登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
近年来储能产业相关政策持续出炉,政策红利明显,储能产业发展是非常迅猛的,从2011年开始,国家有关的部委持续在出台一些有关于可再生能源包括储能发展的指导意见。下面这张图是从2000年到2018年,我们国内储能持续的发展,电池储能装机容量,累计装机容量达到了1GW。尤其是在2018年,电网侧储能在我们国家很多的省份,包括江苏、河南、湖南、浙江等多地展开。2018年新增投运的规模是206兆瓦,2019年江苏规划建设中的储能项目已经超过了200兆瓦。
— —上海交通大学李睿
8月8日,由华北电力大学、中国可再生能源学会主办的“第一届中国储能学术论坛暨风光储创新技术大会”分论坛在北京召开,北极星储能网将对论坛进行全程直播。在8日“电化学储能”分论坛上,上海交通大学李睿作“百MW级电池储能功率转换系统技术探讨”报告。
上海交通大学李睿
以下为发言实录:
上海交通大学李睿:首先介绍一下背景,储能的论坛大家都清楚,主要由于碳排放的资源紧张、排放污染、气候变化,所以在过去的几年里边我们可以看到,能源转型趋势越来越明显,最主要的能源转型的新能源可以看到,就是风电和太阳能,也包括清洁能源,包括水电和核能。这张图是2030年我国发电装机构成的比例,到2030年整个电网里面47%的发电还是由可再生能源组成的,剩下的分别由水电、核电、风电和太阳能来组成。而且左边这两张图是风电和光伏的发电成本的变化。可以看到,从2009年到2016年,发电成本是持续降低的。我们看到在去年有一个报告,按他的计算,在去年的时候全生命周期的发电成本已经跟火电是相同的,因为我只看到一个结论,不知道他说的计算方法是什么样,但是可以看到,新能源发电现在成本其实是越来越低的。
在我们国家,能源转型也特别明显,到2000年以来全球的风电、光伏的装机年均增长分别是22%和38%,中国是46%和62%。伴随着新能源电网渗透率的持续增加,高比例间歇式的可再生能源大规模的接入电网。因为可再生能源是间歇式的,尤其是像光伏短时的不可预测性也比较差,我们光伏阵列忽然有云彩过来了,云彩飘着只要它经过的地方发电功率就下降了,这个带来电源的不确定性,对电力系统安全稳定运行产生重大的影响,而储能技术是解决能源转型挑战的手段之一。
近年来储能产业相关政策持续出炉,政策红利明显,储能产业发展是非常迅猛的,从2011年开始,国家有关的部委持续在出台一些有关于可再生能源包括储能发展的指导意见。下面这张图是从2000年到2018年,我们国内储能持续的发展,电池储能装机容量,累计装机容量达到了1GW。
我们可以看到,尤其是在2018年,电网侧储能在我们国家很多的省份,包括江苏、河南、湖南、浙江等多地展开。2018年新增投运的规模是206兆瓦,2019年江苏规划建设中的储能项目已经超过了200兆瓦,目前已经开展的电网测储能项目根据各个省的电网特点规划建设,在系统架构建设方式、商业模式上都有一些特点。
这张跟大家报告一下从2018年开始国内电网侧储能电站的一些动态,比较有影响的是江苏搞了好几个储能的工程,比如镇江号称是国内最大的电池储能电站,它的总装机容量是101兆瓦/202兆,主要是用在江苏电网削峰填谷,我们去参加过相关会议,调频还做不到。在苏州也有储能的二期,搞电网侧储能,它规划的规模也达到242兆瓦/138兆。同时包括在河南、在湖南长沙、浙江电网分别构建了100兆瓦以上的电网侧的储能工程,就是电池和储能工程。
