登录注册
请使用微信扫一扫
关注公众号完成登录
(来源:微信公众号“新能源电池圈” ID:kylesay 作者:寻风)
1,锂离子电池的反应热来源分析
当电池正常使用以及被滥用的过程中电池内部会发生一些列的电化学反应,涉及到正极,负极,电解液,隔膜,当内部反应热累积到一定程度的时候就会有起火爆炸的危险。反应热的来源主要有以下几个方面。
1.1,SEI的分解反应
SEI是负极和电解液之间的一层钝化膜阻止负极和电解液之间的进一步反应,但是当温度升高到一定程度时就开始分解(实际上SEI分为两层-稳定层和亚稳定层)亚稳定层在80-120℃开始分解为稳定层,反应过程为放热。随着负极比表面的增加SEI增加,分解反应的放热量也会增加。
1.2,嵌锂碳和溶剂之间的反应
当温度升高时 ,SEI 膜不能保护负极的情况下溶剂会和金属锂发生反应:
1.3,嵌锂碳和PVDF粘结剂的反应(油性负极)
有研究表明,当电池内部温度超过260℃时LixC6会和PVDF发生如下反应:
反应的焓变随着x值和碳负极的比表面的增加而增加,指出LiC6 与PVDF的反应起始温度在240℃,290℃出现放热峰,在350℃完全反应,放热量为1500J/g。
由上表可得出以下结论:
第一是负极表面主要存在3种放热反应
(1)SEI膜的分解反应
(2)LixC6与溶剂的反应
(3)LixC6与粘结剂的反应。
SEI膜的分解和LiXC6与溶剂反应有时同时进行,有人把这两种反应都认为是LixC6与溶剂的反应。
第二,SEI膜的分解反应一般在100℃左右,放热量很低,以此热量来加热电池,仅会使其升高几度不会带来危险。
第三,LixC6与溶剂反应的起始温度和放热量与x值、锂盐、溶剂有关,并且反应热比较大在某种情况下可能是电池失控的主要原因。
第四,尽管粘结剂与LixC6的放热量比较大,由于粘结剂在负极所占的比例有限,不会成为电池爆炸的主要原因。
1.4,电解液的分解反应
电解液的热分解反应主要是在温度升高时溶剂和锂盐的反应,如DEC比DMC更容易和LiPF6 、LiClO4 发生放热反应,反应温度基本在230-310℃之间,当体系中有少量水分存在的情况下反应温度开始提前。锂盐LiF6的热稳定性最差在170-330℃之间,有5个放热反应,最主要的是LiF6的分解反应,在220℃时彻底分解。
另外当锂离子电池充电电压超过电解液的分解电压时,电解液也会分解放出热量,产生气体。下表列出了不同电解液的分解电位:
1.5,正极的分解反应
常见的正极材料在温度低于650℃时是稳定的,在充电时处于亚稳定状态,温度升高时发生如下反应。
放出的氧气会使溶剂氧化:
正极是直接与电解液反应还是放出氧气后发生反应有确切的说法吗?常见正极材料的DSC测试结果:
对正极材料热稳定性分析可得出以下几点结论:
第一,正极材料与溶剂的反应机理有待深入研究;
第二,正极的分解反应及其与电解液的反应放热量比较大,在大多数情况下是造成电池爆炸的主要原因;
第三,采用三元或LFP正极材料相对LCO可以提高电池的安全性。
1.6,锂金属的反应
这里主要指的是锂析出锂枝晶,一般情况下金属锂的稳定性不如嵌锂碳。当锂离子电池过充时 ,锂金属沉积在负极表面 ,就可能发生金属锂与电解液的反应 ,大部分反应的起始温度在锂金属的熔点180 °C左右。
1.7,正负极活性物质的焓变
锂离子电池充放电时 ,锂嵌入到正极材料中的焓发生改变。以LiCoO2 为正极材料的AA电池为例 ,以 36mA 进行充放电 ,热量的吸收和放出虽然低于10mW,但是并不是低到忽略不记的程度。例如尖晶石LixMn2O4 的产热特性 ,在充电速率<1C充电时 ,热量的产生与扩散呈现可逆性 ;超过 1C时则不可逆 (欧姆电阻和极化电阻占主导地位) 。
1.8,电流通过内阻产生热量
