登录注册
请使用微信扫一扫
关注公众号完成登录
表1 微电网的仿真参数
仿真算例1:为了验证ES控制在改善储能变流器动态响应性能方面的有效性,本算例中施加了一系列阶跃变化的功率指令,即在0 s,1 s,2 s,3 s时刻给SMES施加0 MW,-1 MW,-0.5 MW,0.5 MW的功率指令,并与常见的PI控制及反步法控制进行了对比。
图6中分别给出了ES控制、PI控制以及反步法控制时SMES响应的有功功率波形。由于BESS的控制效果类似,不再给出。从图6中可以看出,SMES的储能变流器在ES控制的作用下有效地跟踪了给定的功率指令,较PI控制大幅缩减了超调量及调整时间。
图6 SMES变流器输出的有功功率
图7给出了储能变流器在阶跃时间点放大的功率响应功率波形。图中可以看出,与其它常见的控制算法相比,ES控制具有更小的超调量和调整时间。此外,由于本算例中设置无功功率参考为零,进行的是单位功率因数的控制,通过观察无功功率的波形可以发现,ES控制可以有效地实现有功功率和无功功率之间相互独立的控制。因此,在微电网并网状态下,储能变流器采用本文提出的ES内环控制可以获得更好的动态响应能力。
图7 SMES变流器输出功率对比
图8给出了SMES的储能变流器基于PI闭环控制和ES控制下的A相电压、电流的波形。
图8 变流器交流侧电压电流波形
图9给出了SMES的储能变流器交流侧电流在充放电状态时的谐波幅值占基波幅值的百分比。
图9 输出电流的谐波分析
取SMES在2~3 s的充电过程进行分析,基于PI控制和ES控制的SMES的A相相电流的总谐波
失真(total harmonic distortion,THD)分别为4.84%、2.52%。图中可以看出采用ES控制时储能变流器输出电流的THD较采用PI控制的情况有所下降,说明本文提出ES内环控制可以有效地改善储能变流器的输出性能,使储能变流器能够输出高电能质量的电流。
图10为PI控制以及ES控制下SMES的直流侧电压波形。图中可以看出,ES控制可以无超调地快速跟踪储能变流器直流侧电压的参考指令值,提高了储能装置运行的稳定性。
图10 直流侧电压的波形
综上,本文提出的内环ES控制策略将SMES储能变流器的交直流侧通过内外部互联结构作为一个整体来考虑,一定程度上降低了控制器的复杂度,提高了系统的动态响应性能,并有效克服了传统内环PI控制中参数难以整定的不足。
仿真算例2:为了验证微电网在离网和并网时刻的稳定性,以及模拟微电网孤岛运行时储能装置在面对大负荷投切时的情况,假设微电网在0~3 s运行在并网状态,3 s时刻微电网离网,并分别在4 s,4.5 s,5 s,5.5 s时刻进行负荷2的投切,6 s时刻微电网再次并网。微电网孤岛运行时主电源BESS的储能变流器采用U/f外环控制。
图11给出了主电源BESS分别采用内环PI控制和ES控制时微电网中母线电压有效值和频率的波形。图中可以看出,在微电网投切负荷期间,内环PI控制存在一定的调整时间,影响了储能装置的补偿效果。而内环ES控制克服了传统内环PI控制中超调量与调整时间的矛盾,只在补偿瞬间产生正负峰值,有效缩短了控制器的调整时间,使主电源快速精准地对母线电压和频率偏差进行了补偿,且有效改善了母线频率在微电网孤岛运行期间的高频波动。
图11 微电网的母线电压有效值和频率波形
表2和表3进一步给出了微电网运行模式切换以及投切负荷两种情形下电压、频率偏差的数据。
表2 微电网模式切换的结果分析
表3 投切负荷的结果分析
从表中可以看出,内环PI控制和ES控制下的受控指标均在允许的范围内[26],其中内环ES控制将母线电压波动控制在了±0.03 pu(213.4~226.6 V)的范围内,频率最大偏差在±0.12 Hz范围内,有效削弱了模式切换过程和投切负荷行为对微电网造成的冲击,并较PI控制具有更好的鲁棒性。
综上,通过该仿真算例验证了本文提出的储能变流器内环ES控制在微电网离、并网状态切换,以及孤岛运行状态下投切大负荷情况中的有效性。
5 结论
本文对微电网中SMES/BESS储能变流器的新型控制策略进行了详细的研究,得出了以下结论:
1)针对SMES/BESS储能变流器运行过程中存在的非线性特性,本文基于PCH原理设计了ES内环控制策略,较传统PI控制具有更好的鲁棒性,且降低了参数整定的难度;同时,还有效地降低了储能变流器交流侧电流的总谐波失真,为提高储能变流器的输出特性和动态响应性能提供了新的研究思路。
2)本文提出的SMES/BESS储能变流器的ES内环控制实现了微电网在并网运行、孤岛运行时良好的控制效果,并且切换过程相对稳定,有效地提高了微电网运行的可靠性。
3)下一步的工作是研制SMES/BESS混合储能系统的实验样机,并围绕无源控制参数对提升系统鲁棒性的定量分析展开。
参考文献
[1] 王成山,武震,李鹏.微电网关键技术研究[J].电工技术学报,2014,29(2):59-68. Wang Chengshan,Wu Zhen,Li Peng.Research on key technologies of microgrid[J].Transactions of China Electrotechnical Society,2014,29(2):59-68(in Chinese).
