北极星

搜索历史清空

  • 水处理
您的位置:电力火电火电动态技术正文

涨知识 | 汽机篇——垃圾电厂运行主控应知应会200题(系列)

2018-05-31 11:12来源:垃圾焚烧发电技术关键词:垃圾发电汽轮机垃圾发电技术收藏点赞

投稿

我要投稿

30 、叙述汽轮机调节级压力异常的原因及处理方法。

在正常运行中,调节级压力与主汽流量基本成正比,引起调节级压力异常的原因有:

(1) 有于仪表测量原因,造成指示失准。

(2) 汽轮机通流部分积盐垢,造成通流面积减小。

(3) 由于金属零件碎裂或机械杂物堵塞通流部分或叶片损伤变形。

(4) 在主机负荷不变的情况下,由于各种原因造成主汽流量偏离设计值,如多台加热器撤出,锅炉再热器大量泄漏,主机低压旁路严重内漏,或是真空突变,主汽压力、汽温等大幅度变化,都将引起主汽流量异常,从而反映在调节级压力的异常变化上。

(5) 主机超负荷运行。

调节级压力异常的处理:

(1) 机组大修后在一定工况下,对应的调节级压力应有原始记录,以便供日常运行中作出对照比较。当主机调节级压力异常时,首先要具体分析找出原因,并加强相关参数的监视,如主汽压力、温度、真空等以及主机振动、胀差、轴位移,以及各段抽汽压力是否出现异常。

(2) 对于由于热工测点故障而使调节级压力异常时,由于此时主汽流量也可能出现失常,要加强对协调控制系统、汽包水位自动等的监视,必要时手动调整,并对主汽流量通过间接手段加强监视。尽快联系仪控人员处理。

(3) 由于通流部分积盐造成的通流部分面积减小,是缓慢进行的,机组运行一段间隔后,应将调节级压力与原始值作出比较,一旦发现积盐现象,尽快作出停机处理,同时在日常运行中, 要加强对汽水品质管理,防止由于蒸汽品质超标而造成叶片结垢。

(4) 在调节级压力异常变化时,同时主机振动加剧,轴位移明显变化或出现凝结水硬度、导电率等指标上升,或出现加热器满水,判断为主机叶片损坏,严格按规程减负荷或停机,防止事故扩大。

(5) 在机组高负荷时,主汽参数尽可能在额定值运行,对应负荷下,主汽流量明显增大时, 除主汽各参数外,还应检查是否主汽门后的蒸汽系统有泄漏,从而导致流量加大。加热器撤出时要加强对调节级压力的监视(特别是多台加热器同时撤出)。

(6) 当调节级压力升高至规定值时,机组应申请降负荷处理。

31 、为什么汽轮机采用变压运行方式能够取得经济效益?

汽轮机变压运行(滑压运行)能够取得经济效益的原因主要有以下几点:

(1) 通常低负荷下定压运行,大型锅炉难以维持主蒸汽及再热蒸汽温度不降低,而变压运行时,锅炉较易保持额定的主蒸汽和再热蒸汽温度。当变压运行主蒸汽压力下降,温度保持一定时,虽然蒸汽的过热焓随压力的降低而降低,但由于饱和蒸汽焓上升较多,总焓明显升高,这一点是变压运行取得经济效益的重要原因。

(2) 变压运行汽压降低,汽温不变时,汽轮机各级容积流量、流速近似不变,能在低负荷时保持汽轮机内效率不下降。

(3) 变压运行,高压缸各级,包括高压缸排汽温度将有所升高,这就保证了再热蒸汽温度,有助于改善热循环效率。

(4) 变压运行时,允许给水压力相应降低,在采用电动变速给水泵时可显著地减少给水泵的用电。此外,给水泵降速运行,对减轻水流对设备的侵蚀,延长给水泵使用寿命有利。

32 、 提高机组运行经济性要注意哪些方面?

提高机组运行经济性要注意以下方面:

(1) 维持额定蒸汽初参数。

(2) 维持额定再热蒸汽参数。

(3) 保持最有利真空。

(4) 保持最小的凝结水过冷度。

(5) 充分利用加热设备,提高给水温度。

(6) 注意降低厂用电率。

(7) 降低新蒸汽的压力损失。

(8) 保持汽轮机最佳效率。

(9) 确定合理的运行方式。

(10) 注意汽轮机负荷的经济分配。

33 、汽轮机有哪些主要的级内损失?损失的原因是什么?