由公式Q=I2RT可知内阻产生的热量,当电池外部短路时电池内阻产热占主导地位。
2,锂离子电池的爆炸机理
锂离子电池爆炸的因素很多 ,但其主要的原因是电池内部的高温 、高压都与产热因素有直接的关系。电池内部的产热因素众多 ,如果锂离子电池内部的热生成速率大于热散失速率 ,则体系内的反应温度就会不断上升,其结果可能造成两种极端情况 :
(1) 反应物质的温度达到其着火温度而发生火灾 ;
(2) 由于锂离子电池是一个封闭体系 ,随体系内部温度升高 ,反应速度加快 ,反应物蒸气压急剧上升。同时活性物质的分解活性物质与电解液的反应都会产生一定量的气体 ,其结果 是在缺少安全阀保护或安全阀失效的情况下 ,电池内压便会急剧上升而引起电池爆炸 。
常见的爆炸类型有以下几种:
2.1,热冲击爆炸
以LCO电池为例,将其放入165℃环境中保持45min发生爆炸,隔膜溶解(PE 的熔点是 125 °C,PP 的熔点是 155 °C)电压迅速降至0V电池表面温度升高到200℃以上,电池的爆炸是由于溶剂的分解 、LiCoO2 分解 、LiCoO2 与电解液的反应产生大量的热与气体造成的。
2.2,过充爆炸
锂离子电池过充时的电压-温度模式有3种形式:
(1)当充电电压超过4.5V,大量的锂离子从正极溢出。若负极的嵌锂能力很差,锂离子便会沉积在负极表面形成枝晶使电池内部短路,电池的安全性明显降低;
(2)若负极的嵌锂能力比较强,随着锂离子从正极溢出溶剂被氧化(远远大于正常情况下的反应速度),产生大量的热使电池温度升高,接着溶剂与负极的反应同时发生放出更多的热。若充电电流很低,电池的热稳定性好热量生成速率与散热速率达到平衡,电解液分解的产物增大电池的内阻,或隔膜关闭,电压先升高燃后保持恒定,热量不会失控;
(3)若充电电流很大,电池的稳定性还很差,电压、温度迅速升高,电池就会着火爆炸。
例如锂离子电池充电到标准电量的 160%时,热量急剧增加 ,可能是由于电解液的分解 、正极的分解反应产生大量的热引起的 ,如果在电池内部加入散热装置来平衡热量的释放 ,电池的爆炸将会避免。
2.3,短路爆炸
分为外部短路和内部短路:正负极耳的直接接触;装配过程中出现的毛刺,隔膜皱褶以及粉尘均可引发内部短路,短路也可能引起电池的爆炸。
电池短路时 , 电流通过电池的瞬间产生大量的热 ,加热电池 ,使电池温度升高的热分解温度导致电池爆炸。与加热最大的区别是加热产热速率比较缓慢 ,各个反应依次进行 ,而短路状态下 ,正极的热分解反应可能发生在负极与溶剂反应之前。
2.4,其他情况
针刺:针刺造成的锂离子电池爆炸原理与短路大致相同,针刺速度很快时针刺的部位产生大量的热,使电池内部温度升高到正极热分解的温度,正极分解导致电池爆炸。
撞击:当锂离子电池受到撞击时,电极上过电压损失产生热量,促使溶剂与负极的反应,放出的热量进一步加热电池使正极热分解,导致电池爆炸。
过放:锂离子电池过放到1.0-2.0V时,部分电解液发生还原放出少量的热。电压达到0.7V后,金属铜开始氧化井沉积在正极上,电池内部短路,电压迅速降为0V,锂离子电池变为Cu负极Cu正极电池胆电池表面温度升高不明显而不会发生危险。
3,防止锂离子电池爆炸的措施
3.1,提高电池材料的热稳定性
正极材料可以通过优化合成条件 ,改进合成方法 ,合成热稳定性好的材料 ;或使用复合技术(如掺杂技术)、表面包覆技术(如涂层技术)来改善正极材料的热稳定性。
负极材料的热稳定性与负极材料的种类 、材料颗粒的大小以及负极所形成的SEI膜的稳定性有关 。如将大小颗粒按一定配比制成负极即可达到扩大颗粒之间接触面积 ,降低电极阻抗 ,增加电极容量 ,减小活性金属锂析出可能性的目的。
