登录注册
请使用微信扫一扫
关注公众号完成登录
2 提高LLZO锂离子电导率的策略
石榴石型晶体结构的灵活性为石榴石型固态电解质的组成赋予了丰富的多样性。通过调控LLZO的化学计量比和锂离子浓度,有望在现有基础上进一步提高LLZO的锂离子电导率。为此,可以采取的策略有:(1) 添加合适的烧结助剂;(2) 采用先进的烧结方法;(3) 对LLZO进行多种离子掺杂。
2-1 添加合适的烧结助剂
添加助熔剂能明显改善烧结得到的LLZO微观形貌,降低烧结温度,缩短烧结时间,提高固相产物致密度,有利于制备出锂离子电导率高的稳定立方相LLZO。向烧结体系中加入Li2O、Li3BO3(LBO)、La2Zr2O7(LZO) 等助熔剂能使体系的熔点降低,并形成液态玻璃相。一些液态玻璃相偏聚在晶界,通过改变晶界相的组成和数量使晶界电阻下降,从而降低LLZO总电阻;而另一些液态玻璃相进入晶粒内部,使LLZO晶体更加致密,晶界相减少和锂离子扩散通路增加共同使LLZO的锂离子电导率提高。
高温长时间烧结导致的锂流失会使LLZO的锂离子电导率下降。为了解决这一问题,研究人员对各种助熔剂的添加效果进行了探究。例如,(1)向LLZO体系添加LBO能使烧结温度下降到900 ℃,但烧结时间仍长达36 h,添加LBO后烧结得到的固态电解质具有与未添加助熔剂时所得产物相近的锂离子电导率。 (2) 向LLZO体系添加Li2O能将Li6˙4La3Zr1˙4Ta0˙6O12(LLZTO) 的烧结时间缩短到10 h,其烧结温度为1100 ℃。该体系形成的玻璃相将相邻LLZTO晶粒黏合起来,增大了LLZTO的密度和锂离子电导率。(3) 向LLZO体系添加LiO2-B2O3- SiO2-CaO-Al2O3(LBSCA) 和BaO-B2O3-SiO2-CaO-Al2O3( BBSCA) 能减少Nb掺杂LLZO的孔隙率,在900 ℃烧结10 h即可获得烧结质量高的固相产物。
2-2 选择先进的烧结方法
采用先进烧结技术制备LLZO能增大烧结产物的密度,减少烧结产物缺陷,从而实现更高的锂离子电导率。
目前已报导的LLZO烧结技术有:
(1) 在流动的氧气中烧结;
(2) 在特殊气氛下烧结;
(3) 放电等离子烧结 (SPS);
(4) 电场辅助烧结技术 (FAST);
(5) 高温热压烧结等。
这些烧结技术能减少晶界附近的孔隙,提高烧结产物密度,在更低的烧结温度和更短的烧结时间内制备出优质的固态电解质。通过降低锂离子在固态电解质中扩散的活化能,使固态电解质的锂离子电导率提高。
2-3 离子掺杂
目前主要通过对LLZO进行金属阳离子掺杂提升LLZO的锂离子电导率,其作用机理为:
(1) 金属阳离子掺杂能调节LLZO晶格中的锂离子浓度,并改变锂离子在LLZO晶格内不同位点 (Li1和Li2)的占有率及分布状态。随着锂含量的提高,八面体空位的锂离子占据率升高,而四面体空位的锂离子占据率降低。由于八面体中心的锂离子具有比四面体中心的锂离子更高的迁移率,故LLZO的锂离子电导率随锂含量的升高而升高。
(2) 向LLZO中掺杂半径较大的金属阳离子能使锂离子扩散通路上“瓶颈”部位的尺寸增大,使锂离子在LLZO中扩散的活化能减小,从而使锂离子迁移率增大,LLZO的锂离子电导率随之提高。
此外,掺杂离子占据LLZO晶格的不同位点也会对LLZO的锂离子电导率造成影响。
注:当Li1位点和Li2位点的锂离子占据率分别为46 %和47 %时,立方相LLZO的结构最稳定。
