登录注册
请使用微信扫一扫
关注公众号完成登录
上标注释:
a 膜电极在温度80°C的氧气或氢气中测试,气体完全湿润,总压力为1个大气压。
b 纳米纤维支撑的14 μm PFIA膜。
c 增强和化学稳定的PFIA膜。
d 大批量生产成本(每年50万套80 kW系统)。
e 每年生产50万套系统的质子膜成本。
f 根据表P.3、表P.4和表P.5中协议进行测量。(所有附表和附图见文末)
g 可将在50 kPa压差,80℃和100%RH的条件下0.1 sccm/cm2的渗透量作为等效参考。
电催化剂
上标注释:
a 为实现系统成本目标,可能再进一步降低贵金属含量和载量。
b 额定功率工作点取决于膜电极温度。基于目标值Q/ΔTi=1.45 kW/°C,定义额定工况工作点电压V=77.6/(22.1+T[°C])。膜电极温度近似等于电堆冷却液出口温度。Q/ΔTi的定义见电堆技术指标注释i。
c 参考Steinbach等人发布的2014年“高性能、高耐久性和低成本的膜电极组件”年度价值评估。
d 基于膜电极在150 kPa绝压时的总功率,并在0.692 V和90°C下测得,满足Q/ΔT<1.45 kW/°C。若在250 kPa的绝对压力下,目标值为0.12 g/kW。
e 使用表P.1中的协议进行测量。
f 参考通用汽车公司Kongkanand等人的2014年“高活性脱硫催化剂”年度价值评估。
g 使用表P.2中的协议进行测量。
h 参考B. Popov等人2015年“用于PEM燃料电池的超低掺杂Pt阴极催化剂的开发”年度价值评估。
i 参考LANL机构P. Zelenay等人的2016年“非贵金属燃料电池阴极:催化剂的开发和电极结构设计”年度价值评估。
j 目标值相当于在载量0.1 mgPGM/cm2时催化剂质量比活性为0.44 A/mgPGM的目标。(PGM: Platinum group metal)
膜电极
上标注释:
a 大批量生产成本(每年50万套80 kWnet系统)。
b 每年生产50套系统的膜电极成本。
c 按照表P.7的耐久性试验规程,使用510催化剂(阳/阴极载量为0.2/0.4 mgPGM/ cm2)的戈尔膜电极在1.0-1.5 A/cm2电密区间电压降低10%之前的时间。
d 温度区间在80°C至最高温度或更高。根据表P.6和表P.7中的极化曲线和耐用性测试协议,测试后额定功率下降<10%。
e 根据表P.8中的协议测量,在1.2 A/cm2电密工作下电压下降小于5%。
f 使用表P.6中的极化曲线协议测量。
g 参考通用汽车公司Kongkanand等人2014年“高活性脱硫催化剂”年度进度报告。
h 使用表P.6中的极化曲线协议进行测量,但可以使用任何温度到最高工作温度的温度范围,最大入口RH为40%。额定功率工作点和电催化剂技术目标的注释b相同。
i 在绝压150 kPa时面积比功率为810 mW/cm2,在绝压250 kPa时面积比功率为1060 mW/cm2。
j 使用基于表P.6中极化曲线协议下测量的1.0 A/cm2电密运行下30°C时电压与80°C时电压之比。露点温度25°C仅用于30°C温度操作。
k 基于使用高阴极载量(0.1/0.4 mgPGM/cm2阳/阴)的Gore膜电极和SGL GDL(25BC/25BC)在LANL进行的测试。
l 使用基于表P.6中极化曲线协议下测量的1.0 A/cm2电密运行下90°C时电压与80°C时电压之比。露点温度59°C用于90°C和80°C温度操作。
m 使用基于表P.6中极化曲线协议下测量瞬态30°C时电压与80°C 1.0 A/cm2稳态工作时电压之比。露点温度25°C仅用于30°C温度操作。30°C瞬态工况指在1 A/cm2电密下持续至少15分钟,然后不改变操作条件,降低至0.1 A/cm2并持续3分钟;3分钟后,电流密度再恢复到1 A/cm2,恢复到1 A/cm2后测量电压5秒钟。
