登录注册
请使用微信扫一扫
关注公众号完成登录
上标注释:
a 膜电极在温度80°C的氧气或氢气中测试,气体完全湿润,总压力为1个大气压。
b 纳米纤维支撑的14 μm PFIA膜。
c 增强和化学稳定的PFIA膜。
d 大批量生产成本(每年50万套80 kW系统)。
e 每年生产50万套系统的质子膜成本。
f 根据表P.3、表P.4和表P.5中协议进行测量。(所有附表和附图见文末)
g 可将在50 kPa压差,80℃和100%RH的条件下0.1 sccm/cm2的渗透量作为等效参考。
电催化剂
上标注释:
a 为实现系统成本目标,可能再进一步降低贵金属含量和载量。
b 额定功率工作点取决于膜电极温度。基于目标值Q/ΔTi=1.45 kW/°C,定义额定工况工作点电压V=77.6/(22.1+T[°C])。膜电极温度近似等于电堆冷却液出口温度。Q/ΔTi的定义见电堆技术指标注释i。
c 参考Steinbach等人发布的2014年“高性能、高耐久性和低成本的膜电极组件”年度价值评估。
d 基于膜电极在150 kPa绝压时的总功率,并在0.692 V和90°C下测得,满足Q/ΔT<1.45 kW/°C。若在250 kPa的绝对压力下,目标值为0.12 g/kW。
e 使用表P.1中的协议进行测量。
f 参考通用汽车公司Kongkanand等人的2014年“高活性脱硫催化剂”年度价值评估。
g 使用表P.2中的协议进行测量。
h 参考B. Popov等人2015年“用于PEM燃料电池的超低掺杂Pt阴极催化剂的开发”年度价值评估。
i 参考LANL机构P. Zelenay等人的2016年“非贵金属燃料电池阴极:催化剂的开发和电极结构设计”年度价值评估。
j 目标值相当于在载量0.1 mgPGM/cm2时催化剂质量比活性为0.44 A/mgPGM的目标。(PGM: Platinum group metal)
膜电极
上标注释:
a 大批量生产成本(每年50万套80 kWnet系统)。
b 每年生产50套系统的膜电极成本。
c 按照表P.7的耐久性试验规程,使用510催化剂(阳/阴极载量为0.2/0.4 mgPGM/ cm2)的戈尔膜电极在1.0-1.5 A/cm2电密区间电压降低10%之前的时间。
d 温度区间在80°C至最高温度或更高。根据表P.6和表P.7中的极化曲线和耐用性测试协议,测试后额定功率下降<10%。
e 根据表P.8中的协议测量,在1.2 A/cm2电密工作下电压下降小于5%。
f 使用表P.6中的极化曲线协议测量。
g 参考通用汽车公司Kongkanand等人2014年“高活性脱硫催化剂”年度进度报告。
h 使用表P.6中的极化曲线协议进行测量,但可以使用任何温度到最高工作温度的温度范围,最大入口RH为40%。额定功率工作点和电催化剂技术目标的注释b相同。
i 在绝压150 kPa时面积比功率为810 mW/cm2,在绝压250 kPa时面积比功率为1060 mW/cm2。
j 使用基于表P.6中极化曲线协议下测量的1.0 A/cm2电密运行下30°C时电压与80°C时电压之比。露点温度25°C仅用于30°C温度操作。
k 基于使用高阴极载量(0.1/0.4 mgPGM/cm2阳/阴)的Gore膜电极和SGL GDL(25BC/25BC)在LANL进行的测试。
l 使用基于表P.6中极化曲线协议下测量的1.0 A/cm2电密运行下90°C时电压与80°C时电压之比。露点温度59°C用于90°C和80°C温度操作。
m 使用基于表P.6中极化曲线协议下测量瞬态30°C时电压与80°C 1.0 A/cm2稳态工作时电压之比。露点温度25°C仅用于30°C温度操作。30°C瞬态工况指在1 A/cm2电密下持续至少15分钟,然后不改变操作条件,降低至0.1 A/cm2并持续3分钟;3分钟后,电流密度再恢复到1 A/cm2,恢复到1 A/cm2后测量电压5秒钟。