汽轮机级内主要有喷嘴损失、动叶损失、余速损失、叶高损失、扇形损失、部分进汽损失、摩擦鼓风损失、漏汽损失、湿汽损失。

(1) 喷嘴损失和动叶损失是由于蒸汽流过喷嘴和动叶时汽流之间的相互摩擦及汽流与叶片表面之间的摩擦所形成的。

(2) 余速损失是指蒸汽在离开动叶时仍具有一定的速度,这部分速度能量在本级未被利用, 所以是本级的损失。但是当汽流流入下一级的时候,汽流动能可以部分地被下一级所利用。

(3) 叶高损失是指汽流在喷嘴和动叶栅的根部和顶部形成涡流所造成的损失。

(4) 扇形损失是指由于叶片沿轮缘成环形布置,使流道截面成扇形,因而,沿叶高方向各处的节距、圆周速度、进汽角是变化的,这样会引起汽流撞击叶片产生能量损失,汽流还将产生半径方向的流动,消耗汽流能量。

(5) 部分进汽损失是由于动叶经过不安装喷嘴的弧段时发生“鼓风”损失,以及动叶由非工作弧段进入喷嘴的工作弧段时发生斥汽损失。

(6) 摩擦鼓风损失是指高速转动的叶轮与其周围的蒸汽相互摩擦并带动这些蒸汽旋转,要消耗一部分叶轮的有用功。隔板与喷嘴间的汽流在离心力作用下形成涡流也要消耗叶轮的有用功。

(7) 漏汽损失是指在汽轮机内由于存在压差,一部分蒸汽会不经过喷嘴和动叶的流道,而经过各种动静间隙漏走,不参与主流做功,从而形成损失。

(8) 湿汽损失是指在汽轮机的低压区蒸汽处于湿蒸汽状态,湿汽中的水不仅不能膨胀加速做功,还要消耗汽流动能,还要对叶片的运动产生制动作用消耗有用功,并且冲蚀叶片。

34 、 在主蒸汽温度不变时,主蒸汽压力的变化对汽轮机运行有何影响?

主蒸汽温度不变,主蒸汽压力升高对汽轮机的影响:

(1) 整机的焓降增大,运行的经济性提高。但当主汽压力超过限额时,会威胁机组的安全。

(2) 调节级叶片易过负荷。

(3) 机组末几级的蒸汽湿度增大;

(4) 引起主蒸汽管道、主汽门及调速汽门、汽缸、法兰等变压部件的内应力增加,寿命减少,以致损坏。

主蒸汽温度不变,主蒸汽压力下降对汽轮机影响:

(1) 汽轮机可用焓降减少,耗汽量增加,经济性降低,出力不足。

(2) 汽机通流部分易过负荷。

(3) 对于用抽汽供给的给水泵的小汽轮机和除氧器,因主汽压力过低也就引起抽汽压力

相应降低,使小汽轮机和除氧器无法正常运行。

35 、汽轮机的变压运行有哪几种方式?

汽轮机的变压运行有以下几种方式:

(1) 纯变压运行。即在在整个负荷变化的范围内,调速汽门全开,负荷变化全由锅炉压

力来控制的运行方式。

(2) 节流变压运行。为了弥补完全变压运行时负荷调整速度缓慢的缺点,在正常情况下调速汽门不全开,对主蒸汽压力保持一定的节流。当负荷突然增加时,原未开大的调速汽门迅速全开,以满足突然增加负荷的需要。此后,随锅炉蒸汽压力的升高,调门又重新关小,直到原滑压运行的调门开度。

(3) 复合变压运行。这是一种变压运行和定压运行相结合的运行方式,具体有以下三种方式。

① 低负荷时变压运行,高负荷时定压运行。在低负荷时,最后一个或两个调门关闭,而其它调门全开,随着负荷逐渐增大,汽压到额定压力后,维持主汽压力不变,改用开大最后一个或两个调门,继续增加负荷。这种方式在低负荷时,机组显示出变压运行的特性,而在高负荷时,机组又有一定的容量参于调频,这是一种比较理想的运行方式。

