登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
在传统的交流系统中,线路保护对保障系统的安全稳定运行具有重要作用。但在现有的直流输电工程中,直流线路的保护的重要性有所下降。现有的直流输电工程多为双端直流输电工程,对于基于晶闸管的常规直流输电系统,当直流线路发生故障时,由于其定电流控制的存在,可以通过增大晶闸管的触发角来降低线路电压从而将故障电流降低到较低水平,系统中的设备不会遭受稳态大电流的冲击[29-30];对于双端柔性直流输电系统,由于直流断路器不成熟[31-33],因此直流线路发生故障时往往只能通过开断交流侧的交流断路器来切断故障电流[21, 34]。但是对于柔性直流电网来说,由于其自身的故障特点以及直流断路器难以做到大容量等原因,线路保护的重要性被提升到前所未有的高度。可以说,柔性直流电网的线路保护技术是保证柔性直流电网能够得以真正实现的关键技术之一[35-36]。因此,柔性直流电网线路的主保护在满足对动作速度要求的同时,应当具有较高的可靠性、足够的灵敏性和绝对的选择性,不能再简单地直接借鉴常规直流输电系统的线路保护。
3.3 后备保护的比较
柔性直流电网线路的后备保护应当采用纵联保护技术。纵联保护相对于单端量保护往往具有更好的选择性和灵敏性,当单端量主保护受其灵敏度限制不能识别经大过渡电阻接地故障时,纵联后备保护可以良好地作为单端量主保护的补充和配合。现有的常规直流输电系统的线路后备保护往往采用纵联电流差动保护,但受故障后暂态过程的影响,电流差动保护往往引入较大的延时,动作速度较慢。对于柔性直流电网来说,其直流线路的后备保护动作时间应少于20~30 ms,以保证在直流侧发生故障时直流线路后备保护能够先于交流侧保护动作,进而在时序上更好地配合超高速的直流线路主保护和交流侧的保护。
4 结论
柔性直流电网的故障处理方式应当与传统的交流电网类似,即通过保护和直流断路器实现对故障元件的快速隔离或切除,以充分发挥柔性直流电网的输电灵活性和可靠性优势。
柔性直流电网线路主保护应当采用单端量保护算法以保证保护具有极快的动作速度,并需要采取适当的解耦措施和故障选极方法,以及噪声、雷击等干扰的识别方法,以保证保护的可靠性;后备保护则应当采用纵联保护原理以作为主保护的补充,保证保护具有足够高的灵敏度;同时后备保护也应当具有较快的动作速度以在时序上配合快速主保护和交流侧保护,尤其是在直流侧发生故障时,后备保护要能够先于交流侧保护动作。
参考文献
[1] 刘振亚. 全球能源互联网[M].北京:中国电力出版社,2015:106-111.
[2] 白建华,辛颂旭,刘俊,等.中国实现高比例可再生能源发展路径研究[J].中国电机工程学报,2015,35(14):3699-3705. Bai Jianhua,Xin Songxu,Liu Jun,et al.Roadmap of realizing the high penetration renewable energy in China[J].Proceedings of the CSEE,2015,35(14):3699-3705 (in Chinese).
[3] 周强,汪宁渤,何世恩,等.高弃风弃光背景下中国新能源发展总结及前景探究[J].电力系统保护与控制,2017,45(10):146-154. Zhou Qiang,Wang Ningbo,He Shien,et al.Summary and prospect of China’s new energy development under the background of high abandoned new energy power[J].Power System Protection and Control,2017,45(10):146-154 (in Chinese).
[4] Hertem D V,Ghandhari M.Multi-terminal VSC HVDC for the European supergrid obstacles[J].Renewable and Sustainable Energy Reviews,2010,14(9):3156-3163.
[5] CIGRE B4-52 Working Group.HVDC grid feasibility study[R]. B4-52 Working Group.HVDC grid feasibility study[R].Melbourne:International Council on Large Electric Systems,2011.
[6] 张文亮,汤涌,曾南超.多端高压直流输电技术及应用前景[J].电网技术,2010,34(9):1-6. Zhang Wenliang,Tang Yong,Zeng Nanchao.Multi-terminal HVDC transmission technologies and its application prospects in China[J].Power System Technology,2010,34(9):1-6 (in Chinese).
