登录注册
请使用微信扫一扫
关注公众号完成登录
1 火电厂脱硫废水水质
分析了某电厂脱硫废水水质.结果如表1所示
表1典型电厂脱硫废水中的氨氮测定结果
由表1可见,该火电厂一、二期脱硫废水中的氨氮高于500mg/L,严重超标,而三期脱硫废水中氨氮较低,将2种脱硫废水混合后氨氮依然较高,约为466mg/L。此外,该脱硫废水的硬度很高,且主要是镁硬度,约占总硬度的95.0%-98.3%,因此该废水中可回收的镁资源丰富。针对该电厂脱硫废水的水质特点,利用MAP沉淀法去除脱硫废水中氨氮的过程中,只需投加磷酸盐即可。
2 火电厂脱硫废水实验材料与方法
2.1火电厂脱硫废水试验材料及仪器
氢氧化钠、碳酸钠、磷酸氢二钠,均为分析纯;盐酸,优级纯。
SG23便携式多参数分析仪,梅特勒一托利多;JJ- 4A恒温六联搅拌器,常州国华仪器有限公司;XS105电子天平,梅特勒一托利多;Specord 210紫外-可见分光光度计,德国耶拿分析仪器股份公司。
2.2火电厂脱硫废水实验方法
各取500mL混合脱硫废水上清液,分别调节不同NH3-N浓度(加NH4Cl调节),Mg2+浓度(加NaOH调节),n(PO43--P):n(NH3- N)(加Na2HPO4调节)、起始pH(加NaOH调节),以150 r/min搅拌30 min,静置测定pH,取上清液测定NH3-N、PO43-和Mg2+浓度。
2.3火电厂脱硫废水分析方法
采用DL/T502.16-2006纳氏试剂分光光度法测定水样的氨氮;采用GB/T691-2008钥酸铵分光光度法测定磷酸盐;采用络合滴定法测定Mg2+。
3 火电厂脱硫废水结果与讨论
3.1火电厂脱硫废水正交试验结果
考虑pH,n(Mg):n(N),n(P):n(N)及水温4个因素对氨氮去除率的影响,采用L9(34)正交试验法进行实验,结果如表2所示。
表2正交试验结果及极差分析
从表2可见,各因素对氨氮去除率均有影响。化学沉淀法处理脱硫废水的影响因素排序从大到小为pH>n(P):n(N)>温度>n(Mg):n(N)。
3.2火电厂脱硫废水实验中反应pH对氨氮去除率的影响
pH是影响MAP沉淀法最重要的因素,不仅影响MAP的生成量,也影响其成分。MAP是碱性盐,其沉淀过程必须在碱性条件下才能发生,酸性条件下会完全溶解。在碱性pH范围内,MAP在溶液中的溶解度随pH的升高呈先降低后升高的趋势,因此存在一个最优pH范围。MAP法处理氨氮废水的最佳pH一般控制在8.5-10.5。分别在反应pH为8.0,8.5,9.0,9.5,10.0,10.5条件下进行实验,n(P):n(N)为1.5:1,n(Mg):n(N)为5.0:1,反应过程中有大量白色沉淀生成,反应结束后静置20 min,测定反应后滤液中的氨氮及其他离子含量,结果见图1。
图1不同反应PH下的氨氮去除率
从图1可见,pH升高,水中氨氮先降低后升高。当反应pH从7.98增加到8.57时,脱硫废水氨氮去除率达到最大值,随着反应pH的进一步增加,氨氮去除率明显下降,剩余氨氮大大增加。这是因为反应pH<9.0时,MAP的结晶效率较高,脱硫废水中的高含量氨氮有利于MAP的形成.且生成的沉淀物易于沉降;而pH>9.0时,发现水样中的乳白色沉淀物黏稠、不易沉淀,说明pH的增加会使MgNH4PO4. 6H2O晶体不易成型或易溶解,结晶效率降低。此外,反应过程中产生了Mg(OH)2,Mg3(PO4)2。等副产物,导致MAP的生成量下降,而NH4+会转变成NH3从而改变NH4+,Mg2+,PO43-的比例,阻碍MAP的形成。因此,选择反应最佳pH为8.5。