② 高负荷时变压运行,低负荷时定压运行。大容量机组采用变速给水泵,尽管其转速变化范围很宽,但也有最低转速的限制,另外,锅炉在低压力高温度时,吸热比例发生较大的变化,给维持主汽温度带来一定的困难,因而锅炉最低运行压力受到限制。这种方式满足了以上要求,并且在高负荷下具有变压运行的特性。

③ 高负荷和低负荷时定压运行,中间负荷区变压运行:在高负荷区用调门调节负荷,保持定压运行;在中间负荷区时,一个或两个调门关闭,处于滑压运行状态;在低负荷区时,又维持一个较低压力水平的定压运行。这筇中运行方式也称为定—滑—定运行方式,它综合了以上两种方式的优点。

36 、 叙述影响正、负胀差变化的有关因素。

使胀差向正值增大的主要因素简述如下:

(1) 启动时暖机时间太短,升速太快或升负荷太快。

(2) 汽缸夹层、法兰加热装置的加热汽温太低或流量较低,引起汽加热的作用较弱。

(3) 滑销系统或轴承台板的滑动性能差,滑销系统发生了卡涩。

(4) 轴封汽温度过高或轴封供汽量过大,引起轴颈过份伸长。

(5) 机组启动时,进汽压力、温度、流量等参数过高。启动中主、再热蒸汽温升过快。

(6) 推力轴承磨损,轴向位移增大。

(7) 汽缸保温层的保温效果不佳或保温层脱落。在严寒季节里,汽机房室温太低或有穿堂冷风。

(8) 双层缸的夹层中流入冷汽(或冷水)。

(9) 胀差指示器零点不准或触点磨损,引起数字偏差。

(10) 多转子机组,相邻转子胀差变化带来的互相影响。

(11) 真空变化的影响。

(12) 各级抽汽量变化的影响,若一级抽汽停用,则影响高压胀差很明显。

(13) 轴承油温太高。

(14) 机组停机惰走过程中由于“泊桑效应”的影响。

使胀差向负值增大的主要因素简述如下:

(1) 负荷迅速下降或突然甩负荷。

(2) 主汽温骤减或启动时的进汽温度低于金属温度。

(3) 水冲击。

(4) 汽缸夹层、法兰加热装置加热过度。

(5) 轴封汽温度太低。

(6) 轴向位移变化。

(7) 轴承油温太低。

(8) 启动时转速突升,由于转子在离心力的作用下轴向尺寸缩小,尤其低差变化明显。

(9) 汽缸夹层中流入高温蒸汽,可能来自汽加热装置,也可能来自进汽套管的漏汽或者轴封漏汽。

启动时,一般应用汽加热装置来控制汽缸的膨胀量,而转子则主要依靠汽轮机的进汽温度和流量以及轴封汽的汽温和流量来控制转子的膨胀量。启动时胀差一般向正方向发展。

汽轮机在停用时,随着负荷、转速的降低,转子冷却比汽缸快,所以胀差一般向负方向发展。特别是滑参数停机时尤其严重,必须采用汽加热装置向汽缸夹层和法兰通以冷却蒸汽,以免胀差保护动作。汽轮机转子停止转动后,负胀差可能会更加发展,为此在停机过程中,应当维持一定温度的轴封蒸汽,以免造成恶果。

37 、分析汽轮机启动过程中产生最大热应力的部位和时间。

汽轮机汽缸和转子最大热应力所发生的时间应在非稳定工况下金属内外壁温差最大时刻。在一定的蒸汽温升率下,汽轮机启动进入准稳态,转子表面与中心孔、汽缸内外壁的温差接近该温升率下的最大值,故汽轮机启动进入准稳态时热应力也达到最大值。在启停和工况变化时,汽轮机中最大应力发生的部位通常是高压缸的调节级处、再热机组中压缸的进汽区、高压转子在调节级前后的汽封处,中压转子的前汽封处等。这些部

位工作温度高,启停和工况变化时温度变化大,引起的温差大,热应力亦大。此外,在部件结构有突变的地方,如叶轮根部、轴肩处的过渡圆角及轴封槽处都有热应力集中现象,上述部位的热应力是光滑表面的2~4倍。

38 、如何进行凝汽器半边查漏?