图8 锂含量对锂离子在LLZO晶格中不同位点的占据率和锂离子电导率的影响
目前,已有大量工作报导了Al3+、Y3+、Ga3+、Ta5+、Nb5+、W6+等金属阳离子掺杂对LLZO锂离子电导率的影响。研究发现,Al3+掺杂能提高LLZO的烧结质量,调节LLZO中的锂离子浓度,有利于提高LLZO的锂离子电导率。
这得益于Al3+在LLZO中发挥的以下作用:
(1) 使立方相LLZO的结构更稳定;
(2) 阻碍间隙锂离子的扩散;
(3) 有利于锂离子空位的形成;
(4) 形成的无定形Li-Al-O玻璃相有利于晶粒间的锂离子扩散;
(5) 降低了烧结温度。
类似的,通过双金属阳离子掺杂能进一步调节锂离子扩散通路,使锂离子迁移率显著增大,从而使LLZO的锂离子电导率显著提高。例如Al3+-Ta5+和Al3+-Te6+双掺杂都能使LLZO在25 ℃下的锂离子电导率达到10-3 S cm-1。最近报导的Ga3+-Sc3+双掺杂LLZO体系已达到1.8×10-3 S cm-1的锂离子电导率 (27 ℃)。
3 固态电解质-电极界面问题
目前,LLZO的锂离子电导率已能满足全固态锂电池在低电流倍率下工作的需求。制约全固态锂电池电化学性能的主要因素是固态电解质-电极界面的锂离子扩散过程。下面分别介绍调控LLZO-正极界面和LLZO-负极界面的研究进展。
3-1 LLZO-正极界面
Miara等用DFT计算研究了LLZO与常用正极材料所形成界面的热力学稳定性。计算结果表明,LLZO与LiCoO2之间能形成热力学上最稳定的界面,而LiMnO2或LiFePO4正极都能与LLZO发生剧烈的反应。该结论已被Ren等的实验结果所证实。
图9 不同电位下LLZO与常见正极材料反应生成界面相的反应驱动力
有趣的是,Kim等发现,即使是热力学上“最稳定”的LLZO-LiCoO2界面,也会产生厚度约为50 nm的La2CoO4界面相。此外,Goodenough等发现LLZO-LiCoO2界面处的原子在高温下扩散,使界面区的LLZO从立方相转变为四方相,使电池的库伦效率和循环寿命下降。
事实上,LLZO与正极材料之间的界面电阻主要有三个来源:
(1) LLZO与正极材料反应生成界面相;
(2) LLZO-正极材料界面发生原子扩散形成界面相;
(3) LLZO与空气中的CO2和H2O反应生成含LiOH和Li2CO3的绝缘层。
为了减少LLZO-正极的界面电阻,行之有效的方法有:
(1) 将正极活性材料、固态电解质和助熔剂在低温下共烧结,抑制正极材料与固态电解质之间的反应;
(2) 采用丝网印刷技术,除了以LLZO作为固态电解质,还引入Li3BO3作为LiCoO2层间的固态电解质。由于Li3BO3的熔点仅为700 ℃,在通常烧结温度下均能形成紧密接触的界面,从而保证LLZO-LiCoO2界面有较高的锂离子迁移率;
(3) 在LLZO和正极材料之间添加缓冲层 (如Nb、Ta),烧结过程中形成的无定形层间相(如Li-Nb-O)能抑制LLZO与正极材料之间的元素扩散,并抑制不利于锂离子传输的层间相(如LaCoO4)形成。
此外,这种无定形层间相还能在界面上引入原子级空位,有利于LLZO-正极界面的锂离子扩散过程。
最近,Nan等报导了基于柔性聚合物的全固态锂电池。该工作以含有LiFePO4颗粒的聚环氧乙烯 (PEO) 作为正极,以含有Al掺杂LLZO颗粒的PEO作为固态电解质,构成了致密的固态电解质-正极界面。Guo等则提出用离子液体增强PEO-LLZO界面浸润性的方法。这些做法都能提高全固态锂电池的倍率性能和循环稳定性。