从电网侧储能电站发展动态可以看到,现在储能站的规模,单体的储能站都达到了几十兆瓦,而电网侧储能在一个城市里边可能是几个不同的储能站组成一个储能综合的系统,这个系统的规模通常都会达到100兆瓦以上。面向这么大的储能规模,都会带来一些问题,我们看国外的情况,我们看到一些报道,电网侧储能方面美国和韩国都分别在2019年有一些电力储能系统的事故发生爆炸火灾的一些事故,当然像这个事故已经调查清楚了,这个事故现在还没有一个明确的结论为什么会发生爆炸。
但是我们如果从储能系统本身的结构来看,跟大家报告一下,这是典型的一个电池储能站里面的电池储能系统的架构,包括几部分:第一部分,储能电池。第二部分,储能电池的管理系统。由于我们知道,锂电池的一致性比较差,电池单体串联起来组成的一个电池模块,电池模块串联起来组成电池库,然后再组成电池堆,形成电池管理系统,来做它的温度的监控、电流的监控、均衡等工作,这是一部分,这是电池管理系统。当然包括功率转换系统,一般的变换器都叫变换器,储能领域PCS功率转换系统,负责进行电池侧功率的充放或者电网侧削峰填谷。
当然还有一个储能的监控保护系统,可能对上储能站进行联系、进行通讯,对下还要储能的BMS进行协调,这个是控制储能系统到底是做削峰填谷的工作,还是做黑启动,还是做二次调频等等,都是由高级应用系统来管理的,整个是一个储能的基本架构。
从“十二五”开始,我们知道在国网张北搞了一系列的储能电站,里面所有的电池储能系统基本上都是这样一个架构,由电池和PCS相连,PCS和电网相连,电网侧储能最低的电压等级是10潜伏,PCS这个是比较低的,中间有一个变压器,是这样的架构。这种架构比较多的是500千瓦或者630千瓦的接入是比较多的,如果我们面向百兆瓦级的电池储能,可能就需要大量的500千瓦或者630千瓦功率等级的储能系统来并联,组合成一个大的储能系统。
这是我们现在要跟大家报告的百兆瓦级的电池储能系统的方案,刚才跟大家报告电池加上一个PCS,这是一个小的500千瓦或者630千瓦的储能系统或者叫储能单元,几个储能单元通过一个通讯变压器把它投运到10千伏或者35千伏的中压电网上,如果这是一个储能电站,把它升到更高级的配电网电压等级,现在江苏的镇江包括江苏的储能电站大概是这样的架构。这个架构的优势就是,它的可实现性是比较好的,实现起来比较容易,因为所有的技术都是现成的,但是也会有一些问题,它的问题包括,首先就是它的BMS模式比较复杂,我们知道电池锂电池的电池单体组成电池的模块,48V的电池模块或者72V的电池模块,电池模块再组成一个电池单元,电池单元再并联起来做成一个电池簇,给一个500千瓦时的或者630千瓦时的电池簇,由于电池单体的一致性相对不是非常好,就会导致在电池簇里边,即便这个电池簇没有进行并网的工作,没有充电或者放电,我们在南网可以通过监控系统能够看到,在这个电池簇里面不同的电池单元中间会发生缓慢的充放电的环流产生,充满和没有充满的单元静止的状态就会有环流产生,这是在电池簇里面。
第二个,在电池单元里面,如果模块和模块之间不均衡,要在电池管理系统BMS要有一些均衡的手段,把一个模块里面多余的,比如这个模块90%,而这个模块如果80%的话,可能要把上面这个模块里通过电力电阻到下一个模块,本身就会造成一部分功率损耗。另外还有,目前我们可以看到的储能系统里边电池簇的输出电压,通常都不会超过1500V,一般来说都是在1000V以下,而1000V以下的电池簇,如果要和电网接口的话,要经过一个PCS功率转换系统,直流变成交流并网,而这个转换系统,如果电力电子比较熟的人都知道,逆变器通常都是降,就是直流电压是1000V的时候交流电压限电压峰值肯定是低于1000V的。这个时候如果我们通过PCS要并网,肯定要并一个低压电网,如果想并一个10千伏的,如果我们想并到这样的电压等级就要一个功率变压器,这样的方案损耗是相对比较大的。这是现在比较成熟的储能方案,大概有这样一些问题。
