登录注册
请使用微信扫一扫
关注公众号完成登录
(来源:微信公众号“新能源电池圈” ID:kylesay 作者:寻风)
1,锂离子电池的反应热来源分析
当电池正常使用以及被滥用的过程中电池内部会发生一些列的电化学反应,涉及到正极,负极,电解液,隔膜,当内部反应热累积到一定程度的时候就会有起火爆炸的危险。反应热的来源主要有以下几个方面。
1.1,SEI的分解反应
SEI是负极和电解液之间的一层钝化膜阻止负极和电解液之间的进一步反应,但是当温度升高到一定程度时就开始分解(实际上SEI分为两层-稳定层和亚稳定层)亚稳定层在80-120℃开始分解为稳定层,反应过程为放热。随着负极比表面的增加SEI增加,分解反应的放热量也会增加。
1.2,嵌锂碳和溶剂之间的反应
当温度升高时 ,SEI 膜不能保护负极的情况下溶剂会和金属锂发生反应:
1.3,嵌锂碳和PVDF粘结剂的反应(油性负极)
有研究表明,当电池内部温度超过260℃时LixC6会和PVDF发生如下反应:
反应的焓变随着x值和碳负极的比表面的增加而增加,指出LiC6 与PVDF的反应起始温度在240℃,290℃出现放热峰,在350℃完全反应,放热量为1500J/g。
由上表可得出以下结论:
第一是负极表面主要存在3种放热反应
(1)SEI膜的分解反应
(2)LixC6与溶剂的反应
(3)LixC6与粘结剂的反应。
SEI膜的分解和LiXC6与溶剂反应有时同时进行,有人把这两种反应都认为是LixC6与溶剂的反应。
第二,SEI膜的分解反应一般在100℃左右,放热量很低,以此热量来加热电池,仅会使其升高几度不会带来危险。
第三,LixC6与溶剂反应的起始温度和放热量与x值、锂盐、溶剂有关,并且反应热比较大在某种情况下可能是电池失控的主要原因。
第四,尽管粘结剂与LixC6的放热量比较大,由于粘结剂在负极所占的比例有限,不会成为电池爆炸的主要原因。
1.4,电解液的分解反应
电解液的热分解反应主要是在温度升高时溶剂和锂盐的反应,如DEC比DMC更容易和LiPF6 、LiClO4 发生放热反应,反应温度基本在230-310℃之间,当体系中有少量水分存在的情况下反应温度开始提前。锂盐LiF6的热稳定性最差在170-330℃之间,有5个放热反应,最主要的是LiF6的分解反应,在220℃时彻底分解。
另外当锂离子电池充电电压超过电解液的分解电压时,电解液也会分解放出热量,产生气体。下表列出了不同电解液的分解电位:
1.5,正极的分解反应
常见的正极材料在温度低于650℃时是稳定的,在充电时处于亚稳定状态,温度升高时发生如下反应。
放出的氧气会使溶剂氧化:
正极是直接与电解液反应还是放出氧气后发生反应有确切的说法吗?常见正极材料的DSC测试结果:
对正极材料热稳定性分析可得出以下几点结论:
第一,正极材料与溶剂的反应机理有待深入研究;
第二,正极的分解反应及其与电解液的反应放热量比较大,在大多数情况下是造成电池爆炸的主要原因;
第三,采用三元或LFP正极材料相对LCO可以提高电池的安全性。
1.6,锂金属的反应
这里主要指的是锂析出锂枝晶,一般情况下金属锂的稳定性不如嵌锂碳。当锂离子电池过充时 ,锂金属沉积在负极表面 ,就可能发生金属锂与电解液的反应 ,大部分反应的起始温度在锂金属的熔点180 °C左右。
1.7,正负极活性物质的焓变
锂离子电池充放电时 ,锂嵌入到正极材料中的焓发生改变。以LiCoO2 为正极材料的AA电池为例 ,以 36mA 进行充放电 ,热量的吸收和放出虽然低于10mW,但是并不是低到忽略不记的程度。例如尖晶石LixMn2O4 的产热特性 ,在充电速率<1C充电时 ,热量的产生与扩散呈现可逆性 ;超过 1C时则不可逆 (欧姆电阻和极化电阻占主导地位) 。
