登录注册
请使用微信扫一扫
关注公众号完成登录
如上图所示。在充电过程中,由于电池外加端电压的作用,正极集流体附近的电子在电场驱动下向负极运动,到达负极后,与负极材料中的锂离子结合,形成局部电中性存放在石墨间隙中;消耗了部分锂离子的负极表面,锂离子浓度变低,正极与负极之间形成离子浓度差。在浓差驱动下,正极材料中的锂离子从材料内部向正极表面运动,并沿着电解质,穿过隔膜,来到负极表面;进一步在电势驱动作用下,向负极材料深处扩散,与从外电路过来的电子相遇,局部显示电中性滞留在负极材料内部。放电过程则刚好相反,包含负载的回路闭合后,放电过程开始于电子从负极集流体流出,通过外电路到达正极;终于锂离子嵌入正极材料,与外电路过来的电子结合。
负极石墨为层状结构,锂离子的嵌入和脱出的方式,在不同类型的锂离子中没有太大差异。不同正极材料,其晶格结构存在明显差异,充放电过程中的锂离子扩散进出,过程略有不同。
2.主要正极材料的类型和特点
当前商业化比较充分的正极材料主要有钴酸锂,磷酸铁锂,锰酸锂和三元锂四种。其中,钴酸锂虽然能量密度等方面存在明显优势,但是安全问题成了瓶颈,使用的范围越来越小。锰酸锂,循环性能比较差,高温性能不好,虽然抗过充能力强,成本又低,但现在主要只在低端或低速车辆上还有使用,市场份额也在缩小。只剩下磷酸铁锂和三元锂是当前真正的主流,二者一个占据能量密度和低温性能的优势,另一个则拥有循环寿命和安全性的优势,国家政策和终端用户在二者之间有些难于抉择。目前为止,公交车主要使用磷酸铁锂,乘用车等对续航和客户体验要求较高的车型则选择三元锂电池。
3.三元锂正极材料结构和特点
三元材料是过去几年的热点,其中Ni成分,可以提高材料活性,提高能量密度;Co成分也是活性物质,既能稳定材料的层状结构,又能减小阳离子混排,便于材料深度放电,从而提高材料的放电容量;Mn成分,在材料中起到支撑作用,提供充放电过程中的稳定性。三元锂,基本上综合体现了几种材料的优点。
在三元材料这个大的类别下面,材料中三种金属元素比例不同,可以看成不同种类的三元材料。一类是Ni:Mn 等量型,第二类是Ni:Mn 不等量型。
等量型的代表是NCM424和NCM111。在充放电过程中,+4 价的Mn不变价,在材料中起到稳定结构的作用,+2 价的Ni变为+4 价,失去两个电子,使得材料有着高的比容量。
Ni、Mn不等量型,就是本文的主角,又叫高镍型三元锂,主要的代表型号是NCM523,NCM622和NCM811。富镍型三元材料在电压平台低于4.4 V(相对于Li+/Li)时,一般认为主要是Ni 为+2/+3 价参与氧化还原反应,化合价升高到+4 价。当电压高于4.4 V 时,Co3+参与反应变为+4 价,Mn4+不参加反应起稳定结构作用。
高镍三元给正极带来的影响
不同比例NCM材料的优势不同,可以根据具体的应用要求加以选择。Ni 表现高的容量,低的安全性;Co 表现高成本,高稳定性;Mn 表现高安全性、低成本。要想提高电池的能量密度,提升车辆续驶里程,当前主流观点是在高镍方向上,提高高镍三元的安全性达到车辆使用要求。在三元及前文提及的磷酸铁锂、锰酸锂和钴酸锂等成熟商用技术路线以外,也存在着锂硫电池,锂空气电池以及全固态电池等多个技术方向,但都距离成熟商用还比较远。
三元锂电池的电化学性质和安全性主要取决于微观结构(颗粒形态和体积结构稳定性)
和物理化学性质(Li+扩散系数、电子传导率、体积膨胀率和化学稳定性) 的影响。
Ni 增加使循环性能变差;热稳定性变差;充放电过程中表面反应不均匀;反应产物中存在大比例的Ni2+,导致材料呈氧化性,缓慢氧化电解质,过程中放出气体。
4.高镍循环性能问题
随着镍含量的提高,正极材料的稳定性随之下降。主要表现形式就是循环充放电的容量损失和高温环境容量加速衰减。
4.1 循环中的容量衰减机理