第一个问题,现在的储能站里边是由低压的1000V以下的电池,通过PCS并到一个低压电网,低压电网通过变压器升级,采用多级变压器升压效率比较低,我们做电力电子变换器设计的时候,我们只讲效率,就是说有97%的损耗效率就有3%的损耗,如果做储能的话我们充多少电,比如充一度电能放多少,这个时候就要6%损耗在变压器上,现在PCS大概可以做到98%的效率,大概有4个点的损耗。所以说加起来效率是比较低的。
另外,系统结构有些复杂,我们在协调控制的时候就会比较困难,因为它是一个多级的升压并网的结构,每一台储能大概只有500千瓦/630千瓦时,有一大堆的储能单元并联组成,相互之间有一些困难,甚至还会发生一些谐振的现象。同时又一个多层的监控系统,响应速度相对比较慢,比如说现在镇江的储能系统为什么只能做削峰填谷,而不能做到二次调频,就是因为响应速度相对比较慢,大概是秒级的响应速度。由于采用了比较大型的电池堆,我们刚才强调电池单元大概是500千瓦/630千瓦时,如果在1000V以下的直流电压等级,通常找不到单体电池比如说500安时,小的电池100安时或者150安时的电池来并联,这个时候如果并联这个电池堆里面就会有很多并联的电池,由于电池一致性比较高电池环流就会比较差,就会降低能量转换的效率。
这里给大家报告一个高压组网,面向百兆瓦级电池储能可能是一种可以选择的技术路径,高压组网,高压组网方案啊是什么样子的呢?我们这个电池如果组成电池簇的话,在座有好多液流电池的,我们对液流电池不太熟悉,但是锂电池是不太适合电池并联的,在很多工程里面都发现有一个环流,这个环流其实还是挺大的,这个环流会影响电池的一致性。所以现在如果我们不并联的话,我们这个电池簇的容量可能就没有办法达到很大的容量,比如说如果我们用15安时的电池单体串联成800V左右的电池簇,这个电池簇的容量其实不会太大,这个没有关系。如果我们把这样一个电池簇,通过一个H桥的模块,把直流变成交流,H桥模块是一个降压型的模块,直流电压比交流电压显然是比较低的,如果我们把N个相同的模块串联起来的话,就可以形成一个高压的电压等级。如果用这样的方法大家可以看到,这是一个电池簇,这个电池簇的容量不太大,100千瓦或者150千瓦,但是我通过电力电子的方法,把这样一个小容量、小功率的电池簇我,输出的电压也比较低,可能800V到1000V的电压,把它变成五六百V的交流电压,如果把交流电压串起来就可以串成比较高的电压,会带来什么好处呢?第一个,我在交流端口上不再需要一个供应链就可以直接接入10千伏或者35千伏的电网,显然我就可以省去功率电压器的损耗,我们知道功率变流器的效率98.5%,有三点的损耗。第二个,有什么样的好处呢?当我们用这样的架构的时候BMS就可以简化,因为本来我们比如要做一个大的储能系统,这样一个大的电池簇,一簇一簇的电池簇要并联起来,形成大的电池簇。如果我们把每个电池簇都通过一个变流器连接到电网的时候,簇与簇之间如果人为的调荷电的均衡的时候,我们不再需要额外的BMS电池管理系统,完全可以通过我们的电力电子来实现。所以说BMS的成本就可以省,同时BMS的效率也可以提高。
另外,这种方法比较适合于拿低压的电池接入一个中压的电网,当一个第一电池接入中压电网的时候我们就不再需要花很多的时候去思考如何把这个电池电压提高,因为电池电压提高其实,一个是我们提高BMS的均衡,一个是提高电池本身的一致性。同时,整个系统是由于变压器对不同的电池簇进行分割管控。大概提出这样一种面对超大容量的电池储能系统,通过H桥直流形成中压并网的方案。