3.3 火电厂脱硫废水试验中Mg2+浓度对氨氮去除率的影响
从表1可见,该脱硫废水中的Mg2+含量非常高,过高的Mg2+会降低氨氮去除效果,因此有必要研究初始Mg2+浓度对MAP沉淀法去除氨氮的影响。投加NaOH(颗粒状)控制反应pH为8.5,在n(P):n(N)为1.5:1,n(Mg):n(N)分别为3.0:1,4.0:1,5.0:1,5.5:1,6.0:1 ,7.0:1 ,10:1条件下进行实验,结果如图2所示。
图2 n(Mg):n(N)对氨氮去除率的影响
由图2可知,随着水中M犷浓度的升高,脱硫废水的氨氮去除率整体呈下降趋势,同时余磷量也有所降低,而剩余Mg2+浓度仍然非常高,说明反应中的Mg2+过量。当n(Mg):n(N)从5.0:1增大到10.0:1时,n(Mg):n(N)为5.0:1,5.5:1,6.0:1溶液中的剩余Mg2+含量基本不变,这是因为此时溶液中的Mg2+已经过量,而过量的Mg2+消耗了PO43-,生成Mg3(PO4)2。沉淀,影响MAP的生成,降低氨氮的去除效果,因此反应的初始Mg2+含量不宜过高。
此外,当n(Mg):n(N)<5.0:1时,随着n(Mg):n(N)的减小,氨氮去除率从73.5%加至84.6%,而投加的NaOH将增加2.28g/L。这样药剂量增大,产生的Mg( OH)2沉淀过多,在工程应用中不具备经济可行性。因此从实际工程应用的角度出发,选择n(Mg):n(N)为5.0:1,此时镁离子浓度为130 mmol/L,脱硫废水氨氮去除率为73.47%,后续实验将通过优化其他反应条件来提高氨氮去除率。
3.4火电厂脱硫废水试验中磷酸盐投加量对氨氮去除率的影响
由于磷酸盐试剂价格较高,其投加量对脱硫废水氨氮处理工艺经济性的影响不容忽视。实验选用NaH2PO4作为磷源来调节n(P):n(N)。在反应PH为8.5, n(Mg):n(N)为5.0:1的条件下,通过理论计算选择n(P):n(N)分别为1.5:1,1.7:1,2.0:1,2.2:1,2.5:1、2.7:1进行实验,实验结束后静置沉淀20 min,过滤上清液进行测定,实验结果见图3。
图3磷酸盐投加量对氨氮去除率的影响
由图3可以看出,适当增加磷酸盐投加量可增加氨氮去除率。当n(P):n(N)从1.5:1增加至2.0:1时,氨氮去除率增大,剩余Mg2+的量明显下降,余磷量也有所降低,此时MAP沉淀生成量较大。此后随着n(P):n(N)的增加,氨氮去除率并无明显增加。这是由于此时体系中剩余的氨氮太低,无法形成MAP,而PO43-的进一步增大使Mg2+与其生成Mg3(PO4)2沉淀。因此,确定最佳n(P):n(N)为2.0:1,此时磷酸盐投加量为7.68 g/L ,氨氮去除率为92.64%。
3.5火电厂脱硫废水试验中反应温度对氨氮去除率的影响
温度会影响MAP的结晶过程和溶解度,且温度过高时溶液中的氨氮会以NH3形式挥发,因此有必要研究温度对氨氮去除率的影响。在PH为8.5 ,n(P):n(N)为2.0:1, n (Mg) : n (N)为5.0:1条件下,探讨反应温度(室温-60℃)对氨氮去除率的影响,结果如表3所示。