双极板
上标注释:
a 膜电极达到1000 mW/cm2性能且大批量生产(每年50万套80 kW系统)的成本。
b 每年生产50万套系统的双极板成本。
c 参考Treadstone C.H. Wang2012年“低成本质子交换膜燃料电池金属双极板”年度进展报告。
d 根据标准气体传输测试(ASTM D1434)。
e C.H. Wang(Treadstone), private communication, October 2014。
f Blunk, et al., J. Power Sources 159 (2006) 533–542。
g pH 3 0.1ppm HF, 80°C, peak active current<1e-6 A/cm2 (0.1 mV/s动态电压测试, -0.4 V to +0.6 V (Ag/AgCl)), 用Ar吹扫除气。
h Kumar, M. Ricketts, and S. Hirano, "Ex-situ evaluation of nanometer range gold coating on stainless steel substrate for automotive polymer electrolyte membrane fuel cell bipolar plate," Journal of Power Sources 195 (2010): 1401–1407, September 2009。
i pH 3 0.1ppm HF, 80°C, passive current<5e-8 A/cm2 (+0.6V (Ag/AgCl)恒电位测试超24 h),充气溶液。
j 参考GrafTech的O. Adrianowycz等人2009年“用于汽车PEM燃料电池的下一代双极板”年度进展报告。
k 包括根据Wang等人的方法测得的界面接触电阻。Wang, et al. J. Power Sources 115 (2003) 243–251 at 200 psi (138 N/cm2)。
I ASTM-D 790-10非增强和增强塑料及电绝缘材料的弯曲性能标准测试方法。
m 参考Porvair的D. Haack等人2007年“碳-碳双极板”年度进度报告。
n 根据ASTM E8M-01金属材料拉伸测试的标准测试方法或其他方法。
o 参考橡树岭国家实验室M. Brady等人的2010年“氮化金属双极板”年度进展报告。
电堆
上标注释:
该部分所指电堆不包括储氢、电子、驱动和热、水、空气管理系统等燃料电池附件。
c 净功率(电堆功率减去BOP功率)。体积是“box”体积,包括死空间。
d 资讯:丰田汽车公司于2012年9月24日宣布其未来技术发展状况。
e M. Hanlon, "Nissan doubles power density with new Fuel Cell Stack," Oct 13, 2011。
f 使用表P.6中的极化曲线协议测量。
g 大批量生产成本(每年50万套堆)。
h 根据DOE燃料电池技术办公室燃料电池子项目下开发和验证的实验室规模(laboratory scale)的最新组件分析,且每年生产50万套。
i 与膜电极技术目标注释d相同。
j 参考J. Kurtz等人“年度燃料电池电动汽车评估”(2015年年度价值评估)报告,10%电压降级。
k 根据表P.8中的协议测量,在1.2 A/cm2电密工况点的电压下降小于5%。
l Q/ΔTi=[电池组功率(90 kW)x(1.25 V-额定功率下的电压)/(额定功率下的电压)]/[(电池组冷却液温度-环境温度]]。技术目标假设80 kW净功率需要90 kW功率电堆,并且使用表P.6中的极化曲线协议进行测量(入口加湿和冷却液出口温度除外)。入口加湿最高RH40%,冷却液出口温度可达最高工作温度,阴阳极入口压力最高为150 kPa(绝对值)。