下面我跟大家报告一下叫做模块化的储能系统,这个储能系统的基本原理还蛮简单的,上面的三条线是中亚的电网,10千伏或者35千伏的电网,这个电压左边这样三个电源是交流的电,我们在底下是每个电池簇通过H桥变成交流,串联起来变成高压的交流,这个由于电池产生的交流电压跟电网之间的电压之间有一个差别,这个左边是电网的电压,这个右边是电池产生的电压,如果我们可以控制H桥输出的电压的值的话,就可以控制电网侧电流的值,当电感电流动率密度是一致的,这个时候很显然就可以做到等于1的充电或者放电。如果它是垂直的,电流下角、电压下角是垂直的,就可以实现无功的调压功能,这是他一个基本的控制方法。总结下来就是,通过电压的出口电压控制网侧电流,实现对电池组的充放电。通过功率解耦控制算法控制链式电路出口电压,该电压为各H桥电压之和。为实现电池组的SOC均衡,各H桥电压不相等。通过这样一个电路我们可以实现模块与模块之间的电池的荷联状态的均衡。
下面报告一下储能系统电梯容量设计的边界,我们认为,如果我们把电网侧储能用这个方法来做的话,有很多好处,比如效率可以提高,电池簇与电池簇之间的均衡以及管理很多工作可以由功率转化系统来做,所以安全性可能会提高,BMS的成本会降低、效率会提高。在这个情况下我们来分析一下,它最大的容量,如果按照现有的1000V—1500V电池串联起来电压大概的水平,按照我们商用的能找到的IGBT模块器件功率变化等级,按照储能系统要求的限制,跟大家报告一下,纵轴是最高的可以实现的容量,横轴是按照安全性设计,电池系统的技术限制,我们可以看到,如果按照器件水平的限制,如果接入35千瓦,用一个变流器可以实现103兆瓦的变流器储能系统的功率。如果我们考虑电池系统的限制,电池电压不能太高,如果我们用550安时的电流倍率的电池来串联,而不是并联的时候,我们可以计算得到电池储能系统最大96兆瓦。如果再考虑一下安全边界,比如冗余的设计,比如成本的控制,可以做到32兆瓦。这一条簇取一个最低的32兆瓦,理论上推导得到一个比较安全的35千伏接入的一个单体的储能系统最大能量的边界。
当我们这个变流器用这个变流器来做的话,一个百兆瓦级的系统,主要的不同,我们可以明显的看到这个架构比较简单,首先变压器减少了,不再有一个比如400V到350千伏,在这个系统里面只有35千伏到220千伏的变压器。第二,在35千伏以下的电压等级下面,这是一个储能的变流器,变流器的各数减少了,就会带来很多好处,当它的个数减少系统分层就会比较少,信息传递的延时就会减少,储能系统的响应速度相对比较快。同时变流器与变流器之间控制的模型耦合,也不太容易发生系统稳定性的问题,因为它没有400V的母线,也没有热电耦合的情况。
如果我们用适合高压的方案,就是电池储能系统方案的时候,它的电池管理系统的架构可以看到,这个架构跟刚才的架构相比就比较简单,这是一个电池单元内部的BMS来做模块与模块之间的均衡,单元和单元之间完全可以靠我们的功率转换系统去做一个主动的均衡,而不再需要电池管理系统来做均衡,这个时候可以大幅度的减少电池管理系统的结构,减少它的成本,同时提高电池管理系统的效率,因为很多工作都是由可以由功率转换系统来做的。
我们大概还进行一些分享,现在也有一些配电网,不是交流的配电网,是中压直流的配电网,这个储能系统刚才给大家报告可以看到,如果是一个中压电网的时候报告了这样一个H桥极联的架构,这是一个并联系统,如果稍许做一些改变,如果这两个并联系统直流侧伸出来之后,等于说把每个H桥极联系统的终点,可以比较容易的把它形成公共的直流母线,就是说把它做成一个适合直流配电网应用的储能系统,这个储能系统跟单纯接入交流电网的储能系统相比,你可以认为两个系统等效并联就可以实现直流配电网应用的储能系统,也可以把每一个原来的电力系统砍成两半,每一半接到上一个,也可以接入配电网。