表3反应温度对氨氮去除率的影响
由表3可见,随着温度从室温28℃升高到60℃ ,氨氮去除率从90%左右下降到约10%,水中的剩余氨氮不断增加,分析原因认为温度影响了NH4OH和HPO42-的电离平衡以及MAP的离解圈。另外,温度过高会加速MAP沉淀物的溶解,从而影响MAP沉淀的形成,降低氨氮的处理效率。因此,采用MAP法处理废水中的氨氮时,温度是关键影响因素,保持相对较低的温度有利于氨氮的去除。当反应温度控制在25-35℃时,其对脱硫废水氨氮去除反应的影响较小。
3.6火电厂脱硫废水试验中反应时间对氨氮去除率的影响
MAP沉淀物的形成分为成核阶段和发育阶段国,因此反应时间对磷酸铵镁生成也有一定影响。理论上讲,反应时间越长氨氮去除率越高,剩余氨氮越少。控制反应PH为8.5, n(P):n(N)为2.0:1, n(Mg):n(N)为5.0:1,反应温度为室温,考察不同反应时间内的氨氮去除率,结果如表4所示。
表4反应时间对氨氮去除率的影响
从表4可知,氨氮去除率整体呈增加趋势。反应时间从5 min增加到20 mi n时,反应速率最快,水中剩余氨氮从77.7mg/L降低到43.9mg/L,氨氮去除率升高。之后随着搅拌时间的增加,氨氮去除率变化不大,剩余氨氮均在45mg/L左右,但反应时间越长晶粒越大,沉淀效果越好。在实际工程应用中,反应时间越长动力消耗就越大,运行成本越高。因此确定反应时间为20 min,此时药剂已经充分反应,且氨氮去除效率最高。
3.7火电厂脱硫废水试验中搅拌速度对氨氮去除率的影响
在室温、反应时间为20 min,pH为8.5,n(P):n(N)为2.0:1,n9Mg):n}N)为5.0:1条件下,考察搅拌速度对化学沉淀工艺去除氨氮的影响。由实验结果可以得出,搅拌速度偏高或偏低都会使氨氮去除率有所降低。当搅拌速度从50r/min增加到150r/min时,水样中的氨氮从72mg/L降到45mg/L,当搅拌速度>150r/min后,废水中剩余氨氮的量升高,氨氮去除率下降。由此可知,适宜的搅拌速度可以提高MAP沉淀法对氨氮的去除率,而搅拌速度过高时,部分MAP沉淀会被打散,使氨氮去除率降低。因此,实验选取搅拌速度为150 r/min,可得到最佳的处理效果。
3.8火电厂脱硫废水试验中化学沉淀出水残留氨氮的氧化实验
实验所取水样水质条件较差,因此采用化学沉淀法去除氨氮后出水氨氮仍在40 mg/L左右,无法满足达标排放的要求。后续实验考虑采用折点加氯法进一步氧化残留的氨氮,使其最终达到排放标准。取MAP沉淀法去除氨氮后的上清液各500mL ,其氨氮为41.59mg/L,依次加入5,7,8,9,10,12g/L的质量分数为10%的次氯酸钠溶液反应30min,过滤上清液测定其中的氨氮,结果如表5所示。
表5次氯酸钠投加量对氨氮去除率的影响
从表5可以看出,增加次氯酸钠投加量能有效提高脱硫废水中氨氮的去除效果。随着次氯酸钠投加量的增加,废水中剩余氨氮不断减少,当其投加量为12 g/L时,脱硫废水中的氨氮被完全去除,去除率达100%。实际应用中只要氨氮低于15 mg/L便可达标排放,因此确定次氯酸钠最佳投加量为7.5g/L,处理后的脱硫废水出水氨氮满足一级排放标准要求。
3.9火电厂脱硫废水试验中沉淀物晶体结构分析