1.8,电流通过内阻产生热量
由公式Q=I2RT可知内阻产生的热量,当电池外部短路时电池内阻产热占主导地位。
2,锂离子电池的爆炸机理
锂离子电池爆炸的因素很多 ,但其主要的原因是电池内部的高温 、高压都与产热因素有直接的关系。电池内部的产热因素众多 ,如果锂离子电池内部的热生成速率大于热散失速率 ,则体系内的反应温度就会不断上升,其结果可能造成两种极端情况 :
(1) 反应物质的温度达到其着火温度而发生火灾 ;
(2) 由于锂离子电池是一个封闭体系 ,随体系内部温度升高 ,反应速度加快 ,反应物蒸气压急剧上升。同时活性物质的分解活性物质与电解液的反应都会产生一定量的气体 ,其结果 是在缺少安全阀保护或安全阀失效的情况下 ,电池内压便会急剧上升而引起电池爆炸 。
常见的爆炸类型有以下几种:
2.1,热冲击爆炸
以LCO电池为例,将其放入165℃环境中保持45min发生爆炸,隔膜溶解(PE 的熔点是 125 °C,PP 的熔点是 155 °C)电压迅速降至0V电池表面温度升高到200℃以上,电池的爆炸是由于溶剂的分解 、LiCoO2 分解 、LiCoO2 与电解液的反应产生大量的热与气体造成的。
2.2,过充爆炸
锂离子电池过充时的电压-温度模式有3种形式:
(1)当充电电压超过4.5V,大量的锂离子从正极溢出。若负极的嵌锂能力很差,锂离子便会沉积在负极表面形成枝晶使电池内部短路,电池的安全性明显降低;
(2)若负极的嵌锂能力比较强,随着锂离子从正极溢出溶剂被氧化(远远大于正常情况下的反应速度),产生大量的热使电池温度升高,接着溶剂与负极的反应同时发生放出更多的热。若充电电流很低,电池的热稳定性好热量生成速率与散热速率达到平衡,电解液分解的产物增大电池的内阻,或隔膜关闭,电压先升高燃后保持恒定,热量不会失控;
(3)若充电电流很大,电池的稳定性还很差,电压、温度迅速升高,电池就会着火爆炸。
例如锂离子电池充电到标准电量的 160%时,热量急剧增加 ,可能是由于电解液的分解 、正极的分解反应产生大量的热引起的 ,如果在电池内部加入散热装置来平衡热量的释放 ,电池的爆炸将会避免。
2.3,短路爆炸
分为外部短路和内部短路:正负极耳的直接接触;装配过程中出现的毛刺,隔膜皱褶以及粉尘均可引发内部短路,短路也可能引起电池的爆炸。
电池短路时 , 电流通过电池的瞬间产生大量的热 ,加热电池 ,使电池温度升高的热分解温度导致电池爆炸。与加热最大的区别是加热产热速率比较缓慢 ,各个反应依次进行 ,而短路状态下 ,正极的热分解反应可能发生在负极与溶剂反应之前。
2.4,其他情况
针刺:针刺造成的锂离子电池爆炸原理与短路大致相同,针刺速度很快时针刺的部位产生大量的热,使电池内部温度升高到正极热分解的温度,正极分解导致电池爆炸。
撞击:当锂离子电池受到撞击时,电极上过电压损失产生热量,促使溶剂与负极的反应,放出的热量进一步加热电池使正极热分解,导致电池爆炸。
过放:锂离子电池过放到1.0-2.0V时,部分电解液发生还原放出少量的热。电压达到0.7V后,金属铜开始氧化井沉积在正极上,电池内部短路,电压迅速降为0V,锂离子电池变为Cu负极Cu正极电池胆电池表面温度升高不明显而不会发生危险。
3,防止锂离子电池爆炸的措施
3.1,提高电池材料的热稳定性
正极材料可以通过优化合成条件 ,改进合成方法 ,合成热稳定性好的材料 ;或使用复合技术(如掺杂技术)、表面包覆技术(如涂层技术)来改善正极材料的热稳定性。
负极材料的热稳定性与负极材料的种类 、材料颗粒的大小以及负极所形成的SEI膜的稳定性有关 。如将大小颗粒按一定配比制成负极即可达到扩大颗粒之间接触面积 ,降低电极阻抗 ,增加电极容量 ,减小活性金属锂析出可能性的目的。
