hwang S H,Liu Xiaohu,Kim J M,et al.Distributed digital control of modular-based solid-state transformer using DSP+FPGA[J].IEEE Transactions on Industrial Electronics,2013,60(2):670-680.
[47] Qin Hengsi,Kimball J W.Solid-state transformer architecture using AC-AC dual-active-bridge converter[J].IEEE Transactions on Industrial Electronics,2013,60(9):3720-3730.
[48] Zhao Tiefu,Wang Gangyao,Bhattaya S,et al.Voltage and power balance control for a cascaded h-bridge converter-based solid-state transformer[J].IEEE Transactions on Power Electronics,2013,28(4):1523-1532.
[49] 李子欣,王平,楚遵方,等.面向中高压智能配电网的电力电子变压器研究[J].电网技术,2013,37(9):2592-2601. Li Zixin,Wang Ping,Chu Zunfang,et al.Research on medium- and high- voltage smart distribution grid oriented power electronic transformer[J].Power System Technology,2013,37(9):2592-2601(in Chinese).
[50] Contreras J P,Ramirez J M.Multi-fed power electronic transformer for use in modern distribution systems[J].IEEE Transactions on Smart Grid,2014,5(3):1532-1541.
[51] Guillod T,Huber J E,Ortiz G,et al.Characterization of the voltage and electric field stresses in multi-cell solid-state transformers[C]//Proceedings of 2014 IEEE Energy Conversion Congress and Exposition.Pittsburgh,PA,USA:IEEE,2014:4726-4734.
[52] Shah D G,Crow M L.Stability design criteria for distribution systems with solid-state transformers[J].IEEE Transactions on Power Delivery,2014,29(6),doi: 10.1109/TPWRD.2014.2311963.
[53] Yu Xunwei,She Xu,Ni Xijun,et al.System integration and hierarchical power management strategy for a solid- state transformer interfaced microgrid system[J].IEEE Transactions on Power Electronics,2014,29(8):4414-4425.
[54] Yu Xunwei,She Xu,Zhou Xiaohu,et al.Power management for DC microgrid enabled by solid-state transformer[J].IEEE Transactions on Smart Grid,2014,5(2):954-965.
[55] Gao Fanqiang,Li Zixin,Wang Ping,et al.Prototype of smart energy router for distribution DC grid[C]// Proceedings of the 17th European Conference on Power Electronics and Applications.Geneva,Switzerland:IEEE,2015:1-9.
[56] Madhusoodhanan S,Tripathi A,Patel D,et al.Solid-State transformer and MV grid tie applications enabled by 15 kV SiC IGBTs and 10 kV SiC MOSFETs based multilevel converters[J].IEEE Transactions on Industry Applications,2015,51(4):3343-3360.
[57] Mainali K,Tripathi A,Madhusoodhanan S,et al.A transformerless intelligent power substation:a three-phase SST enabled by a 15-kV SiC IGBT[J].IEEE Power Electronics Magazine,2015,2(3):31-43.
[58] Rothmund D,Ortiz G,Guillod T,et al.10kV SiC-based isolated DC-DC converter for medium voltage-connected solid-state transformers[C]//Proceedings of 2015 IEEE Applied Power Electronics Conference and Exposition.Charlotte,NC,USA:IEEE,2015:1096-1103.
[59] Wang Xinyu,Liu Jinjun,Ouyang Shaodi,et al.Research on unbalanced-load correction capability of two power electronic transformer topologies[J].IEEE Transactions on Power Electronics,2015,30(6):3044-3056.
[60] Ahmed H F,Cha H,Khan A A,et al.A highly reliable single-phase high-frequency isolated double step-down AC-AC converter with both noninverting and inverting operations[J].IEEE Transactions on Industry Applications,2016,52(6):4878-4887.
[61] Briz F,Lopez M,Rodriguez A,et al.Modular power electronic transformers:modular multilevel converter versus cascaded h-bridge solutions[J].IEEE Industrial Electronics Magazine,2016,10(4):6-19.
[62] Huang A Q.Medium-voltage solid-state transformer:technology for a smarter and resilient grid[J].IEEE Industrial Electronics Magazine,2016,10(3):29-42.
[63] Shah D,Crow M L.Online volt-var control for distribution systems with solid-state transformers[J].IEEE Transactions on Power Delivery,2016,31(1):343-350.