3-2 LLZO-锂负极界面
LLZO-Li界面主要存在以下三个问题:
(1) 与锂金属接触时,立方相LLZO容易转化为高电阻的四方相LLZO;
(2) 界面电阻较大;
(3) 锂枝晶的形成和生长。此外,锂负极与空气接触也会形成导电性差的LiOH和Li2CO3,使LLZO-Li界面电阻增大。
注:锂枝晶可以穿过固态电解质的晶界和微孔继续生长。固态电解质的密度越大,短路前经历的充电时间越长。
图10 (a) Al3+掺杂的Li6.75La3Zr1.75Ta0.25O12 (LLZTO)固态电解质;
(b)锂枝晶引起短路后的LLZTO形貌。
图11 解决LLZO-Li界面问题的主要途径
为了解决LLZO-Li的界面问题,早期研究工作曾采取增大外界压力或加热锂金属的方法增强LLZO与锂负极之间的物理接触。这些做法虽然能使界面电阻明显下降,但残余电阻仍然较大,不能完全解决问题。
由于锂金属对LLZO的浸润性差,且LLZO有较大的刚性,LLZO-锂负极界面往往存在微孔和间隔,造成较大的界面电阻。为了进一步减小该界面电阻,可以从调控LLZO微观结构的角度采取一系列措施。
例如:
(1) 在一定范围内减小LLZO的晶粒尺寸,获得更高的锂离子电导率,并使LLZO在空气中更稳定;
(2) 用表面抛光等方法除去LLZO表面的Li2CO3绝缘层;
(3) 调节LLZO中的Al掺杂含量,改变晶界相 (无定形Li-Al-O玻璃相) 的组成和含量,从调控晶界结构的角度提高锂离子电导率。
为了减小LLZO-Li界面电阻,还可以用等离子体增强化学气相沉积 (PECVD)、原子层沉积 (ALD)、磁控溅射、蒸发镀膜等方法在LLZO与锂负极之间引入组分为Si、Ge、Au、ZnO、Al2O3等的缓冲层。这些组分能与锂形成合金相,增强锂金属对LLZO的浸润性,使LLZO表面从超疏锂变为超亲锂。界面处新生成的锂合金相不仅能使界面电阻减小,还能抑制锂枝晶的生长,并诱导锂金属在LLZO-Li界面均匀沉积,有利于提高全固态锂电池的倍率性能和安全性。
特别的,用ALD方法在固态电解质表面沉积缓冲层对减小界面电阻有奇效。Han等用ALD方法在Li7La2.75Ca0.25Zr1.75Nb0.25O12 (LLCZN)固态电解质表面沉积Al2O3,把LLCNZ-Li界面电阻从1710 Ω cm2减小到1 Ω cm2。这得益于用ALD方法沉积得到的薄膜具有较小的表面张力,甚至能适应形状复杂的孔结构,因此允许采用多孔结构的LLZO,使LLZO与Li的接触面积进一步增大,有利于锂离子在界面的传输。
总之,通过向固态电解质和锂负极之间引入缓冲层,能促使缓冲层锂化生成锂合金相。这不仅增强了锂对固态电解质的浸润性,有利于形成致密的LLZO-Li界面,还能在锂沉积/溶解反应中充当相对稳定的“SEI膜”,提高全固态锂电池的功率密度和长循环稳定性。
三、基于LLZO的全固态锂电池
2010年,Kotobuki等首次报导了基于LLZO的第一款全固态锂电池。该团队用溶胶-凝胶法制备了Li7La3Zr2O12固态电解质薄膜,并将其与LiCoO2正极和锂负极共同组装出全固态锂电池。尽管未经处理的固-固界面问题使该电池只有15 μAh cm-2的放电比容量,该构型却证明了用LLZO构筑全固态锂电池的可行性。此后,基于LLZO的全固态锂电池发展历程如表2所示。最近Yan等制备的薄膜型Li|LLZO|LiFePO4全固态锂电池已能达到160.4 mAh/g的首次放电比容量,经100次循环后其放电比容量为136.8 mAh/g,容量保持率为85.3%。