[7] 温家良,吴锐,彭畅,等.直流电网在中国的应用前景分析[J].中国电机工程学报,2012,32(13):7-12. Wen Jialiang,Wu Rui,Peng Chang,et al.Analysis of DC grid prospects in China[J].Proceedings of the CSEE,2012,32(13):7-12 (in Chinese).
[8] 汤广福,罗湘,魏晓光.多端直流输电与直流电网技术[J].中国电机工程学报,2013,33(10):8-17. Tang Guangfu,Luo Xiang,Wei Xiaoguang.Multi-terminal HVDC and DC-grid technology[J].Proceedings of the CSEE,2013,33(10):8-17 (in Chinese).
[9] 姚美齐,李乃湖.欧洲超级电网的发展及其解决方案[J].电网技术,2014,38(3):549-555. Yao Meiqi,Li Naihu.An introduction to European supergrid and its solutions[J].Power System Technology,2014,38(3):549-555 (in Chinese).
[10] 徐政. 柔性直流输电系统[M].2版.北京:机械工业出版社,2017.
[11] 李斌,何佳伟,冯亚东,等.多端柔性直流电网保护关键技术[J].电力系统自动化,2016,40(21):2-12. Li Bin,He Jiawei,Feng Yadong,et al.Key techniques for protection of multi-terminal flexible DC grid[J].Automation of Electric Power Systems,2016,40(21):2-12 (in Chinese).
[12] 中国西电研制成功500千伏高压直流断路器[J].电源世界,2017 (12):13.
[13] 艾琳,陈为化.高压直流输电线路行波保护判据的研究[J].继电器,2003,31(10):41-44. Ai Lin,Chen Weihua.Research on travelling wave protection criterion on HVDC transmission line[J].Relay,2003,31(10):41-44 (in Chinese).
[14] 宋国兵,高淑萍,蔡新雷,等.高压直流输电线路继电保护技术综述[J].电力系统自动化,2012,36(22):123-129. Song Guobing,Gao Shuping,Cai Xinlei,et al.Survey of relay protection technology for HVDC transmission lines[J].Automation of Electric Power Systems,2012,36(22):123-129 (in Chinese).
[15] 王艳婷,张保会,范新凯.柔性直流电网架空线路快速保护方案[J].电力系统自动化,2016,40(21):13-19. Wang Yanting,Zhang Baohui,Fan Xinkai.Fast protection scheme for overhead transmission lines of VSC-based HVDC grid[J].Automation of Electric Power Systems,2016,40(21):13-19 (in Chinese).
[16] Leterme W,Beerten J,Van Hertem D.Nonunit protection of HVDC grids with inductive DC cable termination[J].IEEE Transactions on Power Delivery,2016,31(2):820-828.
[17] 李岩,龚雁峰,姜斌.一种基于方向行波的多端VSC-HVDC系统保护策略[J].电力工程技术,2017,36(1):70-73. Li Yan,Gong Yanfeng,Jiang Bin.A protection scheme for multiterminal VSC-HVDC system based on direction traveling waves[J].Electric Power Engineering Technology,2017,36(1):70-73 (in Chinese).
[18] 周家培,赵成勇,李承昱,等.基于直流电抗器电压的多端柔性直流电网边界保护方案[J].电力系统自动化,2017,41(19):89-94. Zhou Jiapei,Zhao Chengyong,Li Chengyu,et al.Boundary protection scheme for multi-terminal flexible DC grid based on voltage of DC reactor[J].Automation of Electric Power Systems,2017,41(19):89-94 (in Chinese).
[19] 李斌,何佳伟,李晔,等.基于边界特性的多断柔性直流配电系统单端量保护方案[J].中国电机工程学报,2016,36(21):5741-5749. Li Bin,He Jiawei,Li Ye,et al.Single-ended protection scheme based on boundary acteristic for multi-terminal VSC-based DC distribution system[J].Proceedings of the CSEE,2016,36(21):5741-5749 (in Chinese).
[20] 董云龙,凌卫家,田杰,等.舟山多端柔性直流输电控制保护系统[J].电力自动化设备,2016,36(7):169-175. Dong Yunlong,Ling Weijia,Tian Jie,et al.Control and protection system for Zhoushan multi-terminal VSC-HVDC[J].Electric Power Automation Equipment,2016,36(7):169-175 (in Chinese).