SEI 膜形成的质量直接影响锂离子电池的充放电性能与安全性,将碳材料表面弱氧化 ,或经还原 ,掺杂,表面改性的碳材料以及使用球形或纤维状的碳材料有助于SEI膜质量的提高。
电解液的稳定性与锂盐 、溶剂的种类有关 。采用热稳定性好的锂盐 ,电位稳定窗口宽的溶剂可以提高电池的热稳定性 。在电解液中添加一些高沸点 、高闪点和不易燃的溶剂可以改善电池的安全性。
导电剂与粘结剂的种类与数量也影响着电池的热稳定性,粘结剂与锂在高温下反应产生大量的热 ,不同粘结剂发热量不同 , PVDF 的发热量几乎是无氟粘结剂的2倍,用无氟粘结剂代替PVDF可以提高电池的热稳定性。
3.2,提高电池过充保护能力
为防止锂离子电池过充 ,通常采用专用的充电电路来控制电池的充放电过程 ,或者在单个电池上安装安全阀以提供更大程度的过充保护 ; 其次也可采用正温度系数电阻器(PTC),其作用机理为当电池因过充而升温时 ,增大电池的内阻 ,从而限制过充电流 ;还可采用专用的隔膜 ,当电池发生异常引起隔膜温度过高时 ,隔膜孔隙收缩闭塞 ,阻止锂离子的迁移 ,防止电池的过充。
3.3,防止电池的短路
对于隔膜而言而言 ,孔率为40%左右 ,且分布均匀,孔径为10nm的隔膜能阻止正负极小颗粒运动 ,从而提高锂离子电池的安全性 ;
隔膜的绝缘电压与其防止正负极的接触有着直接的关系 ,隔膜的绝缘电压依赖于隔膜的材质 、结构以及电池的装配条件 ;
采用热闭合温度和熔融温度差值比较大的复合隔膜 (如PP/PE/PP)可防止电池热失控。将隔膜表面涂覆陶瓷层提高隔膜耐温性。利用低熔点的PE(125℃) 在温度较低的条件下起到闭孔作用 , PP(155℃) 又能保持隔膜的形状和机械强度 ,防止正负极接触 ,保证电池的安全性。
大家都知道以石墨负极替代金属锂负极 ,从而使充放电过程中锂在负极表面的沉积和溶解变为锂在碳颗粒中的嵌入和脱出 ,防止了锂枝晶的形成。但这并不代表锂离子电池的安全性已经解决 ,在锂离子电池充电过程中 ,如果正极容量过多 ,就会出现金属锂在负极表面沉积 ,负极容量过多 ,电池容量损失较严重。
涂布厚度及其均一性也影响锂离子在活性物质中的嵌入和脱出 。例如负极面密度较厚 不均一 ,因此充电过程中各处极化大小不同 ,就有可能发生金属锂在负极表面局部沉积 。
此外 ,使用条件不当也会引起电池的短路 ,低温条件下 ,由于锂离子的沉积速度大于嵌入速度 ,从而导致金属锂沉积在电极表面引起短路。因此 ,控制好正负极材料的比例 ,增强涂布的均匀性等是防止锂枝晶形成的关键。
此外 ,粘结剂的晶化 、铜枝晶的形成也会造成电池内部短路 。在涂布工艺中 ,通过涂布烘烤加热将浆料中溶剂全部除去 ,若加热温度过高 ,则粘结剂也有可能发生晶化 ,会使活性物质剥落 ,使电池内部短路。
在过放条件下,当电池过放至1-2V时,作为负极集电体的铜箔将开始溶解,并于正极上析出,小于1V时正极表面则开始出现铜枝晶 ,使锂离子电池内部短路。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
4月2日,美国总统特朗普宣布对中国锂离子电池征收64.5%综合关税,并计划于2026年进一步上调至82%。这一系列关税举措可能彻底颠覆电网规模储能项目的经济性,对储能系统开发商正在推进或未来规划的项目发展前景蒙上阴影。太阳能发电设施的组件也受到了影响,从中国进口的多晶硅、硅片和光伏面板需缴纳60
北极星储能网获悉,5月8日,振华新材发布关于2024年度“提质增效重回报”行动方案的评估报告暨2025年度“提质增效重回报”专项行动方案。其中指出,多元化产品矩阵及前瞻性技术储备为公司在大增程电池、半固态/固态电池、低空经济、电动两轮车、UPS启停电池、重型商用电动车及储能等市场奠定了坚实的基