双极板
上标注释:
a 膜电极达到1000 mW/cm2性能且大批量生产(每年50万套80 kW系统)的成本。
b 每年生产50万套系统的双极板成本。
c 参考Treadstone C.H. Wang2012年“低成本质子交换膜燃料电池金属双极板”年度进展报告。
d 根据标准气体传输测试(ASTM D1434)。
e C.H. Wang(Treadstone), private communication, October 2014。
f Blunk, et al., J. Power Sources 159 (2006) 533–542。
g pH 3 0.1ppm HF, 80°C, peak active current<1e-6 A/cm2 (0.1 mV/s动态电压测试, -0.4 V to +0.6 V (Ag/AgCl)), 用Ar吹扫除气。
h Kumar, M. Ricketts, and S. Hirano, "Ex-situ evaluation of nanometer range gold coating on stainless steel substrate for automotive polymer electrolyte membrane fuel cell bipolar plate," Journal of Power Sources 195 (2010): 1401–1407, September 2009。
i pH 3 0.1ppm HF, 80°C, passive current<5e-8 A/cm2 (+0.6V (Ag/AgCl)恒电位测试超24 h),充气溶液。
j 参考GrafTech的O. Adrianowycz等人2009年“用于汽车PEM燃料电池的下一代双极板”年度进展报告。
k 包括根据Wang等人的方法测得的界面接触电阻。Wang, et al. J. Power Sources 115 (2003) 243–251 at 200 psi (138 N/cm2)。
I ASTM-D 790-10非增强和增强塑料及电绝缘材料的弯曲性能标准测试方法。
m 参考Porvair的D. Haack等人2007年“碳-碳双极板”年度进度报告。
n 根据ASTM E8M-01金属材料拉伸测试的标准测试方法或其他方法。
o 参考橡树岭国家实验室M. Brady等人的2010年“氮化金属双极板”年度进展报告。
电堆
上标注释:
该部分所指电堆不包括储氢、电子、驱动和热、水、空气管理系统等燃料电池附件。
c 净功率(电堆功率减去BOP功率)。体积是“box”体积,包括死空间。
d 资讯:丰田汽车公司于2012年9月24日宣布其未来技术发展状况。
e M. Hanlon, "Nissan doubles power density with new Fuel Cell Stack," Oct 13, 2011。
f 使用表P.6中的极化曲线协议测量。
g 大批量生产成本(每年50万套堆)。
h 根据DOE燃料电池技术办公室燃料电池子项目下开发和验证的实验室规模(laboratory scale)的最新组件分析,且每年生产50万套。
i 与膜电极技术目标注释d相同。
j 参考J. Kurtz等人“年度燃料电池电动汽车评估”(2015年年度价值评估)报告,10%电压降级。
k 根据表P.8中的协议测量,在1.2 A/cm2电密工况点的电压下降小于5%。
l Q/ΔTi=[电池组功率(90 kW)x(1.25 V-额定功率下的电压)/(额定功率下的电压)]/[(电池组冷却液温度-环境温度]]。技术目标假设80 kW净功率需要90 kW功率电堆,并且使用表P.6中的极化曲线协议进行测量(入口加湿和冷却液出口温度除外)。入口加湿最高RH40%,冷却液出口温度可达最高工作温度,阴阳极入口压力最高为150 kPa(绝对值)。