m 基于0.67 V电压和电堆冷却液出口温度80°C。
n 与膜电极注释j相同。
o 与膜电极注释I相同。
p 与膜电极注释m相同。
空压机
上标注释:
a 完全集成的空压机系统在台架测试中电机控制器的输入功率。完全集成空压机系统包括控制系统电子、过滤器以及用于冷却的其他空气设备。
b 压缩机:流量92 g/s,排出压力为2.5 bar(绝对值);入口条件40°C,25%RH。膨胀机:流量88 g/s,入口压力为2.2 bar(绝对),入口条件70°C,100%RH。
c 压缩机:流量23 g/s,最小排出压力为1.5 bar(绝对压力);入口条件40°C,25%RH。膨胀机:流量23 g/s,入口压力为1.4 bar(绝对),入口条件70°C,100%RH。
d 压缩机:流量4.6 g/s,最小排出压力为1.2 bar(绝对压力);入口条件40°C,25%RH。膨胀机:流量4.6 g/s,<压缩机排气压力,入口条件70°C,20%RH。
e 根据表P.10中的协议执行耐久性测试。
f 重量和体积包括电机和电机控制器。
g 每年50万套制造量。
h 包括每年制造50万套系统的压缩机、膨胀机和电机控制器的成本。
加湿器
上标注释:
a 参考2013年2月戈尔报告”低成本、高性能燃料电池加湿器的材料和模块“。
b 进入干燥空气:干气流量3000 SLPM,183 kPa(绝对值),80°C,0%RH。进入湿空气:干气流量2600 SLPM,160 kPa(绝对值),80°C,85%RH。
c 根据表P.11中的协议执行耐久性测试。
d 大批量生产成本(每年50万套80 kW系统)。
e 参考美国能源部15015氢能和燃料电池项目记录“燃料电池系统成本-2015”。
系统
上标注释:
技术目标不包括储氢、电子和驱动。
b 直流输出能量与燃料氢低热值的比率。峰值效率低于额定功率的25%。
c W. Sung, Y. Song, K. Yu, and T. Lim, "Recent Advances in the Development of Hyundai-Kia’s Fuel Cell Electric Vehicles," SAE Int. J. Engines 3.1 (2010): 768–772, doi: 10.4271/2010-01-1089。
d J.Juriga,Hyundai Motor Group's Development of the Fuel Cell Electric Vehicle,May 10, 2012。
e U. Eberle, B. Muller, and R von Helmolt, Energy & Environmental Science 5 (2012): 8780。
f 大批量生产成本(每年50万套系统)。
g 与电堆技术目标注释h相同。
h 基于2010年SAE世界大会报告平均值(W. Sung, Y-I. Song, KKH Yu, T.W. Lim, SAE-2-10-01-1089)。
i 氢气的低热值能量,包括低温启动过程中消耗的电能。
j 与电堆技术目标注释j相同。
k 与电堆技术目标注释i相同。
l 与电堆技术目标注释k相同。
m 在规定温度下浸泡8小时。
n 资讯:本田公司展示FCX概念车,2006年9月25日;美联社,丰田公司开发了新型燃料电池混合动力车,2008年6月6日。
附表和附图:
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