表2 基于LLZO的全固态锂电池研究进展
将聚合物电解质与无机固态电解质结合起来能充分发挥二者的优势,提供良好稳定的固-固界面。例如经典的三明治结构复合固态电解质 (聚合物|固态电解质|聚合物) 不仅有利于解决浸润性问题,还能阻碍阴离子的扩散,有利于提高全固态锂电池的库伦效率。
最近,Takami等将涂覆有聚丙烯腈 (PAN) 的Li7La3Zr2O12 (LLZ) 颗粒制成凝胶型复合电解质,并与LiMn0˙8Fe0˙2PO4(LMFP) 正极和Li4Ti5O12(LTO) 负极共同组装为双极全固态锂电池。该电池能提供12 V的输出电压,能满足低电压用电器的需求。
图12 LiMn0.8Fe0.2PO4(LMFP) | Li7La3Zr2O12 (LLZ) | Li4Ti5O12(LTO)双极全固态锂电池(12 V)
Goodenough等在Li6.5La3Zr1.5Ta0.5O12 (LLZT) 表面包覆LiF,增强了LLZT在潮湿空气中的稳定性,并使LLZT表面生成的Li2CO3含量下降。由此组装的Li|LiTFSI-CPEO|LLZT-2LiF|LiFePO4(注:CPEO为交联的聚环氧乙烯) 全固态锂电池能达到不低于99.8%的库伦效率,在80 μA cm-2的电流密度下充放电循环100次后能达到120 mAh/g的比容量。
通过改变复合固态电解质的构型,能改变其力学性能和电化学性能。最近,Fan和Goodenough等将PEO-LLZO复合固态电解质的构型从“聚合物包覆陶瓷”改为“陶瓷包覆聚合物”,用热压工艺制备出柔韧性强的固态电解质薄膜。将该PEO@LLZO固态电解质薄膜与LiFePO4正极和锂负极组装为软包电池,能达到148.6 mAh/g的首次放电比容量,经历50次循环后的库伦效率接近100%,其电化学性能优于“聚合物包覆陶瓷”构型的LLZO@PEO固态电解质薄膜。Zhang等用PEO-LLZO固态电解质固定其中的阴离子,使锂离子均匀分散在固态电解质中,从而促使锂离子均匀沉积,避免了锂枝晶的形成。该固态电解质与LiFePO4和LiNi0.5Co0.2Mn0.3O2正极、锂负极组装的全固态锂电池在60 ℃下以0.1 C的电流倍率进行充放电循环时,能达到155 mAh/g的比容量和99%的库伦效率。
基于LLZO的固态电解质不仅能用于锂离子电池和锂金属电池,还能用于Li-V2O5电池、Li-S电池、Li-O2电池等。该固态电解质不仅能抑制锂枝晶的生长,还能杜绝锂硫电池中多硫化物的穿梭效应,并为锂空电池的锂负极提供保护层,防止锂负极与空气中的水反应。这使锂负极与LLZO-Li界面更稳定,增强了上述电池的安全性和循环稳定性。
【总结与展望】
石榴石型固态电解质具有高的锂离子电导率、宽的电化学稳定窗口、稳定的LLZO-Li界面,适用于锂金属电池体系。目前,该体系最大的问题是固态电解质与电极之间的界面问题,包括界面接触不佳、相变等原因造成的界面电阻大,固态电解质与正负极的兼容性差造成的界面不稳定等。今后,需要结合原位表征手段和理论计算方法对固态电解质-电极界面的锂离子输运机制、相关的化学反应和电化学反应、热力学及动力学性质等进行进一步的研究。此外,巧妙的全固态锂电池构型设计和组装策略也有可能为全固态锂电池的发展打开新的天地!