[2] 袁晓冬,楼冠男,陈亮,等.基于线性自抗扰的微电网平滑切换控制策略[J].电网技术,2017,41(12):3824-3831. Yuan Xiaodong,Lou Guannan,Chen Liang,et al.Control strategy for microgrid seamless switching via linear active disturbance rejection[J].Power System Technology,2017,41(12):3824-3831(in Chinese).
[3] 徐国栋,程浩忠,马紫峰,等.用于平滑风电出力的储能系统运行与配置综述[J].电网技术,2017,41(11):3470-3479. Xu Guodong,Cheng Haozhong,MaZifeng,et al.An overview of operation and configuration of energy storage systems for smoothing wind power outputs[J].Power System Technology,2017,41(11):3470-3479(in Chinese).
[4] 葛乐,袁晓冬,王亮,等.面向配电网优化运行的混合储能容量配置[J].电网技术,2017,41(11):3506-3513. Ge Le,Yuan Xiaodong,Wang Liang,et al.Capacity configuration of hybrid energy storage system for distribution network optimal operation[J].Power System Technology,2017,41(11):3506-3513(in Chinese).
[5] Wang S,Tang Y,Shi J,et al.Design and advanced control strategies of a hybrid energy storage system for the grid integration of wind power generations[J].IET Renewable Power Generation,2015,9(2): 89-98.
[6] 沈郁,姚伟,方家琨,等.液氢超导磁储能及其在能源互联网中的应用[J].电网技术,2016,40(1):172-179.Shen Yu,Yao Wei,Fang Jiakun,et al.Liquid hydrogen with SMES and its application in energy internet[J].Power System Technology,2016,40(1):172-179(in Chinese).
[7] 张东江,仇志凌,陈天锦,等.一种基于相位滞后的并网变流器电流双环控制方法[J].电力系统保护与控制,2011,39(8):128-134. Zhang Dongjiang,Qiu Zhiling,Chen Tianjin,et al.A double loop current control approach based on phase lag for grid connected converter[J].Power System Protection and Control,2011,39(8):128-134(in Chinese).
[8] Dechanupaprittha S,Sakamoto N,Hongesombut K,et al.Design and analysis of robust smes controller for stability enhancement of interconnected power system taking coil size into consideration[J].IEEE Transactions on Applied Superconductivity,2009,19(3):2019-2022.
[9] Penthia T,Panda A K,Sarangi S K.Implementing dynamic evolution control approach for DC-link voltage regulation of superconducting magnetic energy storage system[J].International Journal of Electrical Power & Energy Systems,2018(95):275-286.
[10] 王久和,李华德,王立明.电压型PWM整流器直接功率控制系统[J].中国电机工程学报,2006,26(18):54-60. Wang Jiuhe,Li Huade,Wang Liming.Direct power control system of three phase boost type PWM rectifiers[J].Proceedings of the CSEE,2006,26(18):54-60(in Chinese).
[11] Xing Y Q,Jin J X,Wang Y L,et al.An electric vehicle ging system using an SMES implanted smart grid[J].IEEE Transactions on Applied Superconductivity,2016,26(7):1-4.