[64] Wang Dan,Tian Jie,Mao Chengxiong,et al.A 10kV/400V 500kVA electronic power transformer[J].IEEE Transactions on Industrial Electronics,2016,63(11):6653-6663.
[65] Wang Liang,Zhang Donglai,Wang Yi,et al.Power and voltage balance control of a novel three-phase solid-state transformer using multilevel cascaded H-bridge inverters for microgrid applications[J].IEEE Transactions on Power Electronics,2016,31(4):3289-3301.
[66] Wang Xinyu,Liu Jinjun,Ouyang Shaodi,et al.Control and experiment of an h-bridge-based three-phase three- stage modular power electronic transformer[J].IEEE Transactions on Power Electronics,2016,31(3):2002-2011.
[67] 韩继业,李勇,曹一家,等.一种新型的模块化多电平型固态变压器及其内模控制策略[J].中国科学:技术科学,2016,46(5):518-526. Han Jiye,Li Yong,Cao Yijia,et al.A new modular multilevel type solid state transformer with internal model control method[J].Scientia Sinica Technologica,2016,46(5):518-526(in Chinese).
[68] 韩继业,李勇,曹一家,等.基于模块化多电平型固态变压器的新型直流微网架构及其控制策略[J].电网技术,2016,40(3):733-740. Han Jiye,Li Yong,Cao Yijia,et al.A new DC microgrid architecture based on MMC-SST and its control strategy[J].Power System Technology,2016,40(3):733-740(in Chinese).
[69] 季振东,李东野,孙毅超,等.一种三相级联型电力电子变压器及其控制策略研究[J].电机与控制学报,2016,20(8):32-39,47. Ji Zhendong,Li Dongye,Sun Yichao,et al.Research on a three-phase cascaded power electronic transformer and its control strategy[J].Electric Machines and Control[J],2016,20(8):32-39,47(in Chinese).
[70] 李子欣,高范强,徐飞,等.中压配电网用10kVac- 750Vdc/1MVA电力电子变压器功率密度影响因素研究[J].电工电能新技术,2016,35(6):1-6. Li Zixin,Gao Fanqiang,Xu Fei,et al.Power density analysis of 10 kVac–750 Vdc/1 MVA power electronic transformer/solid-state transformer for medium voltage distribution grid[J].Advanced Technology of Electrical Engineering and Energy,2016,35(6):1-6(in Chinese).
[71] 刘维,涂春鸣,兰征,等.具有同步电机特性的电力电子变压器[J].电网技术,2016,40(3):918-924. LiuWei,Tu Chunming,Lan Zheng,et al.Power electronic transformer with synonous generator acteristics[J].Power System Technology,2016,40(3):918-924(in Chinese).
[72] 王婷,王广柱,张勋.基于模块化多电平矩阵变换器的电力电子变压器控制策略[J].电工技术学报,2016,31(18):108-115. Wang Ting,Wang Guangzhu,Zhang Xun.The control strategy of power electronic transformer based on modular multilevel matrix convertors[J].Transaction of China Electrotechnical Society,2016,31(18):108-115(in Chinese).
[73] Afiat Milani A,Khan M T A,Chakrabortty A,et al.Equilibrium point analysis and power sharing methods for distribution systems driven by solid-state transformers[J].IEEE Transactions on Power Systems,2018,33(2):1473-1483.
[74] Appel T,Benner D.Fundamental investigation of very fast transients in power-electronic winding for Solid-State Transformers[C]//Proceedings of the 19th European Conference on Power Electronics and Applications.Warsaw,Poland:IEEE,2017:P.1-P.8.
[75] Costa L F,Buticchi G,Liserre M.Quad-active-bridge DC-DC converter as cross-link for medium-voltage modular inverters[J].IEEE Transactions on Industry Applications,2017,53(2):1243-1253.
[76] Cuartas J M,Da La Cruz A,Briz F,et al.Start-up,functionalities and protection issues for CHB-based solid state transformers[C]//Proceedings of 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe.Milan,Italy :IEEE,2017:1-5.
[77] Dong Dong,Agamy M,Mandrusiak G,et al.Design of high-speed H-bridge converter using discrete SiC MOSFETs for solid-state transformer applications[C]// Proceedings of 2017 IEEE Energy Conversion Congress and Exposition.Cincinnati,OH,USA:IEEE,2017:1379-1386.