m 基于0.67 V电压和电堆冷却液出口温度80°C。
n 与膜电极注释j相同。
o 与膜电极注释I相同。
p 与膜电极注释m相同。
空压机
上标注释:
a 完全集成的空压机系统在台架测试中电机控制器的输入功率。完全集成空压机系统包括控制系统电子、过滤器以及用于冷却的其他空气设备。
b 压缩机:流量92 g/s,排出压力为2.5 bar(绝对值);入口条件40°C,25%RH。膨胀机:流量88 g/s,入口压力为2.2 bar(绝对),入口条件70°C,100%RH。
c 压缩机:流量23 g/s,最小排出压力为1.5 bar(绝对压力);入口条件40°C,25%RH。膨胀机:流量23 g/s,入口压力为1.4 bar(绝对),入口条件70°C,100%RH。
d 压缩机:流量4.6 g/s,最小排出压力为1.2 bar(绝对压力);入口条件40°C,25%RH。膨胀机:流量4.6 g/s,<压缩机排气压力,入口条件70°C,20%RH。
e 根据表P.10中的协议执行耐久性测试。
f 重量和体积包括电机和电机控制器。
g 每年50万套制造量。
h 包括每年制造50万套系统的压缩机、膨胀机和电机控制器的成本。
加湿器
上标注释:
a 参考2013年2月戈尔报告”低成本、高性能燃料电池加湿器的材料和模块“。
b 进入干燥空气:干气流量3000 SLPM,183 kPa(绝对值),80°C,0%RH。进入湿空气:干气流量2600 SLPM,160 kPa(绝对值),80°C,85%RH。
c 根据表P.11中的协议执行耐久性测试。
d 大批量生产成本(每年50万套80 kW系统)。
e 参考美国能源部15015氢能和燃料电池项目记录“燃料电池系统成本-2015”。
系统
上标注释:
技术目标不包括储氢、电子和驱动。
b 直流输出能量与燃料氢低热值的比率。峰值效率低于额定功率的25%。
c W. Sung, Y. Song, K. Yu, and T. Lim, "Recent Advances in the Development of Hyundai-Kia’s Fuel Cell Electric Vehicles," SAE Int. J. Engines 3.1 (2010): 768–772, doi: 10.4271/2010-01-1089。
d J.Juriga,Hyundai Motor Group's Development of the Fuel Cell Electric Vehicle,May 10, 2012。
e U. Eberle, B. Muller, and R von Helmolt, Energy & Environmental Science 5 (2012): 8780。
f 大批量生产成本(每年50万套系统)。
g 与电堆技术目标注释h相同。
h 基于2010年SAE世界大会报告平均值(W. Sung, Y-I. Song, KKH Yu, T.W. Lim, SAE-2-10-01-1089)。
i 氢气的低热值能量,包括低温启动过程中消耗的电能。
j 与电堆技术目标注释j相同。
k 与电堆技术目标注释i相同。
l 与电堆技术目标注释k相同。
m 在规定温度下浸泡8小时。
n 资讯:本田公司展示FCX概念车,2006年9月25日;美联社,丰田公司开发了新型燃料电池混合动力车,2008年6月6日。
附表和附图:
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