为确定反应过程中沉淀物的主要组成及晶型结构,取化学沉淀最佳工艺条件〔PH=8.5,n(Mg):n(N)为5.0:1,n(P):n(N)为2.0:1,反应温度为25-30℃ ,搅拌速度为150 r/min〕下的沉淀物进行XR。及SEM分析,结果见图4、图5。
图4沉淀物的XRD谱图
图5沉淀物的SEM照片
从图4可知,沉淀物的主要特征衍射峰分别在15.75° ,16.50° ,20.78° ,21.39° ,33.32°。采用SearchMatch软件对所得谱图进行分析,发现该沉淀物谱图与磷酸铵镁盐标准PDF卡片77- 2303较为吻合。
因此确定该沉淀物主要为磷酸氨镁盐。从图5可以看出,沉淀物为斜方形晶体结构,排列较为紧密,这与纯磷酸铵镁盐晶形相近。此外,图中沉淀物表面含有杂质,这是因为脱硫废水水质复杂,反应过程中可能会生成副产物附着在磷酸铵镁盐的表面。
4火电厂脱硫废水试验结论
(1)化学沉淀工艺能有效去除火电厂脱硫废水中的氨氮,由正交试验得出反应PH是影响氨氮去除率的最主要因素。沉淀反应最佳工艺条件:PH=8.5, n(Mg):n(N)为5.0:1, n(P):n(N)为2.0:1,反应温度为2530℃,搅拌速度为150r/min,此时氨氮去除率能达到90%以上。
(2)XRD及SEM分析表明,氨氮去除过程中产生的白色沉淀物为磷酸氨镁盐,其晶体结构为斜方形,排列较为紧密。
(3)在化学沉淀工艺去除氨氮基础上,联合使用次氯酸钠氧化法能使脱硫废水中的氨氮含量满足《污水综合排放标准》(GH8978-1996 )的一级排放标准要求,当次氯酸钠投加量为7.5g/L时,脱硫废水中的氨氮在15mg/L以下。
(4)化学沉淀工艺对脱硫废水中氨氮的去除率较高,工艺操作简便,无二次污染,无需外加镁源的投入,药剂成本低;磷酸铵镁沉淀是一种农业用缓释肥,具有一定经济价值。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
近日,上海市生态环境局印发关于开展2025年全国碳排放权交易市场重点排放单位温室气体排放管理工作的通知。通知公布上海市2025年度纳入全国碳排放权交易市场的重点排放单位名录,其中发电行业30家,非电行业40家。详情如下:上海市生态环境局关于开展2025年全国碳排放权交易市场重点排放单位温室气体排
12月20日,邵阳市首个集中供热项目(国能宝庆电厂热网工程一期项目)供热管网全线贯通并开始调试运行,预计年内可实现集中供热。该项目由国家能源集团宝庆发电有限公司投资建设,项目总投资6000余万元,管网以国能宝庆电厂为起点,终点为大祥区循环经济产业园,管线全长约3.6公里,供热能力为100吨/小
2024年12月12日,华能北京热电有限责任公司分布式光伏项目开工仪式在厂前区广场举行。公司总经理、党委副书记祁海鹏,党委书记、副总经理李震江及全体领导班子成员出席开工仪式,公司党委委员、副总经理李建超主持开工仪式。华北分公司相关部门负责人及公司相关部门员工,江苏海宏、中城建监理、隆基绿
近日,国家能源集团陕西电力有限公司所属店塔电厂发生一起电力安全事件,造成#1、#2机组全停。事件发生后,国能陕西公司及店塔电厂未按照有关要求向西北能源监管局及时规范报告相关信息。为督促企业深刻汲取教训,有效防范类似事件再次发生,西北能源监管局于11月14日对国家能源集团陕西电力有限公司及