[78] Ferreira Costa L,De Carne G,Buticchi G,et al.The smart transformer:a solid-state transformer tailored to provide ancillary services to the distribution grid[J].IEEE Power Electronics Magazine,2017,4(2):56-67.
[79] Gao Rui,She Xu,Husain I,et al.Solid-state- transformer-interfaced permanent magnet wind turbine distributed generation system with power management functions[J].IEEE Transactions on Industry Applications,2017,53(4):3849-3861.
[80] Garcia Rodriguez L A,Jones V,Oliva A R,et al.A new SST topology comprising boost three-level AC/DC converters for applications in electric power distribution systems[J].IEEE Journal of Emerging and Selected Topics in Power Electronics,2017,5(2):735-746.
[81] Guillod T,Krismer F,Kolar J W.Protection of MV converters in the grid:the case of mv/lv solid-state transformers[J].IEEE Journal of Emerging and Selected Topics in Power Electronics,2017,5(1):393-408.
[82] Huang A Q,Zhu Qianlai,Wang Li,et al.15 kV SiC MOSFET:an enabling technology for medium voltage solid state transformers[J].CPSS Transactions on Power Electronics and Applications,2017,2(2):118-130.
[83] Huber J E,Böhler J,Rothmund D,et al.Analysis and cell-level experimental verification of a 25 kW All-SiC isolated front end 6.6 kV/400 V AC-DC solid-state transformer[J].CPSS Transactions on Power Electronics and Applications,2017,2(2):140-148.
[84] Huber J E,Kolar J W.Optimum number of cascaded cells for high-power medium-voltage AC-DC converters[J].IEEE Journal of Emerging and Selected Topics in Power Electronics,2017,5(1):213-232.
[85] Isobe T,Tadano H,He Zijin,et al.Control of solid-state-transformer for minimized energy storage capacitors[C]//Proceedings of 2017 IEEE Energy Conversion Congress and Exposition.Cincinnati,OH,USA:IEEE,2017:3809-3815.
[86] Itoh J I,Aoyagi K,Nakanishi T.Bidirectional single- phase Solid-State Transformer using multi cell for volume reduction of high voltage capacitor[C]//Proceedings of 3rd International Future Energy Electronics Conference and ECCE Asia.Kaohsiung,Taiwan,China:IEEE,2017:332-337.
[87] Madhusoodhanan S,Mainali K,Tripathi A,et al.Harmonic analysis and controller design of 15 kV SiC IGBT-based medium-voltage grid-connected three-phase three-level NPC converter[J].IEEE Transactions on Power Electronics,2017,32(5):3355-3369.
[88] Syed I,Khadkikar V.Replacing the grid interface transformer in wind energy conversion system with solid-state transformer[J].IEEE Transactions on Power Systems,2017,32(3):2152-2160.
[89] 高范强,李子欣,徐飞,等.一种高频链模块化电力电子变压器[J].电工电能新技术,2017,36(5):51-58.Gao Fanqiang,Li Zixin,Xu Fei,et al.Power electronic transformer based on modular convertor with high-frequency link[J].Advanced Technology of Elrctrical Engineering and Energy,2017,36(5):51-58(in Chinese).
[90] 刘闯,齐瑞鹏,刘海军,等.一种减小三相级联型PET各中间直流侧电容的方法[J].电力自动化设备,2017,37(11):46-53. Liu Chuang,Qi Ruipeng,Liu Haijun,et al.Method of decreasing intermediate DC-Link capacitors for three-phase cascaded power electronics transformer[J],Electric Power Automation Equipment,2017,37(11):46-53(in Chinese).
[91] 刘闯,支月媚.混合级联式电力电子变压器拓扑结构及控制策略[J].电网技术,2017,41(2):596-603.Liu Chuang,Zhi Yuemei.Hybrid cascaded power electronics transformer topology and control scheme[J].Power System Technology,2017,41(2):596-603(in Chinese).
[92] 涂春鸣,兰征,肖凡,等.模块化电力电子变压器的设计与实现[J].电工电能新技术,2017,36(5):42-50.Tu Chunming,Lan Zheng,Xiao Fan,et al.Design and implementation of modular power electronic transformer[J].Advanced Technology of Elrctrical Engineering and Energy,2017,36(5):42-50(in Chinese).