[21] 仉雪娜,赵成勇,庞辉,等.基于MMC的多端直流输电系统直流侧故障控制保护策略[J].电力系统自动化,2013,37(15):140-145. Zhang Xuena,Zhao Chengyong,Pang Hui,et al.A control and protection scheme of multi-terminal DC transmission system based on MMC for DC line fault[J].Automation of Electric Power Systems,2013,37(15):140-145 (in Chinese).
[22] Mallat S, Hwang W L.Singularity detection and processing with wavelets[J]. IEEE Transactions on Information Theory, 1992, 38(2): 617-643.
[23] 束洪春,王永治,程春和,等.±800 kV 直流输电线路雷击电磁暂态分析与故障识别[J].中国电机工程学报,2008,28(19):93-100. Shu Hongchun,Wang Yongzhi,Cheng Chunhe,et al.Analysis of electromagnetic transient and fault detection on ±800 kV UHVDC transmission lines under lightning stroke[J].Proceedings of the CSEE,2008,28(19):93-100 (in Chinese).
[24] 刘可真,束洪春,于继来,等.±800 kV 特高压直流输电线路雷击暂态识别[J].电网技术,2013,37(11):3007-3014. Liu Kezhen,Shu Hongchun,Yu Jilai,et al.Transient identification of lightning strokes on ±800 kV UHVDC transmission lines[J].Power System Technology,2013,37(11):3007-3014 (in Chinese).
[25] Tang L,Dong X,Luo S,et al.A new differential protection of transmission line based on equivalent travelling wave[J].IEEE Transactions on Power Delivery,2017,32(3):1359-1369.
[26] Luo S,Dong X,Shi S,et al.A directional protection scheme for HVDC transmission lines based on reactive energy[J].IEEE Transactions on Power Delivery,2016,31(2):2278-2285.
[27] 胡文旺,唐志军,林国栋,等.柔性直流控制保护系统方案及其工程应用[J].电力系统自动化,2016,40(21):27-33. Hu Wenwang,Tang Zhijun,Lin Guodong,et al.Scheme and engineering application of flexible DC control and protection system[J].Automation of Electric Power Systems,2016,40(21):27-33 (in Chinese).
[28] 刘剑,范春菊,邰能灵.考虑直流控制系统影响的HVDC输电线路后备保护研究[J].电力系统保护与控制,2015,43(1):73-80. Liu Jian,Fan Chunju,Tai Nengling.Backuo protection research for HVDC transmission line considering the impact of DC control system[J].Power System Protection and Control,2015,43(1):73-80 (in Chinese).
[29] 赵畹君. 高压直流输电工程技术[M].2版.北京:中国电力出版社,2011.
[30] 胡铭,田杰,曹冬明,等.特高压直流输电控制系统结构配置分析[J].电力系统自动化,2008,32(24):88-92. Hu Ming,Tian Jie,Cao Dongming,et al.Analysis of structure and configuration for UHVDC transmission control system[J].Automation of Electric Power Systems,2008,32(24):88-92 (in Chinese).
[31] Franck C M.HVDC circuit breakers:a review identifying future research needs[J].IEEE Transactions on Power Delivery,2011,26(2):998-1007.
[32] 王帮田. 高压直流断路器技术[J].高压电器,2010,46(9):61-64. Wang Bangtian.Technology of HVDC circuit breaker[J].High Voltage Apparatus,2010,46(9):61-64 (in Chinese).
[33] 史宗谦,贾申利.高压直流断路器研究综述[J].高压电器,2015,51(11):1-9. Shi Zongqian,Jia Shenli.Research on high-voltage direct current circuit breaker:a review[J].High Voltage Apparatus,2015,51(11):1-9 (in Chinese).
[34] 赵成勇,陈晓芳,曹春刚,等.模块化多电平换流器HVDC直流侧故障控制保护策略[J].电力系统自动化,2011,35(23):82-87. Zhao Chengyong,Chen Xiaofang,Cao Chungang,et al.Control and protection strategies for MMC-HVDC under DC faults[J].Automation of Electric Power Systems,2011,35(23):82-87 (in Chinese).
[35] 刘剑,邰能灵,范春菊,等.柔性直流输电线路故障处理与保护技术评述[J].电力系统自动化,2015,39(20):158-167. Liu Jiang,Tai Nengling,Fan Chunju,et al.Comments on fault handling and protection technology for VSC_HVDC transmission lines[J].Automation of Electric Power Systems,2015,39(20):158-167 (in Chinese).