北极星氢能网获悉,浙江嘉兴日前印发《嘉兴市推动经济高质量发展若干政策(2025年版)》。通过最新政策获悉,嘉兴市不断加快构建嘉兴特色现代化产业体系,紧紧围绕“135N”先进制造业集群发展,培育壮大新兴产业,积极前瞻布局未来产业,推动“两化”改造提速提质提效,推动历史经典产业高质量传承发展
2025年氢燃料电池产业的开端并不顺利。多家燃料电池车企宣布破产倒闭,燃料电池企业“卖身”求存或改变战略,全球范围内氢能投资收紧,每一个信号都在暗示:这场洗牌,比预想中来得更猛烈。但产业“先驱”丰田的氢能步伐依旧坚定,通过技术产业化迭代、应用范围拓宽、氢能生态打造等,开启了其氢能战略
北极星氢能网获悉,2024年9月,龙华区出台《深圳市龙华区促进新能源产业高质量发展若干措施》(以下简称《若干措施》),该措施包括重点支持机构和领域、推动产业集聚发展、提升产业创新能力、拓展技术应用场景等方面内容,共形成18条扶持措施。提出将重点支持整车制造、电机电控、动力电池、充电设施
北极星氢能网获悉,3月18日上午,空港磬德公司首批50台氢能源运输车交车仪式在河南郑州航空港区举办。据悉,空港磬德公司此次交付的50辆宇通氢燃料电池重卡,搭载行业领先的氢燃料电堆技术,具备零排放、长续航、高载重等优势,配套建设的1500kg/12h加氢撬装站已正式投运,形成“车辆运营+加氢服务”一
3月18日,空港磬德50辆氢能源重卡交付仪式在航空港区举行。据悉,该批氢能重卡的交付,是郑州市抢抓新能源产业机遇、践行“双碳”战略的重要成果,也是航空港区推动交通绿色转型的里程碑。氢燃料电池汽车以其零排放、高效率的特点成为未来汽车发展的重要方向。近年来,郑州积极发挥燃料电池汽车示范应
北极星氢能网了解到,3月18日,洛阳市人民政府发布《关于洛阳市减污降碳协同创新试点建设实施方案》的通知,通知指出:加快推动氢能产业发展。持续推进氢能产业链条本地化、生产规模化、运营集约化,基本建立以工业副产氢、化石原料制氢和可再生能源制氢相结合的氢能供给体系,建设1-2个能源制氢示范项
北极星氢能网获悉,近日,河南郑州市启动2023年燃料电池汽车示范应用奖励自己申报工作。详情如下:郑州市工业和信息化局郑州市财政局关于组织郑州市2023年燃料电池汽车示范应用奖励资金申报工作的通知各有关企业:为贯彻落实《关于开展燃料电池汽车示范应用的通知》(财建〔2020〕394号)和《关于启动
北极星氢能网获悉,近日,洛阳市人民政府发布关于洛阳市减污降碳协同创新试点建设实施方案的通知,通知指出要加快推动氢能产业发展。持续推进氢能产业链条本地化、生产规模化、运营集约化,基本建立以工业副产氢、化石原料制氢和可再生能源制氢相结合的氢能供给体系,建设1—2个能源制氢示范项目。打造
内蒙古包头市依托丰富的风光资源及工业基础,正加速构建氢能全产业链生态。作为自治区氢能产业重要承载区,园区聚焦“精准招商”,以链式思维推动氢能产业集群发展,为区域绿色转型注入新动能。招商引资“敲门行动”开展以来,园区投资促进部锚定关键环节,靶向招引行业内重点企业。围绕“风光制氢—储
北极星氢能网获悉,3月14日,邯郸市行政审批局正式向华丰清洁能源有限公司颁发了全省首张经营类别含氢气的燃气经营许可证,标志着邯郸市氢能产业发展迈出关键一步。邯郸作为华北地区重要的工业城市,近年来高度重视氢能产业的发展,并将其作为推动能源结构调整和产业转型升级的重要抓手。此次首张含氢
北极星氢能网获悉,日前,中国科学院长春应用化学研究所燃料电池测试系统采购项目进行国内招标。招标公告显示,本项目采购最高限价:80.000000万元(人民币),项目地点为长春市。公告显示,该燃料电池系统测试系统将用于质子/阴离子交换膜(PEM/AEM)燃料电池关键材料、部件的测试使用,能够快速了解不