[93] 涂春鸣,孟阳,肖凡,等.一种交直流混合微网能量路由器及其运行模态分析[J].电工技术学报,2017,32(22):176-188. Tu Chunming,Meng Yang,Xiao Fan,et al.An AC-DC hybrid microgrid energy router and operational model analysis[J].Transaction of China Electrotechnical Society,2017,32(22):176-188(in Chinese).
[94] 王优,郑泽东,李永东.中高压电力电子变压器拓扑与控制应用综述[J].电工电能新技术,2017,36(5):1-10. Wang You,Zheng Zedong,Li Yongdong.Review of technology and control application of medium and high voltage power electronic transformer[J].Advanced Technology of Elrctrical Engineering and Energy,2017,36(5):1-10(in Chinese).
[95] 王丹,毛承雄,陆继明.自平衡电子电力变压器[J].中国电机工程学报,2007,27(6):77-83. WangDan,Mao Chengxiong,Lu Jiming.Auto-balancing electronic power transformer[J].Proceedings of the CSEE,2007,27(6):77-83(in Chinese).
[96] Das M K,Capell C,Grider D E,et al.10 kV,120 A SiC half H-bridge power MOSFET modules suitable for high frequency,medium voltage applications[C]//Proceedings of 2011 IEEE Energy Conversion Congress and Exposition.Phoenix,AZ,USA:IEEE,2011:2689-2692.
[97] Ortiz G,Leibl M,Huber J,et al.Efficiency/power-density optimization of medium-frequency transformers for solid-state-transformer applications[C]//Proceedings of the 10th IEEE International Conference on Power Electronics and Drive Systems.Kitakyushu,Japan:IEEE,2013.
[98] Basu K,Mohan N.A single-stage power electronic transformer for a three-phase PWM AC/AC drive with source-based commutation of leakage energy and common-mode voltage suppression[J].IEEE Transactions on Industrial Electronics,2014,61(11):5881-5893.
[99] Chen Hao,Divan D.Soft-switching solid-state transformer (S4T)[J].IEEE Transactions on Power Electronics,2018,33(4): 2933-2947.
[100] Aggeler D,Biela J,Kolar J W.Solid-state transformer based on SiC JFETs for future energy distribution systems[C]//Proceedings of the Smart Energy Strategies Conference 2008.Zürich,Switzerland:vdf Hochschulverlag AG an der ETH Zürich,2008.
[101] Dujic D,Steinke G K,Bellini M,et al.Characterization of 6.5 kV IGBTs for high-power medium-frequency soft-switched applications[J].IEEE Transactions on Power Electronics,2014,29(2):906-919.
[102] Ortiz G,Leibl M,Kolar J W,et al.Medium frequency transformers for solid-state-transformer applications- design and experimental verification[C]//Proceedings of the 10th International Conference on Power Electronics and Drive Systems.Kitakyushu,Japan:IEEE,2013:1285-1290.
[103] Villar I,Viscarret U,Etxeberria-Otadui I,et al.Global loss evaluation methods for nonsinusoidally fed medium-frequency power transformers[J].IEEE Transactions on Industrial Electronics,2009,56(10):4132-4140.
[104] Du S B Y,Wang Gangyao,Bhattaya S.Design considerations of high voltage and high frequency transformer for solid state transformer application[C]// Proceedings of the 36th Annual Conference on IEEE Industrial Electronics Society.Glendale,AZ,USA:IEEE,2010:421-426.
[105] Baek S,Bhattaya S.Analytical modeling and implementation of a coaxially wound transformer with integrated filter inductance for isolated soft-switching DC-DC converters[J].IEEE Transactions on Industrial Electronics,2018,65(3): 2245-2255.
[106] Rauls M S,Novotny D W,Divan D M.Design considerations for high-frequency coaxial winding power transformers[J].IEEE Transactions on Industry Applications,1993,29(2):375-381.
[107] Klontz K W,Divan D M,Novotny D W.An actively cooled 120 kW coaxial winding transformer for fast ging electric vehicles[C]//Proceedings of 1994 IEEE Industry Applications Society Annual Meeting.Denver,CO,USA:IEEE,1994:1049-1054.
[108] Rauls M S,Novotny D W,Divan D M,et al.Multiturn high-frequency coaxial winding power transformers[J].IEEE Transactions on Industry Applications,1995,31(1):112-118.