SEI 膜形成的质量直接影响锂离子电池的充放电性能与安全性,将碳材料表面弱氧化 ,或经还原 ,掺杂,表面改性的碳材料以及使用球形或纤维状的碳材料有助于SEI膜质量的提高。
电解液的稳定性与锂盐 、溶剂的种类有关 。采用热稳定性好的锂盐 ,电位稳定窗口宽的溶剂可以提高电池的热稳定性 。在电解液中添加一些高沸点 、高闪点和不易燃的溶剂可以改善电池的安全性。
导电剂与粘结剂的种类与数量也影响着电池的热稳定性,粘结剂与锂在高温下反应产生大量的热 ,不同粘结剂发热量不同 , PVDF 的发热量几乎是无氟粘结剂的2倍,用无氟粘结剂代替PVDF可以提高电池的热稳定性。
3.2,提高电池过充保护能力
为防止锂离子电池过充 ,通常采用专用的充电电路来控制电池的充放电过程 ,或者在单个电池上安装安全阀以提供更大程度的过充保护 ; 其次也可采用正温度系数电阻器(PTC),其作用机理为当电池因过充而升温时 ,增大电池的内阻 ,从而限制过充电流 ;还可采用专用的隔膜 ,当电池发生异常引起隔膜温度过高时 ,隔膜孔隙收缩闭塞 ,阻止锂离子的迁移 ,防止电池的过充。
3.3,防止电池的短路
对于隔膜而言而言 ,孔率为40%左右 ,且分布均匀,孔径为10nm的隔膜能阻止正负极小颗粒运动 ,从而提高锂离子电池的安全性 ;
隔膜的绝缘电压与其防止正负极的接触有着直接的关系 ,隔膜的绝缘电压依赖于隔膜的材质 、结构以及电池的装配条件 ;
采用热闭合温度和熔融温度差值比较大的复合隔膜 (如PP/PE/PP)可防止电池热失控。将隔膜表面涂覆陶瓷层提高隔膜耐温性。利用低熔点的PE(125℃) 在温度较低的条件下起到闭孔作用 , PP(155℃) 又能保持隔膜的形状和机械强度 ,防止正负极接触 ,保证电池的安全性。
大家都知道以石墨负极替代金属锂负极 ,从而使充放电过程中锂在负极表面的沉积和溶解变为锂在碳颗粒中的嵌入和脱出 ,防止了锂枝晶的形成。但这并不代表锂离子电池的安全性已经解决 ,在锂离子电池充电过程中 ,如果正极容量过多 ,就会出现金属锂在负极表面沉积 ,负极容量过多 ,电池容量损失较严重。
涂布厚度及其均一性也影响锂离子在活性物质中的嵌入和脱出 。例如负极面密度较厚 不均一 ,因此充电过程中各处极化大小不同 ,就有可能发生金属锂在负极表面局部沉积 。
此外 ,使用条件不当也会引起电池的短路 ,低温条件下 ,由于锂离子的沉积速度大于嵌入速度 ,从而导致金属锂沉积在电极表面引起短路。因此 ,控制好正负极材料的比例 ,增强涂布的均匀性等是防止锂枝晶形成的关键。
此外 ,粘结剂的晶化 、铜枝晶的形成也会造成电池内部短路 。在涂布工艺中 ,通过涂布烘烤加热将浆料中溶剂全部除去 ,若加热温度过高 ,则粘结剂也有可能发生晶化 ,会使活性物质剥落 ,使电池内部短路。
在过放条件下,当电池过放至1-2V时,作为负极集电体的铜箔将开始溶解,并于正极上析出,小于1V时正极表面则开始出现铜枝晶 ,使锂离子电池内部短路。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
2025年“赛程”过半,各大企业的固态电池项目也开始加速“冲刺”。6月下旬以来,亿纬锂能、孚能科技、国轩高科、赣锋锂业等头部企业先后官宣。而且,这次不只是半固态电池的“先锋”,而是全固态电池的预期量产。市场也再次陷入兴奋,并且不断开始向纵深挖掘“话题”。然而,整个产业链真的准备好了吗
广东瑞庆时代新能源科技有限公司(下称:瑞庆时代)锂离子电池集装箱产品下线仪式26日在广东肇庆举行。该产品的正式下线,标志着广东首个涵盖从电芯生产到电箱、电柜和集装箱系统集成全链条研发制造的新型储能产业基地建成。宁德时代新能源科技股份有限公司(下称:宁德时代)是全球领先的新能源创新科技公