谯城之南、茨淮河畔,中煤新集板集电厂耸立皖北大地,源源不断的优质能源随着机组轰鸣送往千家万户。环顾四周,冷却塔和麦田交相辉映,皖式厂房与乡村田园、绿色植被、无垠蓝天融为一体,尽显勃勃生机……板集电厂是国家第一批煤电联营推进项目。现有一期项目两台100万千瓦机组在役,二期扩建2台66万千
为贯彻落实国家能源局关于能源规划、计划、产业政策、重大项目落实情况监管要求,以及浙江省委、省政府关于“绿保稳”工程的有关部署,近期,浙江能源监管办赴多地现场开展国家“十四五”能源规划目标任务实施情况及煤电规划建设等专项监管工作。此前,浙江能源监管办已进行专项部署,要求地方和企业自
近日,电力公司哈密电厂1、2号机组液氨改尿素项目顺利通过性能试验并正式投运,机组氮氧化物排放浓度符合国家超低排放环保要求,蒸汽耗量、压缩空气耗量、电耗等系统能耗指标表现优异,废水经过脱硫系统实现100%循环利用,为保障机组安全、经济、环保运行奠定了基础。该项目是贯彻落实国家能源局关于电
大唐托克托发电火电项目是国家“十五”重点建设项目、是“西部大开发”和“西电东送”的重点建设工程,从2003年起连续四年每年投产2台600MW机组,创下国内同类机组建设的最短纪录,实现了“煤越苍穹,电送北京”的伟大构想.2017年2月25日10号机投产并网后,大唐托克托发电总装机容量达到673万千瓦,成
为推进支撑性保障电源建设,提升电力供应保障能力。近日,华东能源监管局赴国家能源集团安徽公司池州九华电厂开展煤电项目建设现场督导。现场督导工作通过实地走访、座谈讨论的方式开展,听取了国家能源集团安徽公司关于煤电规划建设推进情况的汇报,详细了解了项目进展和要素保障情况,同时,与企业在
11月26日起,黑龙江地区出现大范围雨雪降温天气,给保暖保供工作带来严峻挑战。中国大唐黑龙江发电有限公司超前部署,密切关注天气变化,做好极寒、暴雪、大风天气的防范应对措施,全力保障能源安全稳定供应。处于雪情较大地区的绥化热电公司和七台河发电公司第一时间启动防寒防冻应急预案。“按照当前
近日,从中国电力技术市场协会组织的中国煤电高质量发展大会传来喜讯,大唐泰州热电公司获得2023年全国无故障火电厂管理成果奖。自两台机组投产以来,该公司多措并举提高机组可靠性管理,狠抓机组检修、积极推进设备升级改造、强化机组缺陷管理等基础工作,不断夯实安全生产基础,不断提高设备可靠性。
利用低温烟气热量对脱硫废水进行蒸发浓缩和蒸发干燥,从而实现脱硫废水的零排放处理,具有系统简单、投资运行成本低、维护工作量小等优点。脱硫废水低温烟气蒸发浓缩系统和主烟道蒸发干燥系统的运行效果和运行稳定性受废水水质、机组负荷、烟气温度、烟气流场等因素的影响,需要根据项目的实际情况进行优化。根据某300MW燃煤机组的烟气参数和脱硫废水水质水量情况,对脱硫废水烟气蒸发浓缩系统和主烟道蒸发干燥系统进行了优化设计。
在火电厂烟气排放过程中,即便存有的氮氧化物以及二氧化硫浓度均比较低,然而具体排放量却有所增加,继而产生环境污染情况。脱硫脱硝技术为一项有效理念,此项技术运作成本低,便于较多效益的获取,可以在市场上充分使用和推广。
针对目前火电厂在用脱硫浆液专用pH计测量误差大的问题,分析认为石灰粉纯度、石灰浆液流速和CaSO3、CaSO4在电极表面沉积是影响脱硫浆液pH值测量准确性的主要因素,研制了由进样控制系统、试样分离系统、试样检测系统、排渣系统、冲洗系统构成的脱硫浆液专用pH值测量装置,并在内蒙古能源发电金山热电有限公司投入使用。实际使用情况表明,该装置可以准确测量出脱硫浆液pH值,是提高脱硫效率的有效手段。