(1) 与值长联系将机组负荷减至额定负荷70%左右(凝结水硬度过大时,负荷还需适当降低,并投入二组抽汽系统)。

(2) 适当提高轴封供汽压力。

(3) 将不查漏的一侧凝汽器循环水进水门适当开大。

(4) 关闭查漏一侧的凝汽器至抽气器空气门。

(5) 关闭查漏一侧的凝汽器循环水进水门及连通门,调整循环水空气门,循门关闭后必须将切换手柄放至手动位置。

(6) 检查机组运行正常后,开启停用一侧凝汽器放水门。

(7) 凝汽器真空不得低于85kPa,排汽温度不应超过70℃。

(8) 开启停用一侧凝汽器人孔门,进入查漏。

(9) 查漏完毕后,由班长检查确无人,无工具遗留时,关闭凝汽器人孔门及放水门。

(10) 开启停用一侧凝汽器循环水进水门,调整循环水空气门、循环水连通门,将另侧循环水进水门调正。

(11) 将停用一侧凝汽器至抽汽器空气门开启。

(12) 用同样方法对另侧凝汽器查漏。

(13) 在查漏过程中,凝汽器真空值应不小于87KPa,且趋势稳定,否则应停止凝汽器半边清洗工作,尽快恢复清洗侧凝汽器运行。

39、 凝汽器灌水查漏时应注意什么事项?

(1) 凝汽器查漏应有专人监视,确认凝汽器循环水进、出口门关闭并停电加锁。

(2) 凝汽器灌水前应检查确定凝汽器下部千斤顶已放置并支撑牢固,凝汽器循环水水侧水已放尽。

(3) 对于凝汽器冷却水管查漏时高、中压汽缸金属温度均应在300℃以下。凝汽器冷却水管查漏应加水至管道全部淹没,汽侧及水侧人孔门打开。

(4) 查漏如需加压时,压力不超过50Kpa,检修人员应将汽轮机端部轴封封住,低压缸大气安全门应固定好。对于凝汽器汽侧漏空气查漏应注意高中压汽缸金属温度低于200℃方可进行。

(5) 进水后,应加强对汽缸上下缸温差监视,汽侧人孔门逸水后开启汽侧监视孔门及顶部放空气门,关闭汽侧人孔门。灌水后运行配合检修人员,进行查漏。查漏结束后放去存水,确认无人及无工具遗留时关闭水侧人孔门及放水门。

(6) 全面检查后将设备放至备用状态。

40 、 什么是调速系统的速度变动率?从有利于汽轮机运行的角度对其有何要求?

当汽轮机孤立运行时,空负荷对应的稳定转速n2与满负荷对应的稳定转速n1之间的差值,与额定转速n0比值的百分数,叫调速系统的速度变动率,用符号δ表示。速度变动率表明了汽轮机从空负荷到满负荷转速的变化程度。速度变动率不宜过大和过小,一般的取值范围是3%~6%,调峰机组取偏小值,带基本负荷机组取偏大值。速度变动率过小时,电网频率的较小变化,即可引起机组负荷较大的变化,正常运行时会产生较大的负荷摆动,影响机组安全运行而且调速系统的动态稳定性差。速度变动率过大,调速系统工作时动态稳定性好,但当机组甩负荷时,动态超

速增加,容易产生超速。

另一方面,为了保证汽轮机在启动时易于并网和在满负荷时防止过负荷,要求在静态特

性曲线这两段有较大的速度变动率。同时又要求保证总的速度变动率不至过大,所以中间段数值较小。为了保证机组在全范围内平稳运行,速度变动率的变化要使调速系统的静态特性曲线平滑而连续地向功率增加的方向倾斜变化,不容许其曲线有上升段和水平段。

相关阅读:

涨知识 | 锅炉篇——垃圾电厂运行主控应知应会200题(系列)

涨知识 | 电气篇——垃圾电厂运行主控应知应会200题(系列)

原标题:【干货】垃圾电厂运行主控应知应会200题 -汽机篇
投稿与新闻线索:陈女士 微信/手机:13693626116 邮箱:chenchen#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

垃圾发电查看更多>汽轮机查看更多>垃圾发电技术查看更多>