【文献信息】
Challenges and perspectives of garnet solid electrolytes for all solid-state lithium batteries (Journal of Power Sources,2017, DOI: 10.1016/j.jpowsour.2018.04.019)
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
北极星储能网获悉,5月12日消息,近日,厦门高新投旗下厦门高新创臻一期基金完成了对福建中伟半导体材料有限公司的投资,融资金额500万元。资料显示,本轮融资系中伟半导体天使轮融资。中伟半导体成立于2021年,专业从事高纯稀散金属、化合物以及全固态电池电解质材料的研制、生产及销售,是国内极少有
北极星储能网获悉,德尔股份在5月8日召开的2024年度业绩说明会上表示,公司在上海已经建成固态电池样品试制线,并在进行各项技术测试。目前公司具备了各类样品的试制能力,能够根据不同应用场景的客户需求以及不同的技术要求为客户量身定制相应的方案。公司将根据固态电池客户开发验证和市场需求情况,
北极星储能网获悉,5月8日,湖南盐业集团下属轻盐晟富创业投资管理有限公司担任执行事务合伙人的湖南湘盐福舜固电产业投资合伙企业(有限合伙)正式通过中国证券投资基金业协会备案。该基金由湖南盐业集团、华福证券和临武县产业基金联合发起设立,首期规模2亿元。据介绍,基金成立后,将从原材料供应
日产汽车近日表示,决定放弃在日本九州建造磷酸铁锂电池工厂的计划。该项目选址日本西南部九州岛,投资10.5亿美元(约合人民币76亿元),创造约500个就业岗位。日产汽车表示,这是其恢复业绩方案的一部分,公司正在采取扭亏为盈的行动。时间回溯至年初。今年1月22日,日产汽车公司宣布将在日本福冈县北
北极星储能网获悉,5月7日消息,有投资者向格林美提问,你好,请问贵公司目前的固态电池项目进展如何,是否已产生收益?固态电池行业预计2027年前后启动全固态电池批量示范装车应用及小规模量产,2030年前后实现全固态电池大规模量产;公司在适配固态电池富锂锰基正极及前驱体以及9系超高镍正极及前驱
日前,上汽通用五菱在上海召开技术沟通会。上汽通用五菱技术中心智能平台首席技术官邵杰在会上透露,公司新能源汽车实验室做了钠电、锂电等、半固态、固态等前瞻性的研究。对于固态电池,邵杰表示,上汽通用五菱一直在坚持做相关研究,并在广西建立了固态电池实验室,目前整体进展比较顺利,预计2027年
北极星储能网获悉,5月8日,国轩高科在其投资者关系活动中披露,公司全年出货约63GWh,其中动力出货占比约65%,储能出货占比约35%。2024年公司整体毛利率为18%。海外收入占比31.09%。应对海外项目风险国轩高科表示在海外项目推进过程中,通过以下措施积极应对复杂多变的国际环境:1、搭建国际运营的风
4月2日,美国总统特朗普宣布对中国锂离子电池征收64.5%综合关税,并计划于2026年进一步上调至82%。这一系列关税举措可能彻底颠覆电网规模储能项目的经济性,对储能系统开发商正在推进或未来规划的项目发展前景蒙上阴影。太阳能发电设施的组件也受到了影响,从中国进口的多晶硅、硅片和光伏面板需缴纳60
北极星储能网获悉,近日,高性能锂电硅碳负极材料研发供应商杭州星科源新材料科技有限公司(以下简称“星科源”)完成数千万元天使+轮融资。本轮融资投资方为元禾原点。本轮融资主要用于开发新一代产品,以及在技术迭代基础上,突破规模化量产。据了解,星科源成立于2022年1月,聚焦于锂电用硅碳负极的
北极星储能网获悉,5月8日,振华新材发布关于2024年度“提质增效重回报”行动方案的评估报告暨2025年度“提质增效重回报”专项行动方案。其中指出,多元化产品矩阵及前瞻性技术储备为公司在大增程电池、半固态/固态电池、低空经济、电动两轮车、UPS启停电池、重型商用电动车及储能等市场奠定了坚实的基