北极星储能网获悉,5月7日晚间,孚能科技发布公告称,公司于当日召开2025年第二次临时股东大会,审议通过董事会换届选举相关议案,本次董事会换届已完成。广州工业投资控股集团有限公司(以下简称“工控集团”)及其一致行动人通过提名并当选非独立董事人数超过公司非独立董事席位半数方式,实现对公司
当地时间5月7日,楚能新能源携全场景储能产品矩阵亮相在德国慕尼黑举办的欧洲智慧能源展(SmarterEEurope)。作为欧洲能源转型的重要参与者,楚能以472Ah大容量储能电芯及CORNEXM6电池预制舱为核心,为欧洲市场提供覆盖发电侧、电网侧、用户侧的一站式储能解决方案。以技术突破重构储能价值展会现场,
日前,英国格洛斯特郡的赛伦塞斯特混合太阳能发电厂发生火灾,该电站由23MWP光伏发电、51MWh锂电池储能电站构成,占地超过88英亩,相当于50多个足球场,由沃灵顿自治市议会拥有。火灾于下午3点左右发生,浓浓的黑烟喷向天空,从邻近地区和主要道路上都能看到,40多名消防员对紧急情况做出反应,使用大
北极星储能网获悉,2025年3月29日,英国格洛斯特郡的赛伦塞斯特混合太阳能发电厂发生火灾,该电站由23MWP光伏发电、51MWh锂电池储能电站构成,占地超过88英亩,相当于50多个足球场,由沃灵顿自治市议会拥有。火灾于下午3点左右发生,浓浓的黑烟喷向天空,从邻近地区和主要道路上都能看到,40多名消防员
4月30日,深圳市深汕特别合作区蓝威新能源有限公司发布深汕特别合作区蓝威能源储能电站项目设计施工总承包(EPC)招标公告,项目位于广东深圳,采用半固态锂离子电池、电池簇级管理器,液冷储能电池系统,包括储能单元、配套工程。容量为300MW/1200MWh。建成后可实现220KV交流输出1200MWh,满足4小时充
北极星储能网获悉,4月30日,孚能科技发布2025年度“提质增效重回报”行动方案。其中提到,在全固态电池方面,公司硫化物及复合物路线均取得较大突破,其中硫化物全固态电池已进入产品产业化开发阶段,产品、工艺及生产设备均处于开发中。硫化物固态电池沿用公司完善的叠片软包电池的制备工艺及设备,
日前,河北张家口南山汽车产业基地与三维(陕西)电池技术有限公司举行三维固态特种电池生产基地项目签约仪式。项目将建设第四代智能化电池工厂,计划总投资10亿元,总占地70亩,规划建筑面积10.2万平方米,分两期实施。其中,一期投资6亿元,二期投资4亿元,预留产能扩展空间。建成后可新增1GWh三维固
北极星储能网获悉,4月29日消息,欧洲汽车巨头Stellantis与美国初创公司FactorialEnergy联合研发的FEST固态电池成功通过车规级验证。据了解,FEST固态电池容量为77Ah,能量密度达到375Wh/kg,理论上可使电动车续航突破1000公里。经600次充放电循环后仍保持90%以上容量,达到车规级耐久标准。具备4C放电
4月25日,在山东省市场监督管理局的指导下,国际独立第三方检测、检验和认证机构德国莱茵TüV大中华区(简称“TüV莱茵”)联合山东省储能学会、山东省产品质量检验研究院在青岛举办“2025华北区新能源产业先进技术研讨会”。本次研讨会以“探索绿色可持续开创能源新未来”为主题,汇聚了专家学者和行
7万元/吨后,碳酸锂价格还在更剧烈地下跌。5月8日,电池级碳酸锂价格大跌1400元/吨,五一节后三日降幅超1800元/吨,现来到6.5万元/吨的关口。而期货价格已经跌破6.5万元/吨。5月8日,碳酸锂期货主力合约价6.3万元/吨,刷新历史最低。此前,7万元/吨被业内视为碳酸锂价格的成本线,但即便在目前击穿成本