北极星氢能网获悉,近日,由国家市场监督管理总局批准筹建的国家氢燃料电池汽车质量检验检测中心(以下简称“中心”)在北京大兴国际氢能示范区正式投入使用,标志着我国在氢能检测领域迈出了重要一步,为氢燃料电池汽车产业的高质量发展提供了坚实的技术支撑。填补空白,打造全链条检测平台中心总投资
6月10日,河南省工业和信息化厅办公室发布关于贯彻落实《加快工业领域清洁低碳氢应用实施方案》的通知。方案提出:鼓励各地制定可再生能源电力制氢支持政策,鼓励可再生能源制氢项目参与电力市场,通过削峰填谷等措施降低制氢成本。原文如下:河南省工业和信息化厅办公室关于贯彻落实《加快工业领域清
北极星氢能网获悉,近日,遂宁市经济和信息化局发布《关于市八届人大五次会议第85036号建议办理答复的函》。答复函中指出,四川省利用丰富的水风光资源,发展绿氢制备和应用,已在成都、德阳、攀枝花、雅安、内江、资阳、凉山等市(州)开展氢燃料电池汽车示范,累计推广燃料电池汽车619辆,建成加氢站
北极星氢能网获悉,6月8日,重塑能源发布公告,为进一步提升公司的整体竞争力,为集团经营活动筹集额外资金及促进集团业务稳定发展,于2025年6月7日,董事会决议建议根据特别授权发行认购股份,且公司与认购方订立认购协议,据此公司有条件同意配发及发行,而认购方有条件同意认购合共197.18万股内资股
北极星氢能网获悉,6月10日,湖北省首批500台氢能两轮车在湖北工程职业学院新校区正式投入运营。此次投放的500台氢能两轮车,该车由武汉众宇动力系统科技有限公司(以下简称众宇)自主研发,搭载了众宇氢燃料电池系统及低压固态储氢系统,采用轻量化电堆和智能化电控系统设计,一次换氢可以行驶90公里
6月10日,厦门市发展和改革委员会发布《厦门市氢能产业高质量发展行动计划(2025—2027年)(征求意见稿)》。其中提出,建立多渠道氢源供应体系,逐步构建低成本、低碳化的多元制氢体系。在产业发展初期,加强同周边地区氢能资源的联动协调,与漳州古雷港经济开发区、泉州泉港石化工业园区、泉惠石化
6月10日,厦门市发展和改革委员会征求《厦门市氢能产业高质量发展行动计划(2025—2027年)(征求意见稿)》意见。其中提出,打造氢能产业技术创新策源地,加强关键核心技术攻关。布局建设氢能产业创新支撑平台。完善氢能标准体系建设。详情如下:厦门市氢能产业高质量发展行动计划(2025—2027年)(
编者按党的二十大报告提出,要加快发展方式绿色转型,推动经济社会发展绿色化、低碳化,倡导绿色消费,推动形成绿色低碳的生产方式和生活方式。开展绿色电力交易是推进能源绿色低碳转型的重要途径,是推动可再生能源持续健康发展的重要抓手。近年来,国家大力推动绿色电力市场建设并取得显著成效,购买
北极星氢能网获悉,近日,国家能源集团氢能科技有限责任公司发生工商变更,注册资本由1.88亿人民币增至6.61亿人民币,增幅约252%,同时,刘玮由执行董事改任董事,任担任经理一职。该公司成立于2019年6月,法定代表人为刘玮,经营范围含氢能源及燃料电池相关装备与技术的开发、技术推广、技术服务、技
氢能作为一种清洁、高效的能源载体,以其独特的优势,正在被全球视为未来能源体系的重要组成部分。在“四个革命、一个合作”能源安全新战略的指导下,我国正加快推动氢能全产业链发展。近期,国家能源局发布《中国氢能发展报告(2025)》(以下简称《报告》),《报告》总结了2024年我国氢能产业在生产
北极星储能网获悉,6月7日,源电新能源全固态电池产业基地签约。项目计划总投资约25亿元,由浙江路贸通控股集团投资,将建设高端数字化工厂(固态系列产品)5GWh固态电池(兼容半固态)生产线,预计达产后年产值50亿元,税收1.5亿元,未来将导入锂空气燃料电池相关研发生产。同日下午,与产业股东路贸