[12] 姚涛,石晶,唐跃进,等.基于DRNN的超导磁储能装置自适应PID控制[J].继电器,2005,33(17):27-30.Yao Tao,Shi Jing,Tang Yuejin,et al.Adaptive PID control based on DRNN for SMES[J].Relay,2005,33(17):27-30(in Chinese).
[13] Wan Y,Zhao J.Extended backstepping method for single-machine infinite-bus power systems with SMES[J].IEEE Transactions on Control Systems Technology,2013,21(3):915-923.
[14] 郭文勇,赵彩宏,张志丰,等.电压型超导储能系统的统一直接功率控制方法[J].电网技术,2007,31(9):58-63. Guo Wenyong Zhao Caihong,Zhang Zhifeng,et al.A unified direct power control method for voltage type superconducting magnetic energy storage system[J].Power System Technology,2007,31(9):58-63(in Chinese).
[15] Tang S,Sun Y,Chen Y,et al.An enhanced MPPT method combining fractional-order and fuzzy logic control[J].IEEE Journal of Photovoltaics,2017,7(2):640-650.
[16] 徐胜男,周祖德,艾青松,等.基于粒子群优化的神经网络自适应控制算法[J].中国机械工程,2012,23(22):2732-2738. Xu Shengnan,Zhou Zude,Ai Qingsong,et al.Neural network adaptive control algorithm modified by PSO[J].China Mechanical Engineering,2012,23(22):2732-2738(in Chinese).
[17] 何朕,王广雄,杨文哲.一类欠驱动系统的频域反步法设计[J].电机与控制学报,2012,16(2):71-76. HeZhen,Wang Guangxiong,Yang Wenzhe.Frequency-domain backstepping design of a class of underactuated systems[J].Electric Machines & Control,2012,16(2):71-76(in Chinese).
[18] Ortega R,Van Der Schaft A J,Mareels I,et al.Putting energy back in control[J].IEEE Control Systems,2001,21(2):18-33.
[19] Ortega R,Schaft A V D,Maschke B,et al.Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems[J].Automatica,2002,38(4):585-596.
[20] Ortega R,Schaft A V D,Castanos F,et al.Control by interconnection and standard passivity-based control of port-Hamiltonian systems[J].IEEE Transactions on Automatic Control,2016,94(4):11-18.
[21] 杨前. 光伏发电Z源逆变器能量成型控制策略研究[D].哈尔滨:哈尔滨工业大学,2014.
[22] 程启明,谭冯忍,程尹曼,等.电网不平衡下DFIG网侧变换器侧基于PCHD模型的无源控制[J].电网技术,2017,41(5):1627-1635. Cheng Qiming,Tan Fengren,Cheng Yinman,et al.Research on passivity-based control based on PCHD model for DFIG grid-side converter under unbalanced grid voltage conditions[J].Power System Technology,2017,41(5):1627-1635(in Chinese).
[23] Lei B,Fei S,Wu X.Nonlinear coordinated control of generator excitation and SVC in multi-machine power systems using energy- shaping method[C]//2014 International Conference on Information Science,Electronics and Electrical Engineering.Sapporo:IEEE,2014:200-204.
[24] 王波,张保会,郝治国.基于功率监测和频率变化率的孤岛微电网紧急切负荷控制[J].电力系统自动化,2015,39(8):33-37. Wang Bo,Zhang Baohui,Hao Zhiguo.Emergency load shedding control for islanded microgrid based on power monitoring and rate of frequency change[J].Automation of Electric Power Systems,2015,39(8):33-37(in Chinese).
[25] Komurcugil H.Improved passivity-based control method and its robustness analysis for single-phase uninterruptible power supply inverters[J].IET Power Electronics,2015,8(8):1558-1570.
[26] 杨志淳,乐健,刘开培,等.微电网并网标准研究[J].电力系统保护与控制,2012,40(2):66-71. YangZhichun,Le Jian,Liu Kaipei,et al.Study on the standard of the grid-connected microgrids[J].Power System Protection & Control,2012,40(2):66-71(in Chinese).