刚才跟大家报告了,如果我们把两个链式变换器把它等效的并联到交流电网上,同时在每一个变换器的终点置入直流电压,如果在终点处的电压是共荷电压,是50赫兹的,是可以用来做三相荷联均衡的控制,如果我们注入直流,显然不具备荷电电压均衡控制的能力,这个上面注入一个正值的电压,下面注入一个负极的电压,就可以形成公共的直流母线接入配电网,跟独立的基于MMC—PCS的系统相比,更形成一个兼具储能功能的柔直的系统。
下面报告一下百兆瓦级的储能系统的运行与控制。这是一个极联储能系统的控制框架,最主要的控制包括三部分:第一部分,功率解耦控制,就是我们刚才讲的那个链路的平均模型,这里面就是涉及到我们把链路作为一个整体,从电网侧来看,它只要控制自己的交流输出电压,跟中压电网电压插入一个强度,就可以控制电网。另外有两个专门的控制,第二个,相间均衡控制。第三,相内均衡控制。相间均衡控制,就是因为我们H桥的系统是三相的,如果某一项跟其他两项带来的荷电不太均衡的时候,我们可以用相间控制的策略,通过我们电池功率转换系统来做相与相之间电池的荷电电压均衡。怎么做呢?主要在终点注入一个连续的交流电压,当我们注入一个连续的交流电压的时候,就可以做到人为的去调节某一项的吸收或者发出的有功功率,跟其他两项功率不一致。还有相内的均衡控制,每一项可能都是链接组成,这个控制起来相对更加简单,只要控制每一项不同的电压的值,就可以控制相的均衡。
这是具体内部的交流测功率控制电压,这就是相间均衡控制,可以看到,本来三相的H桥链路输出的电压应该是相同的,就是终点电压是0。如果我们通过注入连续,等于人为的调整了终点电源,让终点电源发生了偏移,这个时候可以看到,三相电压钟点偏移之后,很显然三相每一相的电源吸收或者发出的功率就已经是不一致了。
另外我们刚才讲H桥电流很多好处,效率会提升,PCS人为的控制荷电压的均衡,BMS可以简化,同时BMS成本可以降低。当然还是有一些坏处的,最主要的缺陷,如果我们用链式电路做储能的话,H桥与H桥之间要做严格的电气学,H桥之间还有一个,在这里给大家报告一个共模电流的路径和联系方法,时间关系不多做报告了。
下面给大家报告实验验证,我们做了额定功率40千瓦、交流电压380V,每相H桥数20、电池模组24V/10安时,控制周期50us、开关频率1K。我们做了一个储能系统,储能系统参数是交流电压接入380V电压,电池的电压是24V,最终我们形成了这样一个储能系统小的量级,这是电池柜,这是PCS柜,这是交流电源,这是监控系统。有一些实验的波形,验证了我们的电路是可靠的。
我们基于这样的思路在南网做了一个工程示范,技术架构跟刚才介绍的架构是一样的,这个示范样机在10千伏效率,接入10千伏电网一共是2兆瓦电池、2兆瓦时的储能系统,可以看到PCS效率高于98%,就是说PCS本身的效率是高于我们传统抵押的PCS效率,同时没有变压器损耗的,就是说实际上抵押的PCS+变压器跟这个相比,我们现在报告的架构大概会有2个点的效率提升,这是南网是首个电网级的储能系统。时间关系,我们还做了35千伏的设计,这个就不跟大家报告了。
谢谢大家!(以上内容根据速记整理,未经嘉宾审核)
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
在全球能源转型加速的大背景下,新能源储能产业已成为推动可持续发展的关键力量。储能技术作为新能源产业的重要支撑,有效解决新能源发电的间歇性和不稳定性问题,提高能源利用效率,保障能源供应的可靠性和安全性。lt;永州领航意兆电子项目gt;近日,德赛电池与领航投资在储能电池、渠道拓展、项目实施
据外媒报道,近期,澳大利亚维多利亚州规模第二大电池储能系统完成部署。200MW/400MWh的Rangebank电池储能系统是由储能开发商EkuEnergy公司和壳牌能源(化石燃料巨头壳牌的能源服务子公司)合作开发部署的,其规模仅次于300MW/450MWh的VictorianBigBattery电池储能系统。在2023年7月开工建设的Rangeban