北极星储能网获悉,5月8日,孚能科技在投资者互动平台上表示,公司与三一客户合作主要围绕商用车应用展开,预计采用公司半固态电池解决方案,目前客户反馈良好。在低空经济方面,公司与美国头部eVTOL客户、国内头部飞行汽车客户、上海时的、沃飞长空、零重力等低空经济领域客户进行深度合作,有望为公
随着可再生能源的快速发展,开发低成本、长寿命、高安全的大规模储能技术成为实现碳中和的关键。中性水系有机液流电池(AORFBs)因分子结构可调、环境友好等优势备受关注。萘酰亚胺(NDI)衍生物凭借其高度的π-π共轭体系和双电子存储特性成为理想候选材料,然而循环过程中的侧链和酰亚胺环易受OH亲核
北极星储能网获悉,5月12日消息,近日,厦门高新投旗下厦门高新创臻一期基金完成了对福建中伟半导体材料有限公司的投资,融资金额500万元。资料显示,本轮融资系中伟半导体天使轮融资。中伟半导体成立于2021年,专业从事高纯稀散金属、化合物以及全固态电池电解质材料的研制、生产及销售,是国内极少有
日产汽车近日表示,决定放弃在日本九州建造磷酸铁锂电池工厂的计划。该项目选址日本西南部九州岛,投资10.5亿美元(约合人民币76亿元),创造约500个就业岗位。日产汽车表示,这是其恢复业绩方案的一部分,公司正在采取扭亏为盈的行动。时间回溯至年初。今年1月22日,日产汽车公司宣布将在日本福冈县北
日前,上汽通用五菱在上海召开技术沟通会。上汽通用五菱技术中心智能平台首席技术官邵杰在会上透露,公司新能源汽车实验室做了钠电、锂电等、半固态、固态等前瞻性的研究。对于固态电池,邵杰表示,上汽通用五菱一直在坚持做相关研究,并在广西建立了固态电池实验室,目前整体进展比较顺利,预计2027年
固态钠电池兼具资源丰富、安全性高、比能量高等优势,被认为是最有应用前景的新型储能技术之一。然而,固态钠电池中在应用中面临诸多挑战,Na金属负极与固态电解质之间的固-固接触导致高界面电阻和Na枝晶的形成,降低了Na的利用率,并损害了电池的循环稳定性;商业化制造的钠箔的厚度一般在50m以上,较
北极星储能网获悉,5月8日,振华新材发布关于2024年度“提质增效重回报”行动方案的评估报告暨2025年度“提质增效重回报”专项行动方案。其中指出,多元化产品矩阵及前瞻性技术储备为公司在大增程电池、半固态/固态电池、低空经济、电动两轮车、UPS启停电池、重型商用电动车及储能等市场奠定了坚实的基
北极星储能网获悉,5月7日,容百科技发布投资者关系活动记录表,公司于2025年5月5日接受106家机构调研。2025年一季度,容百科技实现营业收入29.64亿元,净利润-405万元。在主营正极材料业务的市场开拓方面,取得了一些积极进展。对于美国关税政策对三元材料出货的影响,容百科技表示,受制于关税政策,
北极星储能网获悉,4月30日,孚能科技发布2025年度“提质增效重回报”行动方案。其中提到,在全固态电池方面,公司硫化物及复合物路线均取得较大突破,其中硫化物全固态电池已进入产品产业化开发阶段,产品、工艺及生产设备均处于开发中。硫化物固态电池沿用公司完善的叠片软包电池的制备工艺及设备,
日前,河北张家口南山汽车产业基地与三维(陕西)电池技术有限公司举行三维固态特种电池生产基地项目签约仪式。项目将建设第四代智能化电池工厂,计划总投资10亿元,总占地70亩,规划建筑面积10.2万平方米,分两期实施。其中,一期投资6亿元,二期投资4亿元,预留产能扩展空间。建成后可新增1GWh三维固
北极星储能网获悉,4月29日,恩捷股份公布2025年一季报,公司营业收入为27.3亿元,同比上升17.2%;归母净利润为2599万元,同比下降83.6%;扣非归母净利润为2920万元,同比下降80.4%;经营现金流净额为1.24亿元,同比下降72.7%;EPS(全面摊薄)为0.0268元。截至一季度末,公司总资产477.46亿元,较上年度
北极星储能网获悉,4月29日消息,欧洲汽车巨头Stellantis与美国初创公司FactorialEnergy联合研发的FEST固态电池成功通过车规级验证。据了解,FEST固态电池容量为77Ah,能量密度达到375Wh/kg,理论上可使电动车续航突破1000公里。经600次充放电循环后仍保持90%以上容量,达到车规级耐久标准。具备4C放电