[109] Baek S,Bhattaya S.Analytical modeling of a medium-voltage and high-frequency resonant coaxial- type power transformer for a solid state transformer application[C]//Proceedings of 2011 IEEE Energy Conversion Congress and Exposition.Phoenix,AZ,USA:IEEE,2011:1873-1880.
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
截至2024年底,中国新能源汽车保有量已达到3140万辆。面对新能源汽车爆发式增长带来的充电基础设施需求压力,储能技术正成为破解充电网络峰谷矛盾的核心突破口。近日,海博思创完成星纪云能(无锡)科技有限公司在上海北翟路超级充电站的储能项目交付,通过精准的峰谷套利策略与智能功率支撑技术,为充
近期,多座储能电站获最新进展,北极星储能网特将2025年5月26日-2025年5月30日期间发布的储能项目动态整理如下:我国首个大型锂钠混合储能站投产5月25日,我国首个大型锂钠混合储能站——南方电网宝池储能站在文山壮族苗族自治州丘北县正式投产。宝池储能站属于国家新型储能试点示范项目,也是云南省首
北极星输配电网整理了5月26日~5月30日的一周电网项目动态。四川川渝1000千伏特高压交流工程送出500千伏“铜梁-圣泉”线路近日,川渝1000千伏特高压交流工程送出500千伏“铜梁-圣泉”线路全线贯通,为该线路6月投运奠定基础。该工程配套送出项目包括500千伏“铜梁-板桥”和“铜梁-圣泉”两条线路,分别
5月29日,保变电气发布公告,宣布向阿特兰塔电气有限公司转让控股子公司保变股份-阿特兰塔变压器印度有限公司90%股权,转让价格为1.37亿元。此次交易完成后,公司将不再持有印度公司的股权,该公司也将不再纳入公司的合并报表范围。根据公告,印度公司在2025年3月31日的全部权益价值为9011万元,较账面
“室温已降至零下25摄氏度。”5月27日,在国网天津电科院的大温差环境电缆实验室内,一组220千伏高压电缆终端正经历着从室温到极寒的阶梯式降温考验。国网天津市电力公司科研团队人员紧盯屏幕,实时监测电缆终端在不同气温下内部界面温度与压力的细微变化,温度越低界面压力越小,电缆绝缘性能也会随之
5月29日,合肥包公500千伏输变电工程环境影响报告书批前公示。项目名称:合肥包公500千伏输变电工程建设地点:安徽省合肥市合肥新站高新技术产业开发区建设单位:国网安徽省电力有限公司环评单位:南京源青优晟环境科技有限公司一、建设项目概况项目建设地点位于合肥市合肥新站高新技术产业开发区三十
北极星输配电网获悉,5月27日,许昌市投资集团有限公司(以下简称许昌投资集团)正筹划组建中原新型智慧电力装备产业集团(以下简称中原电力装备集团),已与部分产业链企业初步接洽。当日,许昌投资集团在其官网公开向电力装备制造企业、科研院所、金融机构及产业链上下游企业发出邀请。许昌投资集团
新型电力系统建设对调控业务的自动化、智能化提出了更高要求。故障发生时,调度员要根据现场情况快速采取相应处置措施,以防止故障进一步恶化,降低对人员和设备的危害。电网故障处置预案是调度员进行故障处置的重要参考,往往依赖于人工查找和判断,工作量大,且传统方式已无法满足需求。人工智能技术
北极星储能网讯:南方电网旗下东莞电力设计院开启2025年新能源储能项目EPC框架招标。此次招标预计采购两个标段合计800万元,覆盖2025年需开展的储能项目。采购范围包含但不限于:施工图设计、物资采购、施工、电网接入系统检测、全部工程调试及试运、验收等。原文如下:东莞电力设计院有限公司2025年新
2025年5月27日,瑞浦兰钧与韩国晓星重工业(HyosungHeavyIndustries)在韩国首尔正式签署电池储能系统领域战略合作备忘录(MoU)。瑞浦兰钧将供应2.5GWh的储能产品,共同推动储能技术在全球市场的应用与普及。此次合作以“构建全球储能战略框架”为核心,瑞浦兰钧将为晓星重工业供应储能电芯、模组及直