而人们之所以提出这样的想法,是因为火电厂烟气旁路脱硫技术存在一些较为明显的缺陷和危害,已经与当前的技术水平要求存在较大出入。
摘要:火电厂脱硫废水处理的必要性,脱硫废水烟道蒸发零排放技术应用,重点对“浓缩减量、高效蒸发、降低影响”等关键技术进行分析,以供参考。1概述随着近年来我国以燃煤为主的火力发电的快速发展,环境问题不断凸显。受水资源短缺问题的影响,废水零排放备受关注。目前火力发电行业高盐废水综合治理
摘要:火电厂脱硫废水处理的必要性,脱硫废水烟道蒸发零排放技术应用,重点对“浓缩减量、高效蒸发、降低影响”等关键技术进行分析,以供参考。1概述随着近年来我国以燃煤为主的火力发电的快速发展,环境问题不断凸显。受水资源短缺问题的影响,废水零排放备受关注。目前火力发电行业高盐废水综合治理
摘要随着我国环保标准的不断提高,对火电厂提出了全厂废水零排放的要求,其最大的困难就在于脱硫废水高效低成本无害化处理。鄂州电厂在一期工程2×330MW机组上创造性地采用团聚除尘协同脱硫废水蒸发技术,利用脱硫废水配制团聚剂除尘,有效地解决脱硫废水零排放的难题,同时大幅提高静电除尘器的除尘效
摘要:通过优化脱硫废水取水方式、预沉、改进加药管理、澄清器合理排泥等技术措施,有针对性地解决脱硫废水处理过程中存在的问题,保证系统的正常运行和出水水质,并提出以系统性管理的理念来推进脱硫废水处理的技术管理工作。关键词:脱硫废水处理;技术管理;水质控制;系统性管理0前言脱硫废水处理
“火电厂和烟气治理设施的基建队伍和检修维护队伍,要在国家行业管理部门出台安全规范导则和防范标准前,自主制定企业的专项安全导则和防范标准,高度重视烟气治理设施消防问题的研究和防范。”近日,河南宜阳县黄河同力水泥厂脱硫塔发生火灾。这并非孤例,近两年脱硫塔频频“引火上身”:甘肃兰州一脱
摘要:火电厂取用水和排水现状与排污许可证要求有一定差距,火电厂废水排放控制工作势在必行。对比了节水与废水治理相关法律法规与技术标准,结合取用水与排水实际情况,给出了具有针对性的废水排放控制技术路线,包括火电厂废水排放控制目标与原则,原水预处理、脱硫废水处理、其他废水处理等技术路线
摘要:本文以火电厂烟气为对象,分别从联合脱硫脱硝一体化技术、同时脱硫脱硝一体化技术两方面,探讨其发展情况,望能为此领域研究有所借鉴与帮助。在整个大气当中,二氧化硫、氮氧化物为其主要污染物,当其含量达到一定程度时,会因发诸多二次污染,如酸雨、臭氧等,因而无论是对人体健康还是对生态环
利用低温烟气热量对脱硫废水进行蒸发浓缩和蒸发干燥,从而实现脱硫废水的零排放处理,具有系统简单、投资运行成本低、维护工作量小等优点。脱硫废水低温烟气蒸发浓缩系统和主烟道蒸发干燥系统的运行效果和运行稳定性受废水水质、机组负荷、烟气温度、烟气流场等因素的影响,需要根据项目的实际情况进行优化。根据某300MW燃煤机组的烟气参数和脱硫废水水质水量情况,对脱硫废水烟气蒸发浓缩系统和主烟道蒸发干燥系统进行了优化设计。
摘要:火电厂脱硫废水处理的必要性,脱硫废水烟道蒸发零排放技术应用,重点对“浓缩减量、高效蒸发、降低影响”等关键技术进行分析,以供参考。1概述随着近年来我国以燃煤为主的火力发电的快速发展,环境问题不断凸显。受水资源短缺问题的影响,废水零排放备受关注。目前火力发电行业高盐废水综合治理