6月25日,在发生火灾近三周后,汽车运输船“MorningMidas”号最终在当地时间6月23日16:35左右,沉没于水深约5000米的太平洋水域。经打捞运营商ResolveMarine表示,“恶劣天气和海水逐渐渗入船体,加剧了最初火灾造成的损害,最终导致该船沉没。”本月初,一艘载有3000多辆汽车的轮船在太平洋起火,当时
6月25日,云南施甸县政府发布《2025年1—5月施甸县经济运行总体平稳》一文。文章披露,1—5月份,全县全部工业发电量47631万千瓦时,同比增长39.4%。其中,火力发电量3087万千瓦时、下降0.4%,水力发电量1422万千瓦时、增长28.9%,太阳能光伏发电量23586万千瓦时、增长99.6%,风力发电19536万千瓦时、
作者:莫子鸣1饶宗昕1杨建飞1杨孟昊2蔡黎明1单位:1.同济大学汽车学院;2.同济大学材料科学与工程学院引用本文:莫子鸣,饶宗昕,杨建飞,等.锂离子电池过充热失控气热模型构建及关键参数影响分析[J].储能科学与技术,2025,14(5):1784-1796.DOI:10.19799/j.cnki.2095-4239.2025.0262本文亮点:(1)构建了
6月23日,苏州市生态环境局发布受理环境影响报告书(表)情况的公示。其中,江苏都桐科技有限公司新建锂离子电池用再生黑粉生产及再生磷酸铁锂测试电芯研发项目在列,标志着这家“锂电新秀”进一步构建产业布局。江苏都桐科技有限公司,是一家成立于2024年8月22日的高新技术企业,位于江苏省苏州市
北极星储能网获悉,6月23日,国家市场监管总局关于发布电动平衡车等136种产品质量监督抽查实施细则的公告。其中包括电动汽车充电桩产品质量监督抽查实施细则、电子产品用锂离子电池和电池组产品质量监督抽查实施细则、电动汽车用动力蓄电池单体产品质量监督抽查实施细则。其中,电动汽车用动力蓄电池单
近日,福建龙岩市生态环境局就年产1GWh三维固态锂电池项目环评文件审批意见进行公示。文件显示,项目位于龙岩高新区(经开区)高陂镇平在村北环路,主要建设标准化厂房1栋7层、办公综合楼、原料库、产品库及配套建设环保工程和纯水制备、制氮相关辅助工程,用地面积27675平方米。项目以磷酸铁锂、NMP、
今天起,全国各地陆续公布2025年高考分数线,成绩“出炉”后,如何选择院校及专业?中关村储能产业技术联盟(CNESA)对当下热门专业——储能科学与工程进行了解读,包括专业特点、院校选择、就业前景与发展潜力、重点高校专业培养特色等方面进行了梳理和更新,供考生和家长决策参考。专业背景与战略意
退役锂电池,特别是退役动力锂电池,正在从“环境负担”蜕变为战略资源。随着全球新能源产业的加速发展,退役锂电池这座“城市金矿”,正引发各国在回收网络、技术标准和资源循环利用上的激烈博弈。不过,近日央视新闻报道,“目前我国动力电池回收行业存在一个普遍困境:合规企业守规矩却难赚钱,不合
作者:汪红辉1,3李嘉鑫1,3储德韧1,2,3李彦仪1,3许铤2,3单位:1.上海化工研究院有限公司;2.上海化工院检测有限公司;3.工信部工业(电池)产品质量控制和技术评价上海实验室引用本文:汪红辉,李嘉鑫,储德韧,等.磷酸铁锂电池存储失效机理及热安全性研究[J].储能科学与技术,2025,14(5):1797-1805.DOI:10.1
近日,蓬溪生态环境局对四川省盈达锂电新材料有限公司10万吨/年锂离子电池正极材料磷酸铁锂前驱体技改项目进行环评公示。项目位于四川蓬溪经济开发区,投资3000万元在现有厂区内进行技术改造,最终形成年产10万吨锂离子电池正极材料磷酸铁锂前驱体的生产能力。资料显示,四川省盈达锂电新材料有限公司