5月28日,江西赣州安远长沙35千伏输变电工程核准获批。一、项目建设单位:国网江西省电力有限公司安远县供电分公司。二、项目建设地点:安远县长沙乡。三、项目主要建设内容和建设规模:35千伏配电化变电站安装1台容量为6.3兆伏安的变压器,新增35千伏出线1回,10千伏出线2回。新建浮槎-小乐T接长沙变3
2025年5月27日,瑞浦兰钧与韩国晓星重工业(HyosungHeavyIndustries)在韩国首尔正式签署电池储能系统领域战略合作备忘录(MoU)。瑞浦兰钧将供应2.5GWh的储能产品,共同推动储能技术在全球市场的应用与普及。此次合作以“构建全球储能战略框架”为核心,瑞浦兰钧将为晓星重工业供应储能电芯、模组及直
该创新产品为全球电压等级最高的天然酯油变压器,为高压交流输电领域推进绿色环保和安全可靠的解决方案树立了行业标杆。日立能源765kV天然酯油变压器近日,日立能源全新765kV单相天然酯油变压器成功通过全套试验。这是全球首款达到这一电压等级的天然酯油变压器,为超高压交流电网运营商带来了既绿色环
北极星售电网获悉,5月12日,上海市市场监督管理局发布关于进一步规范本市非电网直供电价格行为的通报书。文件明确2025年4月,上海市发展改革委印发了《优化我市非电网直供电价格政策的工作指引》(沪发改价管〔2025〕14号),向市市场监管局等七部门制发了《关于进一步规范本市非电网直供电价格行为的
北极星氢能网获悉,近日,中国电气装备所属中国西电西电中特试验中心成功通过中国合格评定国家认可委员会(CNAS)的全面评审,获得实验室认可证书(注册号:CNASL22891),标志着该中心在变压器检测领域的技术能力、质量管理体系及国际互认资质(方面)取得重大突破,成为西部地区电力装备检测领域的标
北极星储能网讯:4月8日,昌吉州盛鼎新能源发电有限公司发布淮东新特硅基绿色低碳硅基产业园区示范项目(200万千瓦风电)工程配套200MW/400MWh储能项目工程总承包。项目货金来源为其他资金61000万元,招标人为昌吉州盛鼎新能源发电有限公司,位于新疆维吾尔族自治区昌吉回族自治州奇台县。项目配套建设
2月27日,山东公布2024年度山东省工业领域先进适用绿色低碳技术装备名单(鲁工信绿发〔2025〕20号)。其中,工业节能降碳技术包括由山东电工电气集团数字科技有限公司申报的3450kW储能变流器,储能变流器是电化学储能系统中,连接于电池系统与电网之间的实现电能双向转换的装置,通过通讯接收后台控制
据《马尼拉时报》2月17日报道,菲律宾能源监管委员会(ERC)12日宣布批准菲国家电网公司(NGCP)的四个新项目,旨在提升菲电力供应的稳定性。该四个项目总成本为50.1亿比索,具体为:位于巴科洛德市的230千伏格拉纳达变电站、位于奥尔莫克市的138千伏苏芒加变电站、位于西内格罗省的138千伏拉卡洛塔变
2月11日,南方电网公司2024年主网一次设备第二批框架招标项目(二次招标)招标。本批次框架招标范围包括35kV干式交流电力变压器1个物资品类,需求单位为广东、广西、云南、海南电网公司和南网储能公司,预计需求金额673.55万元。招标提到,本项目所有业绩的时间要求均以月为单位,近三年为投标截止时间前
北极星储能网从福建省工信厅获悉,2月8日,福建省工业和信息化厅发布福建省地方标准《光储充检一体化充电基础设施建设规范(征求意见稿)》。本文件规定了光储充检一体化充电基础设施技术、安全、建站以及监管要求。本文件适用于地面上独立建造(包括新建、改建和扩建)的储能容量为200kWh及以上的光储
2月7日,上海市经济信息化委发布征集用能设备更新供应链平台的通知(沪经信绿〔2025〕58号)。其中提到,上海市经济信息化委征集一批用能设备更新的专用工业品供应链平台,参与“上海市工业通信业用能设备更新专项扶持”工作。在上海市工业通信业用能设备更新专项扶持工作适用设备报备表中提到,本次补