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
电力规划的重点是按照宏观政策指引,以可控成本合理部署各类电力资源来保障长期的电力安全,权衡“低碳、经济、安全”三元目标。过去以常规电源为主、用电负荷平稳增长的电力系统在开展规划时,主要考虑电力电量的供需平衡、各类电力资源的可开发潜力和技术特性、应急备用能力及环境政策要求等约束条件
在山东省日照市五莲县的易捷工具园区,天合光能与中科华辰合作建设的“光储充一体化”项目已正式投运。该项目通过在厂房屋顶安装天合光能至尊光伏组件,搭配天合储能高效工商业储能柜Potentia蓝海系统及电动汽车充电设施,构建了集光伏发电、储能调节和充电服务于一体的综合能源体系,助力日照易捷工具
近日,KonfluxKapitalInternationalGmbH(KKI)与中天科技达成新的战略合作伙伴关系,双方将在奥地利共同开发总容量为176MW的电池储能系统(BESS)项目,此次合作将为欧洲一个不断发展的清洁能源市场带来灵活的、与电网相连的储能基础设施,以支持能源交易、电网稳定以及能源转型。双方同意在指定区域
近日,融捷能源(YoungyEnergy)400kWh液冷户外柜、32kWh高压堆叠户储系统获得全球最知名的安全认证机构之一UL美华认证公司(ULSolutions)颁发的UL1973认证证书,标志着融捷能源液冷户外柜、户储系统在安全性、可靠性和技术性能方面达到国际领先水平,为公司拓展全球市场奠定坚实基础。融捷能源400kWh
北极星风力发电网获悉:5月22日,运达股份总经理程晨光率队赴湖北楚能新能源股份有限公司考察交流,并与楚能新能源董事长代德明、总裁黄锋开展座谈。双方围绕电芯技术研发、产业链协同创新及全球市场拓展等议题达成多项合作共识。代德明表示,运达股份作为全球新能源装备制造领军企业,其智慧储能系统
近期,多座储能电站获最新进展,北极星储能网特将2025年5月19日-2025年5月23日期间发布的储能项目动态整理如下:200MW/800MWh!8种储能技术混合!国家能源集团青海储能电站投产!5月16日,青海公司大柴旦100万千瓦风光储项目配套储能电站工程科翡储能电站在青海省海西蒙古族藏族自治州成功实现投产运行
北极星储能网获悉,5月22日,宁夏中卫鑫华200MW/400MWh储能项目中标候选人公示。第一中标候选人为中建三局安装工程有限公司,投标报价41200万元,折合单价1.030元/Wh;第二中标候选人为广西建工集团第一安装工程有限公司,投标报价40746万元,折合单价1.019元/Wh;第三中标候选人为万邦建工集团有限公
随着全球能源转型的加速推进,可再生能源的快速发展已成为不可逆转的趋势。在这一背景下,储能技术作为连接可再生能源发电与电网、用户之间的关键桥梁,其重要性日益凸显。而在众多储能技术中,储能液流电池以其独特的优势,在2024年迎来了前所未有的发展机遇,全球全钒液流电池已开始逐步走向工程示范
2025年初,136号文件横空出世,我国的新能源行业随之进入了旨在加快构建新型电力系统、推动新能源市场化进程的政策密集且深入的调整期。从政策过山车到市场马拉松,储能行业也正经历从"政策依赖"到"价值创造"的涅槃重生。这一过程不仅重构了储能行业底层逻辑,更催生了技术迭代、模式创新与生态重构的
北极星储能网获悉,5月22日,融源河南新乡长垣市200MW/400MWh独立储能项目EPC总承包招标公告发布,招标人为长垣市融源储能科技有限公司,最高投标控制价28360万元,折合0.709元/Wh。项目拟在新乡市长垣市区域建设,总占地约44亩。储能建设规模为200MW/400MWh,储能电池采用磷酸铁锂电池,储能站电池系
北极星储能网获悉,5月20日,美国商务部宣布了对从中国进口的活性负极材料反补贴调查的初步裁决,决定对合成和天然石墨负极材料征收高达721%的反补贴关税!这一政策的执行,或许将对美国电动汽车和储能系统装机产生重大影响,而美国特斯拉将成为最大受害者。一旦负极材料价格大幅上涨,特斯拉将再次失