据外媒报道,日前,储能系统开发商Dispatch公司在荷兰开工建设一个45MW/90MWh电池储能系统,而麦格理集团是该项目投资者之一。Dispatch公司通过LinkedIn宣布开工建设几天之后,DNV公司对Dispatch公司完成该项目融资表示祝贺,并发布了占地6000平方米的项目现场照片以及合作伙伴在开工仪式上的合影。这
作者:于东兴1,2,3,李煌4,霍明帅1,李志昕1,李强5单位:1.应急管理部天津消防研究所;2.工业与公共建筑火灾防控技术应急管理部重点实验室;3.天津市消防安全技术重点实验室;4.中国科学技术大学火灾科学国家重点实验室;5.安徽科盾新能安防科技有限公司引用:于东兴,李煌,霍明帅,等.锂离子电池储能系统
近日,美国候任总统唐纳德·特朗普表示,一旦上任,将对所有从中国进口的商品加征10%额外关税,这将使电池储能行业本就面临的关税问题进一步加剧。特朗普在社交媒体上发帖称,除了目前征收的关税之外,还将对所有从中国进口的商品征收10%关税,并对所有从墨西哥和加拿大进口的商品征收25%关税。美国目
日前,芬兰能源技术集团瓦锡兰公司储能与优化(WärtsiläES&O)业务副总裁AndyTang在接受行业媒体的采访时对澳大利亚大规模电池储能市场发展进行分析和探讨。他在讨论瓦锡兰公司参与部署的澳大利亚规模最大电池储能项目——正在新南威尔士州部署的Eraring电池储能项目时表示:“澳大利亚运营的这个储
北极星储能网获悉,12月4日,华北油田首座100千瓦/124千瓦时固态电池储能电站在采油三厂王三站成功并网投运,这是中国石油首座独立固态电池储能电站。该项目采用聚合物电解质固态电池储能技术,该产品能量密度可达280瓦时/千克,储能电芯通过穿刺、枪击测试不爆炸不燃烧,可在零下40摄氏度极端环境下正
11月30日,南方电网首个配电网分布式钠离子电池储能示范工程在全国首批农村能源革命试点县广西南宁宾阳县建成投运。该工程依托国家重点研发计划“百兆瓦时级钠离子电池储能技术”项目,将国内领先的钠离子电池储能与柔性直流配电等技术组合应用到电网末端,不仅让台区供电能力进一步增强,也极大提升了
在亚利桑那州达成多项合作之后,可再生能源开发商SaltRiverProject(SRP)公司与EDPRenewablesNorthAmerica(EDPRNA)宣布将在该州建设一个200MW/800MWh电池储能系统。SRP公司与EDPRNA公司在11月18日宣布了这一协议。EDPRNA公司将在亚利桑那州库利奇市附近部署这个名为Flatland电池储能系统,并计划于202
近日,天合储能与英国TemporisCapital、ClarkeEnergy正式达成战略合作,并签署施工合同,于苏格兰BoatofGarten全力打造一座规模达50MW/100MWh的先进储能系统。此项目标志着三方在能源领域携手迈出关键一步,为苏格兰乃至英国的能源转型注入强大动力。目前项目建设正稳步推进,预计于2026年第一季度正式
据外媒报道,储能项目开发商AkayshaEnergy公司在今年9月初完成通电测试的680MWhWaratahSuperBattery电池储能系统在11月27日被要求开通运营,以有效应对澳大利亚新南威尔士州大范围停电。澳大利亚能源市场运营商(AEMO)在11月27日下午2点发布一份通知,要求AkayshaEnergy公司部署的这个电池储能系统在
北极星储能网获悉,12月17日,甘肃清水县“千乡万村驭风行动”试点项目竞争性配置公告发布。公告显示,总规模为40MW,其中清水县松树镇大柳村20MW、清水县松树镇邵湾村20MW。竞配项目新增储能不低于项目规模的10%,储能实施连续储能时长均不低于2小时,鼓励选择效率更高的集中式电网侧储能方式。储能比