6月10日,河南省工业和信息化厅办公室发布关于贯彻落实《加快工业领域清洁低碳氢应用实施方案》的通知。方案提出:鼓励各地制定可再生能源电力制氢支持政策,鼓励可再生能源制氢项目参与电力市场,通过削峰填谷等措施降低制氢成本。原文如下:河南省工业和信息化厅办公室关于贯彻落实《加快工业领域清
2025年,交通运输体系的绿色低碳转型成为政策焦点之一,是推动高质量发展的重要抓手。在“双碳”目标与国七排放标准升级的双重驱动下,氢燃料电池技术被列为重型车辆零碳转型的重要路径。美国戈尔的GORE-SELECT®质子交换膜凭借其高效能、耐久性等特性,将推动氢燃料电池的应用发展,成为重型车辆行业
北极星氢能网获悉,日前,苏州科润新材料股份有限公司科创板IPO辅导备案报告发布。辅导备案报告显示,科润新材5月9日与民生证券股份有限公司签署IPO辅导协议,法务和财务中介分别由国浩律师(苏州)事务所和立信会计师事务所担任。科润集团于2008年在江苏淮安成立,总部位于苏州市吴江开发区,地理区位
北极星氢能网获悉,近日,国家知识产权局信息显示,国家电投集团氢能科技发展有限公司和武汉绿动氢能能源技术有限公司联合申请了一种质子交换膜及其制备方法和应用的专利。涉及燃料电池技术领域,该专利于2025年4月11日公布。专利摘要显示,具体涉及一种质子交换膜及其制备方法和应用。所述质子交换膜
北极星氢能网获悉,3月27日,湖南省工业和信息化厅征集工业低碳氢应用场景,重点围绕高耗能、高排放行业,征集一批技术先进、示范性强、经济效益显著的低碳氢应用项目,打造湖南氢能产业创新应用标杆,为全省工业领域氢能替代提供借鉴经验。原文如下:关于征集工业低碳氢应用场景的通知各市州工业和信
北极星氢能网获悉,3月20日,由江苏省船舶行业管理办公室指导,江苏省船舶工业行业协会、江苏省储能行业协会主办,中船动力(集团)有限公司、江苏省港口集团有限公司、江苏省造船工程学会支持的CESC2025第三届国际储能大会——“新能源船舶产业发展供需对接会”在南京国际博览中心举办。其中,江苏悦
2月22日,大庆市40MW氢燃料电池发电项目氢燃料电池发电机组设备采购中标结果发布,中标人:深圳市氢蓝时代动力科技有限公司,中标金额:3.7亿元。据悉,大庆市40MW氢燃料电池发电项目位于黑龙江省大庆市,装机容量40兆瓦,由40套1兆瓦发电子系统组成,采用并网发电模式运行,计划2025年底建成投产并建
最近,国网江苏省电力有限公司牵头申报的3项2024年度国家重点研发计划项目获批立项,这是该公司首次在同一年度新增3项牵头国重项目,数量居国网系统第一。今年的另外3项,还包括国家重大专项项目1项、国家自然基金面上项目2项。这些成果不仅是技术上的突破,更是推动行业发展、保障能源供应的关键力量
1川渝特高压、渝黔背靠背、中尼联网工程7标包中能建西南院中标川渝特高压加强工程、渝黔背靠背工程、中尼电力联网工程(中国段)共计7个标包。中标项目包含川渝特高压加强工程4项,渝黔背靠背工程1项,中尼电力联网工程(中国段)2项,新建1000千伏变电站1座,#xB1;65千伏换流站1座,1000千伏线路2×85
北极星氢能网获悉,1月16日,新工绿氢自研的氢燃料电池系统测试平台V1.0版正式发布。该平台按照GB/T24554-2022燃料电池发动机性能试验方法、GB/T34872-2017质子交换膜燃料电池供氢系统技术要求、GB/T18216.4-2007等要求设计研发。测量范围覆盖5KW-200KW氢燃料电池发动机系统。该平台是用于评估和优化氢
1月2日,中国能建中电工程黑龙江院中标大庆市40兆瓦氢燃料电池发电项目EPC总承包工程。该项目位于黑龙江省大庆市,装机容量40兆瓦,由40套1兆瓦发电子系统组成,采用并网发电模式运行,计划2025年底建成投产。相较于传统火力发电厂和其他类型调峰电站,项目采用质子交换膜燃料电池发电机组,具备更强的