近期,多座储能电站获最新进展,北极星储能网特将2025年5月19日-2025年5月23日期间发布的储能项目动态整理如下:200MW/800MWh!8种储能技术混合!国家能源集团青海储能电站投产!5月16日,青海公司大柴旦100万千瓦风光储项目配套储能电站工程科翡储能电站在青海省海西蒙古族藏族自治州成功实现投产运行
随着全球能源转型的加速推进,可再生能源的快速发展已成为不可逆转的趋势。在这一背景下,储能技术作为连接可再生能源发电与电网、用户之间的关键桥梁,其重要性日益凸显。而在众多储能技术中,储能液流电池以其独特的优势,在2024年迎来了前所未有的发展机遇,全球全钒液流电池已开始逐步走向工程示范
2025年初,136号文件横空出世,我国的新能源行业随之进入了旨在加快构建新型电力系统、推动新能源市场化进程的政策密集且深入的调整期。从政策过山车到市场马拉松,储能行业也正经历从"政策依赖"到"价值创造"的涅槃重生。这一过程不仅重构了储能行业底层逻辑,更催生了技术迭代、模式创新与生态重构的
北极星储能网获悉,5月22日,融源河南新乡长垣市200MW/400MWh独立储能项目EPC总承包招标公告发布,招标人为长垣市融源储能科技有限公司,最高投标控制价28360万元,折合0.709元/Wh。项目拟在新乡市长垣市区域建设,总占地约44亩。储能建设规模为200MW/400MWh,储能电池采用磷酸铁锂电池,储能站电池系
北极星储能网获悉,5月13日,沃太能源西南生产基地项目开工仪式。基于西南市场的庞大需求,沃太能源西南生产基地建筑规划面积超9.7万平方米,聚焦储能系统核心产线建设,重点布局固态电池与液流储能技术等前沿方向。该项目将投资建设PACK智能生产线、储能集装箱装配线、储能电池测试系统等核心设施,并
近日,由南方凯能(广东)电力集团有限公司旗下中山市农村电力工程有限公司承接的“高性能高温超导材料及磁储能应用示范工程”在翠亨新区正式动工。作为国家重点研发计划配套项目,该工程将建设全球容量最大的5MVA/10MJ超导磁储能装置,将高精尖产业的供电稳定性推向“毫秒级”时代,标志着我国在新型
北极星储能网获悉,5月22日,临泽板桥羊台山300MW1200MWh独立共享储能电站项目储能系统设备采购中标候选人公示及开标结果公布。项目位于甘肃省张掖市,主要为临泽板桥羊台山300MW/1200MWh独立共享储能电站项目储能系统设备采购。第一中标候选人为宁德时代新能源科技股份有限公司,投标报价0.499元/Wh;
北极星储能网讯:5月13日,皖能新疆于田县200MW/800MWh独立新型储能项目招标发布,招标人为安徽省皖能聚合智慧能源有限公司,项目投资金额为59298.0万元,折合单价0.74元/Wh。项目占地面积约100亩(以实际勘界为准),新建20万千瓦/80万千瓦时独立储能1座,建设一座220kV升压站,电压等级为220kV/35kV
北极星储能网讯:5月17日,中国电工技术协会发布《台区低压侧分布式储能系统规划技术导则(征求意见稿)》。其中提出,储能系统应具备削峰填谷、无功补偿、功率支撑及应急响应等功能,以适应台区内负荷的特性和波动需求。文件规定了台区低压侧分布式储能系统的规划配置技术要求,内容涵盖储能系统的选
北极星储能网获悉,5月16日,水电十六局牵头与永福股份组成的联合体,成功中标目前全球规模最大的电源侧电化学储能项目之一的内蒙古乌兰察布市察右中旗100万千瓦/600万千瓦时电源侧储能项目设计采购施工总承包(EPC)+运维项目。该项目为内蒙古自治区2025年新型储能专项行动计划的核心项目,通过推动新
北极星储能网获悉,5月22日,国家技术管理信息系统公共服务平台发布国家能源局关于发布国家重点研发计划“氢能技术”“储能与智能电网技术”重点专项2025年度项目申报指南的通知。原文如下:国家能源局关于发布国家重点研发计划“氢能技术”“储能与智能电网技术”重点专项2025年度项目申报指南的通知