12月15日,2025年全国能源工作会议在京召开,总结2024年工作情况,谋划2025年重点工作。会议认为,在习近平新时代中国特色社会主义思想指引下,全国能源系统坚持稳中求进工作总基调,全力以赴保障能源安全,坚定不移推进能源绿色低碳转型,推动能源高质量发展再上新台阶,2024年能源各领域工作取得新进
北极星储能网获悉,11月27日与12月5日国网西北分部分别成功组织区域千万千瓦级新型电化学储能集中充电、放电试验,最大充电电力达1227万千瓦,最大放电电力达1206万千瓦,占到全网储能总装机的85%。试验的成功开展体现了新型电化学储能大规模应用的巨大潜力和广阔前景,不仅标志着西北电网新型电化学储
北极星储能网获悉,随着陕西延安边塞湖15万千瓦风电场顺利并网,西北电网装机规模突破5亿千瓦。“十八大”以来的十多年间,西北区域在西部大开发国家战略的强力助推下,装机规模飞速发展,西北电网从装机规模最小的区域电网一跃成为装机规模第三的区域电网,在“西电东送”战略实施过程中发挥了巨大作
12月16日,华电四川宜宾三江新区100MW/200MWh储能项目正式投运。该项目为四川省首批19个新型储能示范项目之一,也是该批次首个投产的项目。该项目采用最高能量密度的磷酸铁锂电化学电池技术,能有效减少20%的占地面积和降低运维成本。项目设有4条35千伏输电线路,每条线路配置5个5MW/10MWh时的储能单元
甘肃张掖盘道山抽水蓄能电站项目建设现场工程车辆来来往往,大型机械轰鸣阵阵,一派热火朝天的景象,尽管冬日严寒,但项目建设依然快速推进。该项目总投资96亿元,自2022年10月开工以来,已累计完成投资13.38亿元。目前,已完成通风兼安全洞、6#施工支洞、主变通风兼安全洞开挖支护;正在进行进厂交通
紧跟“双碳”浪潮,溧阳正筑强新能源之都县域高地。一批“含金量”足、“含新量”高的新能源产业项目纷纷扎根溧阳这片沃土。12月11日,江苏省溧阳经济开发区与华东新华(华东新华能源投资有限公司)、星辰新能(浙江星辰新能科技有限公司)、江苏国强(江苏国强兴晟能源科技股份有限公司)就江苏省溧阳
12月11日,江苏省发展和改革委员会印发《关于南京溧水经济开发区5万千瓦/10万千瓦时储能电站等14个电网侧储能项目纳入全省电力规划的通知》,由山东铁投集团新能源板块市场化投资主体山铁绿能申报的“句容华阳10万千瓦/20万千瓦时储能电站项目”成功纳入江苏省电力规划,成功获批山东铁投集团首个大型
北极星储能网获悉。12月11日,江苏溧阳市举行新型储能产业园项目签约仪式,华东新华能源投资有限公司、浙江星辰新能科技有限公司、江苏国强控股集团有限公司、溧阳经开区签订了合作协议。据了解,新型储能产业园项目总投资30亿元,拟用地400亩,达产后可年产2.5GWh全钒液流储能集成产品,年产值约50亿
从国网浙江省电力有限公司了解到,12月11日浙江电网侧储能最大出力达到190万千瓦,创历史新高。连日来,受冷空气影响,浙江出现大范围降水降温天气,全省用电负荷持续走高。12月11日,浙江全省最大负荷达到9555万千瓦,同比增长16.3%,创入冬以来新高。与此同时,省内光伏出力不足250万千瓦,亟待释放
北极星储能网获悉,12月4日,乌兰察布供电公司联合乌兰察布市消防救援支队成功举办2024年储能电站火灾事故应急演练。公司石广总经理、邢峰副总经理参加演练,乌兰察布市消防救援支队李宁支队长、佟长林副支队长应邀观摩演练。此次火灾事故演练以白家湾储能电站2号储能系统A相电池舱发生火灾,全氟己酮