北极星氢能网获悉,近日,由国家市场监督管理总局批准筹建的国家氢燃料电池汽车质量检验检测中心(以下简称“中心”)在北京大兴国际氢能示范区正式投入使用,标志着我国在氢能检测领域迈出了重要一步,为氢燃料电池汽车产业的高质量发展提供了坚实的技术支撑。填补空白,打造全链条检测平台中心总投资
2025年,交通运输体系的绿色低碳转型成为政策焦点之一,是推动高质量发展的重要抓手。在“双碳”目标与国七排放标准升级的双重驱动下,氢燃料电池技术被列为重型车辆零碳转型的重要路径。美国戈尔的GORE-SELECT®质子交换膜凭借其高效能、耐久性等特性,将推动氢燃料电池的应用发展,成为重型车辆行业
北极星氢能网获悉,5月25日,鄂东产业基金管理有限公司与北京氢璞创能科技有限公司携手打造的氢璞创能项目正式落地大冶市。该项目总投资3亿元,聚焦燃料电池电堆及系统生产领域,计划建设现代化生产线基地及配套实验测试中心。一期工程投产后,预计三年内累计销售额不低于3亿元,将有力带动氢能上下游
国氢科技紧跟国家“双碳”目标引领构建氢能全产业链生态布局全国6大核心制造基地从研发创新到规模化生产这些基地如何赋能绿氢时代?让我们一探究竟!国家电投华中氢能产业基地国内规模最大、产品链最完整的氢能产业基地依托长江经济带区位优势,打造“制-储-运-用”一体化闭环自主研发的质子交换膜突破
北极星氢能网获悉,5月26日,山西省科技厅对《关于“切实加大新能源的政策支持力度尽快出台全省支持氢能源应用市场的政策”的建议》进行答复,其中指出下一步工作将着力提升企业创新主体地位;持续提升基础研究、应用基础研究能力;加速氢能科技成果转化。关于省十四届人大三次会议第1827号建议的答复
北极星储能网讯:2025年5月,据相关报道孚能科技新获得一项实用新型专利授权,储能系统专利引发行业关注,涉及一种热能自适应循环燃料电池电堆结构。旨在提升燃料电池性能一致性及寿命,专利名为“电池箱体及电池包”新型公开了一种电池箱体及电池包,是电池箱体中隔板设置在下箱体内,通过紧固上盖和
北极星氢能网获悉,5月8日,工业和信息化部科技司发布首批工业和信息化部重点培育中试平台初步名单公示,242个平台入选,其中有6个平台涵盖氢能项目,分别是阳光氢能MW级水电解制氢中试平台、氢能储运装备中试平台、氢燃料电池电堆及关键零部件中试平台、东方电气氢产业科技中试平台、辽宁东大氢冶金—
北极星氢能网获悉,近日,青岛康普顿科技股份有限公司发布关于控股子公司青岛氢启新能源科技有限公司(简称“氢启科技”)对外投资进展暨注销其全资子公司氢启(淄博)新能源科技有限公司(简称“氢启淄博”)的公告。公告显示,因市场环境的变化,同淄博市桓台县人民政府签署氢启燃料电池电堆项目投资
北极星氢能网获悉,近日,据湖北省科技厅介绍,武汉经开区军山新城,东风氢燃料电池的汽车忙碌穿梭。每天,这辆车都要来回跑好几趟,接受可靠性和耐久性的重重考验。东风汽车研发总院副总工程师张剑介绍,双极板和膜电极组成一块电池板,数百对电池板“手拉手”组成一个燃料电池电堆。电堆是氢燃料电池
4月23日,我国首款搭载低压常温固态储氢装置的燃料电池乘用车在2025上海车展首次亮相,中国科学技术协会主席万钢作现场指导。在上海市科委支持下,该款车型由上汽集团、捷氢科技等单位共同打造,有望在燃料电池汽车规模化示范应用领域实现重大突破。该款车型搭载了捷氢科技专为乘用车(尤其EREV车型)
4月18日,四川省经信厅关于印发《四川省新能源产业链建圈强链工作方案(2025—2027年)》的通知,通知指出,到2027年,主要承载地和协同发展地融合态势基本形成,新能源产业链关键材料、核心技术和装备自主可控水平大幅提升,市场机制、标准体系和管理体制更加健全,链主链核企业规模实力不断壮大,产
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!