北极星储能网获悉,5月23日,辽宁本溪市政府发布了政协代表《关于促进清洁能源发电有序发展的提案》答复,其中显示,辽宁本溪正在积极推进新型储能项目建设。着力构建新型电力系统,加快推进新型储能规范化、多元化、产业化、市场化高质量发展,本溪高新区100MW共享储能示范项目正在加快建设,截至目前
北极星储能网获悉,5月22日,融源河南新乡长垣市200MW/400MWh独立储能项目EPC总承包招标公告发布,招标人为长垣市融源储能科技有限公司,最高投标控制价28360万元,折合0.709元/Wh。项目拟在新乡市长垣市区域建设,总占地约44亩。储能建设规模为200MW/400MWh,储能电池采用磷酸铁锂电池,储能站电池系
5月21日,辽宁省本溪市发展和改革委员会发布《关于促进清洁能源发电有序发展的提案》答复。其中提出,积极鼓励光伏开发利用,大力推动分布式光伏项目并网发电,持续提升光伏发电装机量,截至目前,光伏机组装机容量20.47万千瓦,同比提升7.88万千瓦,为本溪市构建绿色低碳现代能源体系提供有力保障。发
北极星储能网获悉,5月22日,合肥公交集团庐阳停保场“光伏+储能”建设招标公告发布。招标人为合肥公交集团有限公司,资金来源为自筹。本光储项目利用合肥公交集团庐阳停保场停车楼与综合调度大楼楼顶建设光伏电站,同时配置一套储能系统。合肥公交庐阳停保场位于合肥市庐阳区北二环与淮北路交口东北角
北极星储能网讯:5月21日,江苏省泰州市泰兴市黄桥经济开发区100MW/300MWh智慧储能电站项目招标公告发布。招标人为江苏金桥建设有限公司,项目资金来源为自筹资金31400万元,折合单价约1.05元/Wh。本工程拟利用黄桥经济开发区内企业现有场地建设储能电站,规划安装容量为100MW/300MWh。本期储能电站采
近日,阿特斯阳光电力集团股份有限公司旗下阿特斯电力电子事业部自主研发的组串式储能变流器项目在阿特斯扬州工厂成功实现全容量并网发电!该储能项目总装机规模12MW/35.61MWh,阿特斯为该项目提供设计、储能成套设备供应及配套技术服务。其中,储能变流器采用阿特斯自主研发的组串式变流器,该产品支
全球能源结构加速向低碳化转型,可再生能源渗透率持续攀升。然而,风光发电的间歇性与电网稳定性之间的矛盾日益凸显。作为储能系统的核心“指挥官”,储能变流器(PCS)通过双向能量转换、灵活调频调压等核心功能,已成为破解新能源消纳难题、提升工商业用电经济性的关键设备。130kW系列储能变流器储能
北极星储能网获悉,5月17日,巴彦淖尔市乌拉特中旗德岭山500千伏变电站电网侧储能项目PC总承包项目中标候选人公示。本项目建设规模为100MW/400MWh。第一中标候选人为中国水利水电第四工程局有限公司、许昌许继电科储能技术有限公司,投标报价23288.4838万元,折合单价0.582元/Wh;第二中标候选人为中国
北极星储能网讯:5月14日,宁夏市场监管厅发布《构网型电化学储能系统接入电力系统技术规范》《构网型储能参数整定技术规范》《虚拟电厂并网运行技术规范》、《新能源场站风光资源监测技术规范》《构网型储能系统接入电网测试规范》等5项地方标准征求意见稿。《构网型电化学储能系统接入电力系统技术规
北极星储能网讯:5月13日,中国招投标公共服务平台发布安徽亳州涡阳县300MW/600MWh用户侧储能电站EPC招标公告,项目招标人为涡阳驭风发电有限公司,资金来源为自筹资金。项目拟于安徽亳州涡阳县境内产业园区、生产制造等工商业建设用户侧分布式储能电站,拟建设分布式储能系统容量为300MW/600MWh,项目
1.储能BMS与PCS之间关系储能系统通常由电池组、电池管理系统(BMS)、能量管理系统(EMS)、储能变流器(PCS)这四个关键设备组成。其中储能BMS与PCS存在着密切的联系和互补关系,二者在储能系统中各自承担着不同的功能但相互协作共同实现对储能系统的全面管理和控制。未来随着储能技术的不断发展和应
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!