2025年“赛程”过半,各大企业的固态电池项目也开始加速“冲刺”。6月下旬以来,亿纬锂能、孚能科技、国轩高科、赣锋锂业等头部企业先后官宣。而且,这次不只是半固态电池的“先锋”,而是全固态电池的预期量产。市场也再次陷入兴奋,并且不断开始向纵深挖掘“话题”。然而,整个产业链真的准备好了吗
受供需突变、债务高企、技术竞争力不足、供应链脆弱、地缘政治加剧贸易与投资不确定性等多重因素冲击,锂电产业链公司正经历前所未有的生存挑战,行业分化加剧,洗牌步入深水区,一场关乎存续与出局的战役已经打响。“红海”搏杀从高歌猛进到销声匿迹2025年全球电池行业破产、退市事件频发。在国际市场
作者:莫子鸣1饶宗昕1杨建飞1杨孟昊2蔡黎明1单位:1.同济大学汽车学院;2.同济大学材料科学与工程学院引用本文:莫子鸣,饶宗昕,杨建飞,等.锂离子电池过充热失控气热模型构建及关键参数影响分析[J].储能科学与技术,2025,14(5):1784-1796.DOI:10.19799/j.cnki.2095-4239.2025.0262本文亮点:(1)构建了
回首储能行业刚被抽离政策拐杖之初,整个市场不乏犹疑、焦虑的声音。一方面,以低质产品进行低价竞争得以存活的储能企业陆续黯然离场;另一方面,储能在趋向市场化后更加聚焦价值重构,储能企业也在兼顾安全、效率与成本中愈发“求真”,迸发活力。价值导向下,直面储能安全2024年工信部发布的强制性国
北极星储能网获悉,6月24日,川金诺发布变更募集资金用途公告,提到,根据公司长期战略规划和现阶段发展需求,经谨慎研究和论证分析,公司拟将“5万吨/年电池级磷酸铁锂正极材料前驱体材料磷酸铁及配套60万吨/年硫磺制酸项目”、“广西川金诺新能源有限公司10万吨/年电池级磷酸铁锂正极材料项目(一期
6月23日,苏州市生态环境局发布受理环境影响报告书(表)情况的公示。其中,江苏都桐科技有限公司新建锂离子电池用再生黑粉生产及再生磷酸铁锂测试电芯研发项目在列,标志着这家“锂电新秀”进一步构建产业布局。江苏都桐科技有限公司,是一家成立于2024年8月22日的高新技术企业,位于江苏省苏州市
“电池行业正突破单一化学体系束缚,进入真正以用户需求为核心的多核时代。”宁德时代创始人曾毓群在今年4月的公开演讲中曾阐述上述观点。他强调,多核时代是宁德时代的新阶段,无论是追求极致性能,还是强调性价比,多核技术都能让定制化成为现实,消费者无需在续航、寿命、安全、快充等维度进行妥协
北极星储能网获悉,6月21日,火爆出圈的“苏超”迎来第五轮首场比赛。小编注意到,龙蟠科技、理想皆在苏超1-4轮品牌赞助名单中。据了解,龙蟠科技成立于2003年,位于江苏省南京市,注册资本66507.8903万人民币,实缴资本56507.89万人民币,并已于2025年完成了战略融资,交易金额1597.09万美元。主要从
春分而登天,秋分而潜渊。2025年上半年的碳酸锂市场,正是处于一种阴沉、隐忍的氛围之中。市场总体供需两旺根据ICC鑫椤锂电统计,2025年全球锂资源产能达到190-195万吨(LCE当量),由于各种原因,实际产量约为160-165万吨,仍高于实际需求约20万吨左右,供大于求的格局并未改变。在此背景下,2025年上
近日,四川省经济和信息化厅发布经信系统重点调度的2025年500个重点工业和技术改造项目名单,项目总投资17048.9亿元,2025年计划投资3291.6亿元。其中包含川投泸州天然气发电及配工程项目、四川华电内江白马2×475兆瓦燃机示范项目、四川达州燃气电站二期工程、国家电投川东北高效清洁煤电综合利用一体
北极星储能网获悉,6月27日,恩捷股份披露投资者关系活动记录表,回答投资者有关公司业务布局的问题。在半固态电池隔膜业务布局方面,公司下属控股子公司江苏三合电池材料科技有限公司具备半固态电池隔膜量产供应能力,公司在积极开拓市场。在全固态电池材料布局方面,公司下属控股子公司湖南恩捷前沿