循环过程中存在的容量衰减因素主要有阳离子混排、应力诱导微裂纹的产生、生产过程引入杂质、导电炭黑的重新分布等, 其中以阳离子混排和微裂纹的产生两个因素对容量衰减的作用最为显著。
阳离子混排,指二价Ni离子本身体积与锂离子近似,在放电时锂离子大量脱出的时候,受到外界因素作用,占据Li离子晶格中位置的现象。离子的错位,带来晶格类型的改变,其嵌锂能力也随之改变。在充放电过程中,正极材料表面脱嵌锂的压力最大,速度最快,因此表面常常因为这种阳离子混排带来表面晶格的变化,这个现象又被叫做表面重构。Ni含量越高,三价不稳定Ni离子还原成二价Ni离子的概率就越高,则发生阳离子混排的机会就越多。另外两种金属Mn和Co,虽然也存在混排的可能性,但与Ni相比,则比例小得多。
抑制阳离子混排,研究者主要从以下几个角度考虑:
1)采取措施减少二价Ni离子的生成,从根本上截断发生混排的根源;
2)掺杂与二价Ni离子体积相近的Mg离子,Mg离子能够比Ni更早的抢占Li留下的空位,避免了Ni的进入。而Mg离子并不直接参与充放电过程,嵌入后就可以稳定在位置上,对材料结构起到支撑作用。
3)调整正极材料原料中的Ni与Li的摩尔比以及调整制备工艺,将原材料对阳离子混排的影响降低。
生产过程引入杂质,在正极原材料制备过程中,与空气中水和Co2等的反应,生成了原本不存在的材料种类,比如碳酸锂等。当材料表面存在较多的Li2CO3, 在循环过程中分解产生气体, 吸附于材料的表面造成活性物质与电解液的接触不佳, 极化增大, 循环性能也随之恶化。
微裂纹
正极材料在充放电的过程中,体积会发生变化,Ni含量越高,体积膨胀的比例越大。裂纹的产生还依赖充放电截止电势的大小, 所以通常高镍系层状氧化物正极的工作电压(相对于锂金属负极)不超过4.1 V,目的是为了保证不发生不可逆相变, 减小内应力。
晶体上的裂纹和晶体之间的分离,使得高镍三元材料正极晶粒必然要承受更大的体积变量。体积循环变动的过程中,一次晶粒内部的晶界之间可能产生裂纹,而晶粒与晶粒之间的额距离也会逐步拉大,出现部分晶粒离开正极独立存在的现象。更多的晶面与电解液接触,形成更多的SEI膜,消耗了电解质和活性材料的同时,增加了锂离子在电极上扩散的电阻。
减弱单体电压范围内的相变趋势,是抑制微裂纹的方法。研究者目前的主要方向如下。
1)抑制阳离子混排的镁离子掺杂,包含镁离子的晶格,膨胀的方向大体一致,可以起到抑制微裂纹的作用;
2)将NCM811 材料制备成内部均匀嵌入Li2MnO3 结构单元的两相复合材料,可以减弱体积变化。
导电物质的重新分布
这个影响因素主要在说NCA,NCM还没有相关研究公布。经历了一定周期的循环以后,导电物质,在晶粒表面重新分布,或者有一部分脱离活性物质晶体,这使得此后的晶体各个部分,动力学环境变得不同,进而造成晶体裂纹。裂纹出现后的进一步影响与前面“微裂纹”中所述一致。
4.2 高温环境容量加速衰减机理
高温循环一定周期后,发现晶界之间存在大量失去活性的二价、三价Ni离子,退出循环的Ni离子,无法参与电荷补偿,电池容量衰减比例近似的与这部分失活离子数量相当,推测高温低电压窗口下的容量衰减主要形式是Ni离子的失去活性造成的。另外,高温循环,容易带来正极材料晶格塌陷,从NiO6蜕变为NiO,从而失去活性。有试验现象表明,SEI膜的电导率差,也会造成高温循环容量衰减。
电动汽车在追求整体性能超越传统燃油车的大背景下,对于能量密度的追求可以说是动力锂电池十年以上的热点。同时产生的安全问题,则是电池大规模商用化必须迈过去的门槛。而动力电池包内的其他设备的进步,比如电池管理系统,比如各种传感器等等,也能在进程中弥补一部分电池安全性的不足。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