[36] 徐政,薛英林,张哲任.大容量架空线柔性直流输电关键技术及前景展望[J].中国电机工程学报,2014,34(29):5051-5062. Xu Zheng,Xue Yinglin,Zhang Zheren.VSC-HVDC technology suitable for bulk power overhead line transmission[J].Proceedings of the CSEE,2014,34(29):5051-5062 (in Chinese).
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
记者在河北省张家口市走访了解到,今年以来当地数据中心、算力中心等新型基础设施的电力需求激增。作为国家“东数西算”工程京津冀枢纽的核心节点,张家口市凭借独特能源和区位优势,正加速崛起为全国重要的“算力之都”。绿电的高速增长得益于新能源产业的快速发展。地处河北北部的冀北清洁能源基地是
记者在河北省张家口市走访了解到,今年以来当地数据中心、算力中心等新型基础设施的电力需求激增。作为国家“东数西算”工程京津冀枢纽的核心节点,张家口市凭借独特能源和区位优势,正加速崛起为全国重要的“算力之都”。绿电的高速增长得益于新能源产业的快速发展。地处河北北部的冀北清洁能源基地是
4月14日,明阳集团党委书记、董事长张传卫到国家级新型科研事业单位——怀柔实验室调研,与怀柔实验室主任、中国工程院院士汤广福座谈交流。明阳集团党委副书记刘连玉参加座谈。汤广福对张传卫一行的到访表示热烈欢迎,并介绍了实验室成立三年多来,在能源领域取得的科研成果和技术突破,回顾了与相关
4月8日,世界首套±800千伏特高压直流量子电流传感器在昆柳龙直流工程柳州换流站投入运行超过72小时,标志着我国电力领域首个量子传感技术国家重点研发计划项目取得重大突破。依托量子特性,这套传感器可以在-40摄氏度至+85摄氏度极端环境下,实现从毫安级到10千安级的超宽量程覆盖,成功将量子精密测
近日,在阳江三山岛附近,全国首个海陆一体柔直输电工程正在悄悄搭建一条“海底电缆高速公路”,它能让海上大风车的电像坐高铁一样“嗖”地直达大湾区。这到底是怎样的一项工程?什么是海陆一体柔直输电?海陆一体柔直输电=海上风电+柔性直流输电+陆上电网无缝衔接。就像在海底修了条电力复兴号专线,
4月4日,从国网江苏省电力有限公司获悉,截至3月底,江苏依托龙政、锦苏、建苏三条直流输电线路累计接收中西部清洁水电超7000亿千瓦时,相当于减少二氧化碳排放超6亿吨。2003年,国家“西电东送”主动脉、三峡首条外送输电通道——±500千伏龙政直流工程投运,至今年3月底已累计向江苏输电超2500亿千瓦
2025年4月11日15时,张家口坝上地区气温骤降,大风裹挟着雪粒呼啸而过。国网冀北超高压公司康巴诺尔换流站运维人员白晓飞和同事裹着加厚防寒服,顶着狂风攀上30米高的阀厅顶部。手电筒光束在风雪中摇晃,他们逐段检查金属彩钢板的螺栓紧固情况,手指冻得几乎失去知觉。面对今春最强大风天气,该公司启
4月7日,广东阳江三山岛500千伏海上风电柔直输电工程全面开工,这是我国首个海陆一体送出工程,将广东阳江三山岛的海上风电源源不断送往粤港澳大湾区。据介绍,该工程起于广东阳江三山岛风电场,止于广东江门,线路总长293公里,其中,海底电缆长115公里、陆上输电线路为178公里。工程总投资约103亿元
科技兴则民族兴,科技强则国家强。今年的政府工作报告提出,“推进高水平科技自立自强”“强化关键核心技术攻关和前沿性、颠覆性技术研发”。国家电网有限公司认真贯彻落实全国两会精神,持续加大创新力度,以首台(套)示范应用为突破口,加强关键技术攻关,畅通技术攻关和工程应用渠道,推动科技创新
4月3日,笔者从国网江苏省电力有限公司(以下简称“江苏电力”)获悉,三大“水电入苏”工程累计向江苏输送来自西部的清洁水电超7000亿千瓦时,相当于减少二氧化碳排放超6亿吨,为江苏经济社会发展注入源源不断的“绿色动能”。江苏作为经济强省,年用电量位居全国前列,但省内能源资源相对匮乏,难以