2月5日,新疆公示2025年拟认定自治区“首台(套)、首批次、首版次产品”名单。其中包括特变电工智能电气有限责任公司的110kV户外智能型有载调压千式电力变压器,型号为SCZ-H·ZN-50000/110;特变电工超高压电气有限公司的现场组装式变压器,型号为0SFPS-JT-750000/500;特变电工股份有限公司新疆变压
2024年11月30日,中国广州–展示电力行业技术产品和解决方案的盛会MRCADEMY在广州圆满举行,这距离德国MR公司(莱茵豪森集团)上次在华举办已逾六年。作为全球变压器控制领域领导者,MR携令人耳目一新的变压器相关的最新技术及趋势亮相,通过重量级的会议演讲、圆桌对话和现场访谈,向与会嘉宾展示了MR
许继电气半年报数据显示,2024年1-6月营业总收入为68.36亿元,较去年同期下滑5.10%,净利润为6.28亿,较去年同期增长10.35%,每股收益0.6195元,净资产收益率为5.7%,每股经营现金流量为0.3259元,销售毛利率为20.90%,所处行业为电网设备。电网基本盘不断夯实。换流阀中标青藏Π期扩建工程1.79亿元。
北极星储能网讯,6月7日,《厦门市新型储能产业高质量发展行动计划(2024—2026年)》出台。政策指出,要重点发展电化学储能,大力培育氢储能,融合发展新型电力系统,多元布局新型储能技术。到2026年,厦门新型储能产业年均增速超20%,核心产业规模突破500亿元。文章强调:要实施储能技术源头突破、储
北极星输配电网获悉,1月3日,重庆市江津区人民政府发布关于印发《深入推进江津区制造业高质量发展行动方案(2023-2027年)》(以下简称《方案》)的通知。《方案》指出,新能源及新型储能。全力打造光伏全产业链,聚焦光伏材料产业,加快延链补链固链强链。大力推进“光伏+”融合发展模式,推动光储
11月27日,在国网天津市电力公司供应链服务智慧园区检储协同库内,智能装卸机器人将断路器、绝缘子等配网物资出库。这批物资被立即运往滨海供电公司110千伏宁夏道10千伏新出线工程,保障电网施工进度。国网天津电力积极落实国家电网有限公司绿色现代数智供应链发展行动要求,于7月建成公司首个具备“采
10月11日,国网天津电科院工作人员在国网天津电力物资质量检测中心中控室查看变压器、柱上开关和环网柜等被检物资样品的流转及检测进度。目前,随着常态化运行以来物资检测数量、检测效率的明显提升,物资质量检测中心已实现高效运转,从仓储对接、资源分派、样品检测、数据分析四方面,实现对天津地区
北极星储能网获悉,9月28日,重庆市委办公厅、重庆市政府办公厅印发《深入推进新时代新征程新重庆制造业高质量发展行动方案(2023—2027年)》,其中提到,创新打造特色优势产业集群,大力推动电化学储能技术产品的发展与应用,积极争取在机械储能、储热(蓄冷)等技术产品领域取得突破,做大储能产业
政策北京市朝阳区碳达峰实施方案(征求意见稿)印发近日,北京市朝阳区人民政府发布北京市朝阳区碳达峰实施方案(征求意见稿)提出,发展建设新型负荷系统。运用云计算、物联网等信息技术,建设新能源微网、能源互联网等以新能源为主的新型能源基础设施。力争到2025年,电网高峰负荷削峰能力达到最高用
7月21日,,重庆市人民政府印发了《重庆市先进制造业发展“渝西跨越计划”(2023—2027年)》的通知,通知提出,面向清洁能源开发利用需求,做强做大电化学储能规模,加快智能变压器、智能开关柜等智能电网装备迭代,积极引育光伏组件、抽水蓄能水轮机等技术装备产品。紧盯清洁能源及新型储能最新趋势
2023年7月,重庆市人民政府印发了《重庆市先进制造业发展“渝西跨越计划”(2023—2027年)》(渝府发〔2023〕13号,以下简称《渝西跨越计划》)。新能源及新型储能。面向清洁能源开发利用需求,做强做大电化学储能规模,加快智能变压器、智能开关柜等智能电网装备迭代,积极引育光伏组件、抽水蓄能水
推进中国式现代化,必须全面推进乡村振兴。稳定可靠的电力供应是乡村振兴的基础保障。国家电网开展优化电力营商环境再提升行动,充分发挥电网基础性、先导性作用,持续推进城乡供电服务均等化,深入推动城乡用电一体化管理,全力保障电力供应,提升供电服务品质,助力农村经济社会高质量发展。办电不出
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!