北极星储能网获悉,5月12日,中国汽车动力电池产业创新联盟发布2025年4月动力电池月度信息。4月,我国动力和其他电池合计产量为118.2GWh,环比下降0.03%,同比增长49.0%。1-4月,我国动力和其他电池累计产量为444.6GWh,累计同比增长67.1%。销量方面:4月,我国动力和其他电池销量为118.1GWh,环比增长
北极星储能网获悉,5月9日,联特云储(青岛)智能科技有限公司青岛莱西市储能电站示范项目工程总承包(EPC)中标结果公示,项目招标人为联特云储(青岛)智能科技有限公司,建设使用磷酸铁锂电池的100MW/200MWh储能电站,中国电建集团江西省电力设计院有限公司、东方旭能(山东)科技发展有限公司、广西民
2025年,青海省科技厅以“开局即冲刺”的奋进姿态,锚定省委省政府“一季度开门红”目标,围绕打造生态文明高地和建设产业“四地”,针对青海省经济社会发展的堵点难点,突出科技创新与产业创新融合,因地制宜培育和发展新质生产力,提出“百项计划攻坚行动”,加快组织实施一批科技项目,突破重点,带
日产汽车近日表示,决定放弃在日本九州建造磷酸铁锂电池工厂的计划。该项目选址日本西南部九州岛,投资10.5亿美元(约合人民币76亿元),创造约500个就业岗位。日产汽车表示,这是其恢复业绩方案的一部分,公司正在采取扭亏为盈的行动。时间回溯至年初。今年1月22日,日产汽车公司宣布将在日本福冈县北
主要观点:从长期趋势看,我国电力弹性系数将逐步降低。长期而言,我国宏观产业结构转型和内部升级将极大重塑用电结构,经济增长对电力的依赖程度持续降低。进入后工业阶段,电力消费增速与GDP增速比值降至1以下。随着产业结构不断优化,工业比重下降、服务业比重上升,以及技术进步和环保意识增强,能
近日,研究机构EVTank联合伊维经济研究院共同发布了《中国锂电产业链上市公司高质量发展白皮书(2025年)》。白皮书数据显示,2024年度,纳入EVTank研究范围的140家锂电产业链上市公司董事长合计薪酬达到29372.54万元,平均薪酬为209.80万元,其中瑞浦兰钧董事长曹辉以4764.10万元(含股份激励计划开支
5月9日,宁德时代麒麟电池、宁德时代神行超充电池、宁德时代骁遥超级增·混电池、巧克力换电块以及一款将用于自动驾驶的电池包,均获得GB38031-2025《电动汽车用动力蓄电池安全要求》(以下简称“新国标”)检测报告。至此,宁德时代成为全国首家乘用车与商用车领域全系量产品牌均通过新国标检测的企业
近期,多座储能电站获最新进展,北极星储能网特将2025年5月6日-2025年5月9日期间发布的储能项目动态整理如下:200MW/400MWh云南曲靖市首个共享储能项目并网投产4月29日,国家电投云南国际陆良县500兆瓦/1000兆瓦时共享储能项目(一期)顺利并网,是曲靖市首个顺利建成并网运行的新型储能项目。一期项目
日前,上汽通用五菱在上海召开技术沟通会。上汽通用五菱技术中心智能平台首席技术官邵杰在会上透露,公司新能源汽车实验室做了钠电、锂电等、半固态、固态等前瞻性的研究。对于固态电池,邵杰表示,上汽通用五菱一直在坚持做相关研究,并在广西建立了固态电池实验室,目前整体进展比较顺利,预计2027年
瑞浦兰钧旗下PHEV系列问顶54Ah电芯产品率先通过新国标认证(《GB38031-2025电动汽车用动力蓄电池安全要求》),瑞浦兰钧成为行业首批达标企业。根据工业和信息化部消息,我国将于2026年7月1日起正式实施电动汽车用动力蓄电池新的强制性国家标准。作为新能源行业领跑者,瑞浦兰钧率先通过了GB38031-2025
日前,南漳龙蟒磷制品有限责任公司年产20万吨新能源材料磷酸铁全产业链配套堆渣场项目环境影响评价进行第二次公示。公示信息显示,该项目总投资达110亿元,于2022年5月正式签约落地南漳县,项目分两期建设,涵盖硫磺制酸、湿法磷酸、磷石膏处理、合成氨等装置,一期和二期产能叠加后将实现年产磷酸铁20
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!