储能系统/电站的安全事故,往往都是由于在预警缺失或滞后的情况下,电池自身热失控或是其他外部因素导致电池起火而引发的,由于缺乏有效的安全防护措施,电池的初期火灾迅速蔓延,而现有的消防措施并非是针对电池火灾而配置的,因此,电池初期火灾无法得到有效抑制,最终演变为大规模火灾,导致整个储
8月7日由华北电力大学、中国可再生能源学会主办,中关村华电能源电力产业联盟、中国电力云平台、中国可再生能源学会储能专委会、《太阳能学报》、《太阳能》杂志承办的“第一届中国储能学术论坛暨风光储创新技术大会”在华北电力大学的北京校区召开。会议为大力推广风能、太阳能、储能创新技术,推动风
说锂离子电池在地理储能里面到底是什么情况,这是从储能联盟里面拿到的数据,这是统计的2000年到2018年的,从这里面来看,全球的累计储能装机是180GW,这里面抽水蓄能是占了94.3%,抽水蓄能是第一位的,这里面电化学储能是排在第二位的,有专家讲说其他的储能排的位次,可能每年这个位次后边这几位还是
湖南电网60MW/120MWh储能电站的特色主要有:第一是在国内创新采用电池本体租赁模式。第二是在市区建设了单体容量最大的室内电站,20MW/52MWh的储能电站。第三是其中两个储能站点在国内率先被打造成三站合一典型试点。——国网湖南省电力有限公司长沙供电分公司高级工程师黄际元8月7日-8日由华北电力大
全钒液流电池这种储能系统有两种接口,一种是交流,就是交流互联,还有一种是直流互联,在交流互联里面比较清楚的DC/AC的模型非常多,我们主要做的直流互联怎么做,双向直流分类非常多的,有隔离的、非隔离的,这个过程里面引起大家重视的就是隔离性的,对我们液流电池安全问题非常重要,目前锂电池很
为了实现移动式的储能,我们在能量密度和功率密度方面都需要进行考虑,尤其是能量密度方面,我们需要一个体积能量密度和质量能量密度都要达到比较高的标准。锂硫电池的穿梭效应,我们柔性的凝胶电解质多硫离子是溶解不了的,因此会被很好的隔离在正极上面,不会向负极进行迁移,可以很好的提高锂硫电池
超级电容器双电层的结构从无序形成一个有序的结构,电能就储存在这里。能量都储存在这个界面上,所以电极材料一定是多孔的,有比较大的材料才可能储存更多的电能。多孔材料的表面,它的结构有很多可变的因素,到底什么样的材料,什么样的表面对双电层结构储能有什么影响,我们怎样控制制备过程得到更好
随着储能介入,我们觉得对离网下的VSG功能,提高稳定性,同样需要附加虚拟同步及的功能,我们这里面介绍20千瓦的怎么做离网的,离装的VSG一个是单机的离网VSG还有多机并联,离网主要是空间惯性、稳定性,基于有功—频率环控制,虚拟同步及的有功调频方程,可以得到有功的方程。——北方工业大学电气与
我国风能、太阳能等可再生能源发电装机快速增长,正在成为电力能源的重要组成部分,有力促进能源结构调整。通过发展大规模电能转换与储能技术,调节电力能源的产生、输送与消纳的全过程,尤其是通过不同能源形式之间的高效转化技术,实现不同能源的互联互通,成为能源高技术战略方向之一。储能是智能电
低温超导线的性能好,并且价格便宜,200多安培的导线只要2-3元,且导线的技术、工艺稳定,机械性能友好,所以短期内低温超导储能还是占优势的。高温超导储能是今后的主要发展方向,逐渐地以高温超导储能为主。——中国科学院电工研究所副研究员张京业8月7日-8日由华北电力大学、中国可再生能源学会主办
我们所做的示范工程,原来就选最便宜的铅酸电池,通过配置一些超级电容器,可以介绍蓄电池的配置容量,从全生命周期最后算下来,它的储能成本只有铅酸电池的21.4%,比较经济。——中国科学院电工研究所霍群海8月7日-8日,由华北电力大学、中国可再生能源学会主办的“第一届中国储能学术论坛暨风光储创
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!