磷酸铁锂材料“大化工”特点凸显。近期,钛白粉行业因房地产等终端需求疲软导致开工率持续下滑,其副产品硫酸亚铁供应同步紧缩,推动价格快速上行。这一看似来自化工领域的边际变化,却正传导至电池材料领域,给磷酸铁锂正极材料生产企业带来原料成本结构的冲击。相关数据显示,2025年6月钛白粉行业开
北极星储能网获悉,藏格矿业股份有限公司(以下简称“公司”)全资子公司格尔木藏格钾肥有限公司(以下简称“藏格钾肥”)于2025年7月16日收到海西州自然资源局、海西州盐湖管理局下发的《关于责令立即停止锂资源开发利用活动的通知》。《通知》要求严格依照国家法律法规,切实履行企业主体责任,立即
北极星储能网获悉,7月15日,龙蟠科技公告2025年半年度业绩预亏,预计2025年半年度实现归属于上市公司股东的净利润-7,943.02万元至-9,830.03万元,预计2025年半年度实现归属于上市公司股东的扣除非经常性损益的净利润-13,032.25万元至-16,128.31万元。本期业绩预亏的主要原因有主营业务影响当前新能源
磷酸铁锂赛道,韩系电池三巨头“攻势渐起”!起点锂电注意到,继LG新能源、三星SDI后,SKOn也公布了其在磷酸铁锂电池端的最新布局,剑指北美储能系统市场。01、下订磷酸铁锂,是蹭热度还是布局提速?眼看LG新能源、三星SDI频频发力磷酸铁锂,SKOn终于按耐不住,一纸合作下定磷酸铁锂材料。7月15日消息
作者:樊慧敏1彭浩鸿1孟辉1唐梦宏1易昊昊1丁静1刘金成1徐成善2冯旭宁2单位:1.惠州亿纬锂能股份有限公司2.清华大学引用本文:樊慧敏,彭浩鸿,孟辉,等.储能电池模组膨胀力特性研究及仿真分析[J].储能科学与技术,2025,14(6):2488-2497.DOI:10.19799/j.cnki.2095-4239.2024.1210本文亮点:1.对模组全SOC的
北极星储能网获悉,7月15日消息,新疆维吾尔自治区工业和信息化厅开展锂离子电池行业规范公告申报工作,启动第九批锂离子电池行业规范公告申报工作,申报企业的范围包括锂离子电池、正极材料、负极材料、隔膜、电解液生产企业,锂离子电池包括单体电池(电芯)和电池组(含电池模组和系统)。原文如下
7月15日,商务部会同科技部调整发布《中国禁止出口限制出口技术目录》(商务部科技部公告2025年28号,以下简称《目录》)。商务部新闻发言人就《目录》有关问题回答了记者提问。一、《目录》调整的背景和主要考虑是什么?根据《中华人民共和国对外贸易法》和《中华人民共和国技术进出口管理条例》(以
北极星储能网获悉,7月15日,商务部会同科技部调整发布《中国禁止出口限制出口技术目录》(商务部科技部公告2025年28号,以下简称《目录》)。《目录》新增1项限制类技术条目,即电池正极材料制备技术,包括:新增电池用磷酸铁锂制备技术、电池用磷酸锰铁锂制备技术、磷酸盐正极原材料制备技术等3条控
北极星储能网获悉,7月14日,广东汕头市工业和信息化局开展2026年省级制造业当家重点任务保障专项资金(新一代信息技术和产业发展)支持电子信息产业方向项目入库,提到支持新型储能产业发展。支持新型储能产业领域具备较大竞争优势的储能电池及相关材料、设备、系统,具体包括:一是储能型锂离子电池
北极星储能网获悉,7月10日消息,当升科技公告,矿冶集团将以现金认购公司向特定对象发行的全部新股37,792,894股,认购金额为999,999,975.24元。本次发行完成后,矿冶集团持股比例将从23.19%增至28.52%。矿冶集团承诺自发行完成之日起18个月内不转让所持股份。此前,5月22日,当升科技在2024年度向特定
北极星储能网获悉,7月11日消息,厦钨新能在互动平台表示,在固态电池领域,公司重点在正极材料和电解质方面布局。(1)在固态电池正极材料方面:匹配氧化物路线固态电池的正极材料已实现供货;硫化物路线固态电池的正极材料方面,公司与下游客户在技术研发上保持密切的交流合作;(2)在固态电解质方