北极星储能网获悉,5月8日,国轩高科在其投资者关系活动中披露,公司全年出货约63GWh,其中动力出货占比约65%,储能出货占比约35%。2024年公司整体毛利率为18%。海外收入占比31.09%。应对海外项目风险国轩高科表示在海外项目推进过程中,通过以下措施积极应对复杂多变的国际环境:1、搭建国际运营的风
北极星储能网获悉,5月8日,振华新材发布关于2024年度“提质增效重回报”行动方案的评估报告暨2025年度“提质增效重回报”专项行动方案。其中指出,多元化产品矩阵及前瞻性技术储备为公司在大增程电池、半固态/固态电池、低空经济、电动两轮车、UPS启停电池、重型商用电动车及储能等市场奠定了坚实的基
尽管磷酸铁锂电池在全球动力市场高歌猛进,三元正极材料产业并未沉寂,反而正经历一场深刻的“转型”。GGII数据显示,今年1-2月,全球磷酸铁锂动力电池的装机份额首次达到49.9%,以微弱优势领先于三元动力电池。尽管如此,两者差距极小,市场竞争格局依然胶着。在此背景下,2025年第一季度,中国三元正
北极星氢能网获悉,5月8日,甘肃省人民政府发布关于2024年度甘肃省科学技术奖励的决定,中国石油天然气股份有限公司兰州化工研究中心的满足国Ⅵ车用汽油标准的催化裂化汽油加氢改质技术开发及应用项目获取甘肃省科技进步奖二等奖。详情如下:甘肃省人民政府关于2024年度甘肃省科学技术奖励的决定甘政发
北极星储能网获悉,5月7日,容百科技发布投资者关系活动记录表,公司于2025年5月5日接受106家机构调研。2025年一季度,容百科技实现营业收入29.64亿元,净利润-405万元。在主营正极材料业务的市场开拓方面,取得了一些积极进展。对于美国关税政策对三元材料出货的影响,容百科技表示,受制于关税政策,
北极星氢能网获悉,4月14日,内蒙古伊金霍洛旗人民政府发布关于《伊金霍洛旗重大项目谋划行动实施方案》的通知,通知中明确围绕“十个领域”,细化实施任务。加快建设绿色装备制造集群,氢能装备制造等项目。主动融入自治区新能源发展战略,围绕“风光氢储一体化”构建现代能源体系,重点招引和谋划实
2025年,锂电池行业发生关键性转折的一年,多年后回望,也许你会发现2025年将成为诸多技术产品的爆发元年。其中,固态电池、硅碳负极、高压密磷酸铁锂、9系超高镍、磷酸锰铁锂、无极耳大圆柱、兆瓦超充、盐湖提锂、新型钠电池,以及更加安全的锂电池系统,以上10大技术和对应产品将推动新能源产业的快
动力电池出货量同比增长41%,储能电池出货量增长120%。高工产研锂电研究所(GGII)初步调研数据显示,2025Q1中国锂电池出货量314GWh,同比增长55%。其中动力、储能电池出货量分别为210GWh、90GWh,同比增长分别为41%、120%。2024-2025Q1中国锂电池出货量(GWh)说明:动力锂电池含乘用车、商用车、工程
北极星储能网获悉,4月25日晚间,振华新材发布公告,公司于2025年4月24日召开董事会和监事会,审议通过了《关于募集资金投资项目重新论证并暂缓实施的议案》。根据该议案,公司将暂缓实施正极材料生产线建设项目(义龙三期)。根据公告显示,义龙三期项目原计划总投资62.45亿元,其中使用募集资金10亿
中国动力电池行业的扩张步伐正在持续,头部企业中创新航与国轩高科近期的投资动作再次印证了这一趋势。与此同时,一个显著的并行现象是,围绕大圆柱电池、固态电池及其相关新材料的产能布局正变得日益密集,呈现出“拥挤”的态势。中创新航公布了大规模的扩产计划。其成都项目二期已于3月底动工,该项
北极星储能网获悉,4月9日,瑞士阿尔邦的一处户用储能系统发生了50升钒电解液泄漏事件,但未引发火灾。瑞士图尔高州警方通报,阿尔邦的一栋公寓楼开展了一场“火灾及化学品救援行动”,事件涉及钒液泄漏。当天上午7点30分刚过,因大楼地下室冒烟,警方接到报警。警方初步调查称,“约500升钒(电解液)