北极星储能网获悉,6月26日,天能股份披露投资者关系活动记录表,说明了公司钠离子电池、固态电池等前沿技术领域目前最新进展情况。在钠离子电池领域,公司针对小动力和储能市场,成功研发出一款能量密度达到160Wh/kg的高性能层状氧化物钠电软包电芯。此外,公司还成功开发出首款能量密度95Wh/kg的聚阴
2025年“赛程”过半,各大企业的固态电池项目也开始加速“冲刺”。6月下旬以来,亿纬锂能、孚能科技、国轩高科、赣锋锂业等头部企业先后官宣。而且,这次不只是半固态电池的“先锋”,而是全固态电池的预期量产。市场也再次陷入兴奋,并且不断开始向纵深挖掘“话题”。然而,整个产业链真的准备好了吗
受供需突变、债务高企、技术竞争力不足、供应链脆弱、地缘政治加剧贸易与投资不确定性等多重因素冲击,锂电产业链公司正经历前所未有的生存挑战,行业分化加剧,洗牌步入深水区,一场关乎存续与出局的战役已经打响。“红海”搏杀从高歌猛进到销声匿迹2025年全球电池行业破产、退市事件频发。在国际市场
作者:莫子鸣1饶宗昕1杨建飞1杨孟昊2蔡黎明1单位:1.同济大学汽车学院;2.同济大学材料科学与工程学院引用本文:莫子鸣,饶宗昕,杨建飞,等.锂离子电池过充热失控气热模型构建及关键参数影响分析[J].储能科学与技术,2025,14(5):1784-1796.DOI:10.19799/j.cnki.2095-4239.2025.0262本文亮点:(1)构建了
回首储能行业刚被抽离政策拐杖之初,整个市场不乏犹疑、焦虑的声音。一方面,以低质产品进行低价竞争得以存活的储能企业陆续黯然离场;另一方面,储能在趋向市场化后更加聚焦价值重构,储能企业也在兼顾安全、效率与成本中愈发“求真”,迸发活力。价值导向下,直面储能安全2024年工信部发布的强制性国
“电池行业正突破单一化学体系束缚,进入真正以用户需求为核心的多核时代。”宁德时代创始人曾毓群在今年4月的公开演讲中曾阐述上述观点。他强调,多核时代是宁德时代的新阶段,无论是追求极致性能,还是强调性价比,多核技术都能让定制化成为现实,消费者无需在续航、寿命、安全、快充等维度进行妥协
近日,福建龙岩市生态环境局就年产1GWh三维固态锂电池项目环评文件审批意见进行公示。文件显示,项目位于龙岩高新区(经开区)高陂镇平在村北环路,主要建设标准化厂房1栋7层、办公综合楼、原料库、产品库及配套建设环保工程和纯水制备、制氮相关辅助工程,用地面积27675平方米。项目以磷酸铁锂、NMP、
近日,天合储能Elementa金刚2储能系统顺利通过了TV南德颁发的IEC62619认证,以及SGS通标颁发的NFPA68与NFPA855两项北美消防认证报告。天合储能始终秉持对产品质量与安全的极致追求,致力于为全球客户提供安全可靠、高效经济的储能系统解决方案。随着全球新能源行业加速迈向市场化交易新阶段,对储能系
作者:汪红辉1,3李嘉鑫1,3储德韧1,2,3李彦仪1,3许铤2,3单位:1.上海化工研究院有限公司;2.上海化工院检测有限公司;3.工信部工业(电池)产品质量控制和技术评价上海实验室引用本文:汪红辉,李嘉鑫,储德韧,等.磷酸铁锂电池存储失效机理及热安全性研究[J].储能科学与技术,2025,14(5):1797-1805.DOI:10.1
北极星储能网获悉,6月23日消息,大连融科储能集团股份有限公司全钒液流电池电解液生产线项目(一期)在大连北黄海经开区正式投产。据了解,全钒液流电池电解液生产线项目(一期)总投资4亿元,建设年产1.5GWh钒电解液、钒电解液晶体生产线。项目于2023年7月开工建设,2025年3月完成设备调试,目前已正
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!