北极星储能网获悉,7月17日,德尔股份在投资者关系活动记录表中表示,2017年董事长李毅先生在日本接触到固态电池项目,前瞻性的预判到了固态电池技术的巨大市场价值,并于2018年成立了日本德尔进行固态电池技术的开发。另一方面,公司固态电池的布局也是在顺应和拥抱汽车行业电动化的发展趋势,是公司
磷酸铁锂赛道,韩系电池三巨头“攻势渐起”!起点锂电注意到,继LG新能源、三星SDI后,SKOn也公布了其在磷酸铁锂电池端的最新布局,剑指北美储能系统市场。01、下订磷酸铁锂,是蹭热度还是布局提速?眼看LG新能源、三星SDI频频发力磷酸铁锂,SKOn终于按耐不住,一纸合作下定磷酸铁锂材料。7月15日消息
自2021产销量和装机量反超三元锂电池后,磷酸铁锂电池再次迎来属于自己的“高光时刻”。据相关媒体报道,奔驰与吉利的合资品牌——smart电池项目定点花落蜂巢能源,蜂巢能源将在全球范围内向smart供货磷酸铁锂短刀电池。报道援引知情人士的话称:“除了smart以外,蜂巢能源也在接触一家头部跨国车企,
我国固态电池再获里程碑式进展。近日,由奇瑞参股的安徽安瓦新能源宣布,其自主研发的GWh级新型固态电池生产线首批工程样件成功下线。至此,我国目前的GWh级固态电池生产线有望增至7条,并且超过30条固态电池中试线几乎齐头并进。这些项目的推进,一方面标志着国内固态电池产业快速发展,另一方面已预
作者:贺瑞璘1张通1吴镓淳1王朝阳3邓永红1张光照1许晓雄2单位:1.南方科技大学材料科学与工程系2.南方科技大学创新创业学院3.华南理工大学材料学院引用本文:贺瑞璘,张通,吴镓淳,等.骨架型材料与设计在高比能锂电池中的应用研究进展[J].储能科学与技术,2025,14(5):1758-1775.DOI:10.19799/j.cnki.2095
北极星储能网获悉,6月25日,振华新材在投资者互动平台上表示回答投资者有关公司固态电池原材料产品及供货的问题。固体电解质及其改性三元业务情况:公司在行业内率先完成固态电池关键材料的技术突破,成功开发出兼具粒径小(纳米级)、空气稳定性好、离子电导率高、分散性好的复合固体电解质材料,目
北极星储能网获悉,6月22日,刚果民主共和国(DRC)官方宣布将钴精矿出口禁令再延长三个月。官方声明称,此举是因为“钴市场仍处于高库存水平”,这也进一步表明,尽管刚果采取了四个月的钴资源出口限制,但供应侧压力仍然存在。钴是电动汽车、智能手机和其他高科技设备中所使用的锂离子电池的关键材料
自汽车形成工业,价格战的硝烟从未真正褪去。1908年,福特T型车在美国上市,售价850美元,是同期汽车售价的一半。数年内,福特开启大规模降价,1913年更是推出全球第一条汽车流水线,将T型车价格压低至265美元,将汽车从贵族阶层的玩具,变成了普通工人的代步工具。彼时的汽车工业,正处于一场由价格战
“负极都使用金属锂。”近日,中国锂业巨头,赣锋锂业表示,其二代混合固态锂电池采用金属锂作为负极,开发的高比能电池能量密度达到420Wh/kg,循环寿命超过700次。随着固态电池的开发和量产,原先限制锂金属负极应用的锂枝晶问题正在被解决,新的技术不仅可以抑制锂枝晶的生长,固态电解质隔膜更可以
北极星储能网获悉,5月19日,天力锂能集团股份有限公司发布股东减持股份的预披露公告。持有天力锂能集团股份有限公司股份7,692,307股,占公司总股本比例6.48%的股东安徽高新投新材料产业基金合伙企业计划自本公告披露之日起15个交易日后的未来3个月内以集中竞价方式、大宗交易方式减持本公司股份不超过
2024年,中国锂电池材料行业在产能结构性过剩与需求增速减缓的多重压力下,交出了一份“量增价跌”的答卷。GGII统计了2024年中国38家主要锂电材料上市企业财务数据,以剖析行业发展态势。01行业全景:营收普降,利润分化加剧2024年,中国锂电材料企业整体业绩承压,四大主材营收合计均出现下滑,其中正