4月7日,南方电网在粤重大项目建设动员大会在广州举行。广东省委副书记、省长王伟中,南方电网公司董事长、党组书记孟振平出席会议并讲话。广东省政府党组成员、秘书长陈敏,国家能源局南方监管局党组书记、局长郑毅出席会议。公司党组成员、副总经理王绍武主持会议。王伟中代表广东省委、省政府对项目
在电力行业,我国长期面临着“卡脖子”的困境。关键设备与核心技术受制于人,严重制约着我国电力产业的自主发展。作为电力装备领域"国家队",西安西电开关电气有限公司(以下简称“西开电气”)以使命担当,大力投入研发,成功研制出一系列大国重器,打破国外技术垄断,为我国电力行业的独立自主发展开
近日,中央气象台发布重要天气预警:受强冷空气影响,华北、黄淮东部等地遭遇历史同期罕见的持续性大风天气,局地瞬时风力可达12-13级,强度堪比台风登陆。中国气象局启动重大气象灾害(大风)三级应急响应,甚至有专家建议100斤以下不要出门。大风天气下,屋顶光伏电站也将面临一场严峻的挑战,理论上
北极星输配电网整理了3月24日~3月28日的一周电网项目动态。山东陇东至山东±800千伏特高压直流输电工程3月23日,全国首个双极高、低端直流系统同步启动带电调试的特高压直流输电工程——陇东至山东±800千伏特高压直流输电工程设备验收合格,正式启动直流系统带电调试。陇东至山东±800千伏特高压直流
3月24日,国家能源局和中国电力企业联合会在京联合召开2025年全国电力可靠性指标发布会。国家能源局党组成员、副局长何洋出席会议并讲话,中电联党委书记、常务副理事长杨昆出席会议并致辞,中电联党委委员、专职副理事长于崇德出席会议。会议由国家能源局安全总监黄学农主持。会上,国家能源局和中电
为进一步做好设备运维工作,最近,国网江苏电力超高压公司创新研发断路器设备状态检修决策模块,制订差异化的“巡、监、测”策略,成功研发断路器设备状态检修决策模块,不断提升电力运维技术水平和管理水平,及时跟踪处理特高压泰州站站内500千伏5645、5652断路器选相合闸参数偏差问题,为保障电力安
据悉,DeepSeek全量模型已在和林格尔新区的三大智算中心完成部署,包括中国移动智算中心(呼和浩特)、并行科技内蒙古算力基地以及东方国信和林格尔智算中心。其中,中国移动智算中心(呼和浩特)是全球运营商领域内规模最大的单体液冷智算中心,拥有国家级N节点万卡规模AI训练场,智能算力规模高达6.7
北极星输配电网整理了3月17日~3月21日的一周电网项目动态。浙江温州特高压500千伏配套送出工程3月14日,浙江温州苍南启动全县电网工程建设三年攻坚行动,未来三年将投资22.8亿元,实施电网工程26个,工程类型主要为供电能力提升类(变压站工程)、清洁能源接入类(电力输送通道工程)两大类,计划到202
“十四五”以来,中国能建坚持以习近平新时代中国特色社会主义思想为引领,将科技创新作为“头号工程”,着力打造具有能建特色的新质生产力,开启了以“四型八网”建设高质量发展“四新”能建崭新局面,为全面推进中国式现代化做出了积极贡献。3月20日,中国能建成功举办科技创新大会,并发布20项中国
3月17日,国家电力投资集团有限公司启动二〇二五年度第21批集中招标(第一批储能系统设备)。本次储能系统(包含配套储能与共享储能)集中招标总容量为5GWh,区分集中式和组串式,适用于共享/配套储能,包括2h(0.5C倍率)及4h(0.25C倍率)方案。本次集采拟采用直流1500V储能系统设计方案,并网电压等级为
3月12日,在青海±400千伏柴达木换流站内,青藏直流二期扩建工程一台换流变压器顺利牵引安装至预定位置,标志着青藏直流二期扩建工程已全面进入设备安装阶段。据悉,±400千伏柴达木换流站是青藏联网工程直流系统的起点,青藏直流二期扩建工程作为国内首个在已投运的直流换流站内开展的扩建工程,工程
在构建新型电力系统的时代征程中,核心技术"卡脖子"之痛如何破解?能源转型的硬核支撑从何而来?作为电力装备领域"国家队",西安西电开关电气有限公司(以下简称“西开电气”)以几十年磨一剑的坚守,交出了一份震撼答卷。破局:直击"卡脖子"痛点的硬核突围,核心技术攻坚战全面告捷随着电力需求的不断