摘要:火电厂脱硫废水处理的必要性,脱硫废水烟道蒸发零排放技术应用,重点对“浓缩减量、高效蒸发、降低影响”等关键技术进行分析,以供参考。1概述随着近年来我国以燃煤为主的火力发电的快速发展,环境问题不断凸显。受水资源短缺问题的影响,废水零排放备受关注。目前火力发电行业高盐废水综合治理
摘要随着我国环保标准的不断提高,对火电厂提出了全厂废水零排放的要求,其最大的困难就在于脱硫废水高效低成本无害化处理。鄂州电厂在一期工程2×330MW机组上创造性地采用团聚除尘协同脱硫废水蒸发技术,利用脱硫废水配制团聚剂除尘,有效地解决脱硫废水零排放的难题,同时大幅提高静电除尘器的除尘效
摘要:通过优化脱硫废水取水方式、预沉、改进加药管理、澄清器合理排泥等技术措施,有针对性地解决脱硫废水处理过程中存在的问题,保证系统的正常运行和出水水质,并提出以系统性管理的理念来推进脱硫废水处理的技术管理工作。关键词:脱硫废水处理;技术管理;水质控制;系统性管理0前言脱硫废水处理
摘要:火电厂取用水和排水现状与排污许可证要求有一定差距,火电厂废水排放控制工作势在必行。对比了节水与废水治理相关法律法规与技术标准,结合取用水与排水实际情况,给出了具有针对性的废水排放控制技术路线,包括火电厂废水排放控制目标与原则,原水预处理、脱硫废水处理、其他废水处理等技术路线
摘要:膜蒸馏作为一项新兴技术,具有耐腐蚀、耐氧化和运行成本低等特点,可用于燃煤电厂脱硫废水零排处理工艺。并且近期板式多效膜蒸馏工艺已经在废酸资源化、含铬含盐废水零排等领域成功实现工业化应用。通过对膜蒸馏工艺的介绍分析,提出3类膜蒸馏在脱硫废水零排方案中合理化应用的工艺路线。以8t/h
摘要:膜蒸馏作为一项新兴技术,具有耐腐蚀、耐氧化和运行成本低等特点,可用于燃煤电厂脱硫废水零排处理工艺。并且近期板式多效膜蒸馏工艺已经在废酸资源化、含铬含盐废水零排等领域成功实现工业化应用。通过对膜蒸馏工艺的介绍分析,提出3类膜蒸馏在脱硫废水零排方案中合理化应用的工艺路线。以8t/h
摘要:根据西宁火电厂末端脱硫废水水质特点以及后续浓缩减量工艺对进水水质的要求,提出三级软化加药及沉淀池+管式膜两级分离的预处理工艺路线。结果表明:相比较传统的两级软化一级分离工艺,所提方法将加药成本由41元/t降低至17元/t,实现了污泥的综合利用,提高了系统的抗冲击能力,为后续的浓缩减
在发电行业,燃煤发电仍占70%以上,湿法烟气脱硫技术因脱硫效率较高、反应速度快、脱硫剂利用率高等优势成为我国燃煤电厂烟气脱硫的主流工艺(90%以上)。随着石灰石-石膏湿法脱硫技术的日臻成熟与完善,2006年,国家发改委颁布《火电厂石灰石-石膏湿法脱硫废水水质控制标准(DL/T997-2006)》,标准中要求
自然资源是人类宝贵的财富,伴随着城市的发展,过度开发使得自然资源存量开始“预警”,水资源就是其中之一。为了能够循环利用被污染的水资源,废水处理技术应运而生。废水处理,顾名思义就是利用物理、化学和生物的方法对废水进行处理,使废水净化,减少污染,以达到废水回收、复用的目的。本期杂志就
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!