1月2日,中国能建中电工程黑龙江院中标大庆市40兆瓦氢燃料电池发电项目EPC总承包工程。该项目位于黑龙江省大庆市,装机容量40兆瓦,由40套1兆瓦发电子系统组成,采用并网发电模式运行,计划2025年底建成投产。相较于传统火力发电厂和其他类型调峰电站,项目采用质子交换膜燃料电池发电机组,具备更强的
北极星氢能网获悉,12月4日,广东联合产权交易中心发布广东广晟氢能有限公司增资项目,拟募集资金总额3200万元以上。据资料显示,广晟氢能是广东省首个以氢能为主导产业的省属国企控股企业、首个以燃料电池全产业为主营业务的省属国企、全国首个质子交换膜燃料电池与固体燃化物燃料电池技术交叉协同发
北极星氢能网获悉,10月23日下午,一辆载有202千克的质子交换膜燃料电池氢气的长管罐车缓缓驶离庆阳石化发油发气台,标志着由庆阳石化生产的首批质子交换膜燃料电池氢气正式发售。质子交换膜燃料电池氢气的成功生产并投放市场是公司着眼未来产业发展方向、培育氢能战略性新兴产业、推动公司向综合能源
北极星氢能网获悉,9月25日,为加快推动氢气质量与标准高质量发展,依托国华投资(氢能公司)氢能研究院自主研制的全国首台零碳移动氢气品质检测车开展的“氢能质量万里行”行动在上海正式启程,完成了上海嘉定氢能港加氢站和上海(临港)中国石油同汇路加氢站加氢机出口氢气产品在线分析检测。本次检
9月10日,上海市浦东新区科技和经济委员会发布2024年度浦东新区科技发展基金产学研专项(未来车)申报指南。方案中涉及燃料电池汽车关键零部件,提及了其研究内容和执行期限。原文如下:2024年度浦东新区科技发展基金产学研专项(未来车)申报指南根据《浦东新区加快经济恢复迈出引领区建设更快步伐实
北极星氢能网获悉,2024年7月17日,由全国燃料电池及液流电池标准化技术委员会(以下简称“标委会”)归口的《质子交换膜燃料电池第4部分:电催化剂测试方法》(计划编号:20241798-T-604)国家标准修订工作组启动会以线上形式召开,来自高校、科研院所、企业、检测机构等单位的50余位代表参加了会议。
近日,由国网江苏电力牵头编制的IEEE国际标准《质子交换膜燃料电池热电联产系统的动静态性能及效率测试方法导则》正式获得电气和电子工程师学会批准立项,这是江苏电力系统内首个氢能国际标准。(本文来源:微信公众号苏电牛思ID:SuDian-News)关于IEEE:全称电气与电子工程师协会(InstituteofElectr
北极星氢能网获悉,2024年6月4日,在第八届国际氢能与燃料电池汽车大会暨展览会(FCVC2024)”上,汉丞科技凭借在氢能科技领域的创新实力与深厚的产业积淀,成为众多目光的焦点。针对当前燃料电池市场的不同需求,汉丞科技依托核心材料ePTFE高强膜材,成功研发出多种具有自主知识产权的增强型全氟磺酸质
北极星氢能网获悉,5月17日,由同济大学牵头承担的国家重点研发计划“新能源汽车”重点专项“车用高温度高性能质子交换膜燃料电池电堆研制”项目启动暨实施方案论证会在嘉定校区召开。同济大学副校长、中国工程院院士童小华,国家自然科学基金委员会高技术研究发展中心能源与交通项目处处长蒋志君等出
根据国家标准化管理委员会标准制修订计划,全国氢能标准化技术委员会组织开展了《质子交换膜燃料电池汽车用氢气采样规程》(计划号:20221859-T-469)、《质子交换膜燃料电池汽车用氢气无机卤化物、甲酸的测定离子色谱法》(计划号:20221860-T-469)、《质子交换膜燃料电池汽车用氢气氦、氩、氮和烃类
北极星氢能网获悉,近日,国家重点研发计划“氢能技术”3.4项目“单套兆瓦级质子交换膜燃料电池热电联供系统设计与集成”获得科技部正式批复。该项目由亿华通牵头,联合清华大学、中科院宁波材料所、华北电力大学、中国电科院、北京交通大学等十家单位组成产学研用技术攻关团队,重点突破高效膜电极、