4月8日,国网涡阳县供电公司联合涡阳县农业农村局、涡阳县电力设施保护办公室共同组织开展植保无人机安全作业技术培训活动,来自全县各乡镇的42名植保无人机操作人员参加培训。此举旨在提高无人机操作人员安全意识,防止无人机在植保飞行期间误刮、误碰高压输电线路设备,导致高压电力设备断线短路,造
4月7日,株洲市发展和改革委员会关于依法划定电力设施保护区的公告。1.架空电力线路保护区边导线向外侧水平延伸并垂直投影于地面所形成的两平行线内的区域,各电压等级电力线路的边导线在居民区、非居民区、地面、建筑物、树木的安全距离,应当符合有关法律法规和技术规程的规定。在一般地区各级电压导
3月26日,安康市行政审批服务局核准国网安康供电公司白河县第三通道110千伏线路工程建设,这标志着该项目立项审批已完成,即将进入报建阶段。该项目起自旬阳市香溪330kV变电站,终至白河县中厂110kV变电站,线路全长约75.6公里,途经旬阳市关口镇、棕溪镇,白河县仓上镇、西营镇、双丰镇、宋家镇、茅坪
“今天我们开展的是带电作业。临时装置投入运行后,原装置才能退出出口压板。”3月24日,在四川成都110千伏棕树桥变电站内,成都供电公司变电检修中心现场工作负责人杨超杰向工作班成员交代带电消除10千伏线路保护装置中央处理器(CPU)板件缺陷的风险点。10千伏线路处于供电末端,线路保护装置的CPU板
3月19日,河南省焦作市温县发展和改革委员会发布关于加强分布式光伏项目安全监管的通知。通知提出,近年来,分布式光伏发电快速发展,装机总规模不断扩大。分布式光伏发电项目数量众多、区域分散、周边环境复杂,安全生产管理难度较大,给人民群众生命财产安全带来风险和挑战。为加强分布式光伏安全监
3月19日,河南焦作温县发布关于加强分布式光伏项目安全监管的通知。原文如下:关于加强分布式光伏项目安全监管的通知国网温县供电公司,各相关企业:近年来,分布式光伏发电快速发展,装机总规模不断扩大。分布式光伏发电项目数量众多、区域分散、周边环境复杂,安全生产管理难度较大,给人民群众生命
3月12日,重庆印发2025年度电力行业“双随机、一公开”执法检查工作方案(渝经信执法〔2025〕8号)。其中指出,本次检查对象为电力供应企业。具体检查对象将按照电力供应企业总数10%的比例抽取4家企业,具体检查对象名单通过随机抽取的方式确定。本次检查的重点内容为电力供应企业是否按照有关法律法规
“我们今天的任务是对10千伏徐广楼195线进行安全巡视,大家在巡视的过程中,对发现的树障、鸟窝等安全隐患,进行登记,并按照隐患轻重缓急,上报公司集中进行消缺。”3月13日,国网涡阳县供电公司闸北中心供电所正在组织设备管理人员对辖区内10千伏线路进行安全巡视。进入3月份以来,国网涡阳县供电公
3月11日,广东省能源局公开征求《林区输配电设施森林火灾防控技术规程(送审稿)》意见。线路宜避让自然保护区,无法避让时,应根据负荷分布和林区特点、防火林带,采用合理布点、分区供电等方式,优化线路路径,尽量缩短跨(穿)越林区的线路长度,减少树线矛盾。线路在选择路径和定位时,应避让可能
2月19日获悉,华中电网网内所有符合条件的超特高压线路保护装置均启用零序反时限过流保护功能。华中电网成为国家电网公司系统首家实现该功能的区域电网。电力系统中95%以上的故障为单相接地故障,零序电流保护是确保单相接地故障可靠切除的重要措施。此次华中电网全面启用的零序反时限过流保护具有电流
春节假期(1月28日-2月4日),南方电网安全稳定运行,电力供应有序,南方电网全网最高负荷为1.49亿千瓦(2月4日),同比去年春节同期(下同)增长8.9%,累计发受电量219.7亿千瓦时,同比增长8.7%。南方电网生产指挥中心开发了春节保供电“一张图”,动态分析全网用户有关热力图变化,重点掌握务工返乡集
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!