7月7日,国家发展改革委发布《关于促进大功率充电设施科学规划建设的通知》,从多维度明确发展方向。政策要求结合地方经济、新能源汽车推广及电力资源分布,以“即充即走”场景为核心,科学布局大功率充电设施;省级部门需联合制定发展目标与专项规划,优先明确高速公路服务区建设计划,对重大节假日利
我国固态电池再获里程碑式进展。近日,由奇瑞参股的安徽安瓦新能源宣布,其自主研发的GWh级新型固态电池生产线首批工程样件成功下线。至此,我国目前的GWh级固态电池生产线有望增至7条,并且超过30条固态电池中试线几乎齐头并进。这些项目的推进,一方面标志着国内固态电池产业快速发展,另一方面已预
2025年“赛程”过半,各大企业的固态电池项目也开始加速“冲刺”。6月下旬以来,亿纬锂能、孚能科技、国轩高科、赣锋锂业等头部企业先后官宣。而且,这次不只是半固态电池的“先锋”,而是全固态电池的预期量产。市场也再次陷入兴奋,并且不断开始向纵深挖掘“话题”。然而,整个产业链真的准备好了吗
自汽车形成工业,价格战的硝烟从未真正褪去。1908年,福特T型车在美国上市,售价850美元,是同期汽车售价的一半。数年内,福特开启大规模降价,1913年更是推出全球第一条汽车流水线,将T型车价格压低至265美元,将汽车从贵族阶层的玩具,变成了普通工人的代步工具。彼时的汽车工业,正处于一场由价格战
北极星储能网获悉,6月6日,万润新能在投资者互动平台上表示,万润新能作为头部正极材料供应商,紧跟固态电池行业发展需求和战略客户量产节奏,已在固态电池环节价值量较高的正极材料和电解质领域进行发力布局。正极材料方面,性能优异的磷酸铁锂正极材料可以适配固态电池体系,公司不断进行材料结构和
富锂锰基(LRM)材料,因其超高比容量和低成本等优势,被行业寄予厚望。近期,通用汽车宣布,将与LG新能源合作,推出新型富锂锰基方形电池,并将该电池应用于未来通用电动卡车和全尺寸SUV。通用汽车的目标是,成为首家在电动汽车上部署富锂锰基电池的汽车制造商。据了解,该富锂锰基电池计划将于2027年
北极星储能网获悉,5月21日,龙蟠科技发布投资者关系活动记录表,回答投资者公司在正极材料、钠电池、固态电池等方面的布局。龙蟠科技表示,本次公司推出的4代一烧高压密磷酸铁锂正极材料采用特殊的一次烧结工艺,在性能、成本、环保多个维度实现行业突破。产品具有超高压实性能,压实密度可以达到2.62
北极星储能网获悉,5月20日,龙蟠科技在投资者互动平台上表示,针对三元和固态电池,公司旗下的全资子公司三金锂电专注于固态电池前驱体的研发和生产。目前针对固态电池的高镍前驱体和富锂锰基前驱体正在和客户展开验证,三金锂电还推出了针对固态电池量身开发的D系列高镍三元前驱体材料,通过元素掺杂
北极星储能网获悉,5月15日,芳源股份在投资者互动平台上表示,公司固态电池用高镍三元前驱体已有向客户供货。公司将紧跟行业发展方向和客户需求,针对固态电池用的三元正极材料开展技术研发,同时积极探索其他新兴领域的发展机会,以多元化布局应对未来市场的多样化需求。
近日,位于河北唐山曹妃甸工业区钢铁电力园区的中冶新材料项目二期整体已完工75%,预计2025年上半年完成施工,即将进入设备安装阶段。“中冶新材料项目”是中冶集团抓住新能源汽车行业爆发式增长的市场机遇,依托自身矿产资源优势和动力锂电池正极材料的综合技术优势打造的关键项目。项目共分两期建设
北极星储能网获悉,5月8日,振华新材发布关于2024年度“提质增效重回报”行动方案的评估报告暨2025年度“提质增效重回报”专项行动方案。其中指出,多元化产品矩阵及前瞻性技术储备为公司在大增程电池、半固态/固态电池、低空经济、电动两轮车、UPS启停电池、重型商用电动车及储能等市场奠定了坚实的基
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!