北极星氢能网获悉,10月23日,上海市科学技术奖再度揭晓。高功率车用燃料电池电堆关键技术及产业化应用成功2023年度上海市科学技术一等奖获奖项目优秀创新成果。详情如下:项目名称:高功率车用燃料电池电堆关键技术及产业化应用完成单位:上海交通大学完成人:易培云等奖励等级:科技进步一等奖自“碳
北极星氢能网获悉,2024年11月11日,清能公司旗下控股子公司内蒙古清能通胜新能源有限公司(以下简称“清能通胜”)隆重举行大功率燃料电池及加氢制氢核心装备产业基地投产仪式。清能通胜位于伊金霍洛旗空港物流园区,凭借清能股份二十余年在燃料电池及新型电解制氢技术领域的技术积累和丰富的批量化生
北极星氢能网获悉,10月28日下午,河南省首个绿氢绿电示范项目,龙子湖氢能联创测试中心(新乡)项目在新乡高新区氢能产业园签约。据介绍,龙子湖氢能联创测试中心(新乡)项目是由新乡高新区管委会牵头,联合龙子湖新能源实验室、河南安池氢能科技有限公司共同搭建的,面向社会服务的氢能测试平台。将
北极星氢能网获悉,6月3日,工业和信息化部、财政部、税务总局等三部门联合发布公告,调整享受车船税优惠的节能、新能源汽车产品技术要求。公告自今年7月1日起实施。此次技术调整后,政策要求燃料电池系统的额定功率不小于50kW,且与驱动电机的额定功率比值不低于50%。燃料电池启动温度不高于-30℃。燃
北极星氢能网获悉,近日,2024国际氢能与燃料电池汽车大会暨展览会(FCVC2024)在上海汽车会展中心召开,作为氢燃料电堆研发与制造的领军者,神力科技携多款氢燃料电池电堆产品、燃料电池电堆测试设备等高新技术产品亮相,吸引了众多领导和观众驻足参观。本次大会上,神力科技发布全新一代大功率石墨板
北极星氢能网获悉,5月17日,由同济大学牵头承担的国家重点研发计划“新能源汽车”重点专项“车用高温度高性能质子交换膜燃料电池电堆研制”项目启动暨实施方案论证会在嘉定校区召开。同济大学副校长、中国工程院院士童小华,国家自然科学基金委员会高技术研究发展中心能源与交通项目处处长蒋志君等出
2024年3月8日,EKPO燃料电池技术有限公司(EKPO)与中国第一汽车集团(FAW)签署了燃料电池电堆模组样件的开发和供应的合同。“NM12-Single”平台的电堆将用于一汽高端品牌“红旗”的新一代燃料电池车辆。EKPO董事总经理CaroleBrinati女士指出:“红旗在选择合作伙伴时,在产品质量和技术性能方面设定
北极星氢能网获悉,近日,鹏飞与上海氢晨、上海交大等单位共同申报的国家重点研发计划“氢能技术”重点专项“燃料电池电堆高精密度批量制造工艺与成套装备技术”已获得国家科技部批复,是鹏飞在氢能领域首个获批的国家级重点研发课题。“高精度电堆组装及成套批量制造装备技术”项目围绕国家推动能源革
近日,亿华通高温电堆研发取得了阶段性进展,首款高温电堆在中汽研新能源汽车检验中心(天津)有限公司顺利完成了高温性能检测,检测数据显示该高温电堆具有较高的输出性能。在碳达峰、碳中和的大背景下,重卡“柴改氢”、船用燃料电池等需求日益增长,国内大功率燃料电池电堆及发动机产品的研发迭代正
北极星氢能网获悉,2023年末,氢蓝时代全资子公司深科鹏沃批量交付300套燃料电池电堆,完成了年度产销任务。该批SP100电堆产品为深科鹏沃自主研发,电堆体积功率密度在4.0kW/L以上,额定效率53%-57%、最高达到60%以上,电堆寿命根据应用场景和客户需求,可以达到15000-40000小时寿命,且成本低于行业平
北极星氢能网获悉,12月6日,位于武汉经开区的国家电投华中氢能产业基地一派忙碌,新建成的氢燃料电池电堆万台套产线上,武汉绿动氢能能源技术有限公司(简称武汉绿动)的工程师们正通过机器手臂,将膜电极、双极板等上千个氢燃料电池关键核心部件进行全自动叠片组装。本月底,30套功率120KW的“氢腾”
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!