当地时间5月7日,楚能新能源携全场景储能产品矩阵亮相在德国慕尼黑举办的欧洲智慧能源展(SmarterEEurope)。作为欧洲能源转型的重要参与者,楚能以472Ah大容量储能电芯及CORNEXM6电池预制舱为核心,为欧洲市场提供覆盖发电侧、电网侧、用户侧的一站式储能解决方案。以技术突破重构储能价值展会现场,
北极星储能网获悉,4月30日,孚能科技发布2025年度“提质增效重回报”行动方案。其中提到,在全固态电池方面,公司硫化物及复合物路线均取得较大突破,其中硫化物全固态电池已进入产品产业化开发阶段,产品、工艺及生产设备均处于开发中。硫化物固态电池沿用公司完善的叠片软包电池的制备工艺及设备,
北极星氢能网获悉,4月27日,中化商务数字化服务平台发布金风绿能化工(兴安盟)有限公司200万千瓦风电制绿氢50万吨绿色甲醇示范项目电解水制氢厂(一期)项目T+EPC工程总承包成交结果公告。公告显示,西南化工研究设计院有限公司中标。详情如下:中标范围:从制氢装置进界区红线处开始,包含氢气储存、氢
北极星储能网获悉,4月29日消息,欧洲汽车巨头Stellantis与美国初创公司FactorialEnergy联合研发的FEST固态电池成功通过车规级验证。据了解,FEST固态电池容量为77Ah,能量密度达到375Wh/kg,理论上可使电动车续航突破1000公里。经600次充放电循环后仍保持90%以上容量,达到车规级耐久标准。具备4C放电
动力电池出货量同比增长41%,储能电池出货量增长120%。高工产研锂电研究所(GGII)初步调研数据显示,2025Q1中国锂电池出货量314GWh,同比增长55%。其中动力、储能电池出货量分别为210GWh、90GWh,同比增长分别为41%、120%。2024-2025Q1中国锂电池出货量(GWh)说明:动力锂电池含乘用车、商用车、工程
近日,黑龙江省全钒液流电池储能全产业链示范基地项目正式开工。据了解,依据黑龙江省工信厅产业规划,黑龙江建龙与大连融科共同设立“黑龙江融祥储能科技有限公司”,在双鸭山建设“全钒液流电池储能全产业链”示范基地项目。该项目总投资6亿元,设计建设规模包括一条年产6万立方米钒电解液的生产线以
2023年8月17日,欧盟新电池法正式生效,对电池企业提出了全生命周期的严格约束,涵盖碳足迹、回收责任、材料使用、安全标准等多个维度。其中,储能电池属于工业电池范畴,从时间节点来看,进入欧盟市场需要在2026年2月前提供产品碳足迹报告。具体来看,欧盟新电池法要求电池制造商必须提供包括电池材料
作为极具前景的下一代电池技术,固态电池具备令人惊叹的能量密度和优异的高安全性能,未来市场应用潜力巨大,已成为全球新能源企业技术竞逐的焦点。截至目前,包括比亚迪、长安、东风、吉利、蔚来、上汽、广汽、丰田、现代等车企,以及宁德时代、亿纬锂能、LG新能源、国轩高科、欣旺达、正力新能、孚能
北极星储能网获悉,2025年4月19日,由中国化工学会指导,中国化工学会储能工程专业委员会和中国可再生能源学会氢能专业委员会联合主办的“2025长三角(绍兴)氢能+储能产业技术交流与发展大会”在浙江省绍兴市上虞区隆重举行。大会上,一批高质量的氢能与储能项目正式签约,落户国家级杭州湾上虞经济技
4月22日,随着最后一方混凝土浇筑完成,星辰新能绍兴总部基地主体结构全面封顶,标志着这一总投资超10亿元、总建筑面积超9万平方米的产业项目取得重大进展。绍兴总部建成后将形成集智造中心、创值中心、研发中心于一体的全产业链生态平台,推动区域产业向绿色智能转型升级,助力长三角打造新能源产业新
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!