登录注册
请使用微信扫一扫
关注公众号完成登录
式中:f1f1为日前调度优化模型的目标函数,代表系统运行成本;fG,tfG,t、ferss,tferss,t、fDG,tfDG,t、fload,tfload,t分别代表常规机组、储能电站(包含抽水蓄能和电化学储能)、分布式能源机组和用户负荷的成本函数;NSNS为场景个数;psps为第s个场景发生的概率系数;NG为常规机组数量;PGi,t,sPGi,t,s为第i个常规机组在s场景下t时刻的发电量;aiai、bibi、cici分别为第i台常规机组的发电成本系数;SiSi为第i台常规机组的启停成本系数;uGi,tuGi,t为第i台常规机组在t时刻的启停状态,1为启动,0为停止;NerssNerss为储能电站个数;NbtNbt为电化学储能个数;Perss,i,t,sPerss,i,t,s为储能电站i在t时刻s场景下的出力量;C(Perss,i,t,s)C(Perss,i,t,s)为储能电站成本函数;W(Perss,i,t,s)W(Perss,i,t,s)为储能电站的维护成本函数;πbtπbt代表电化学储能的单位时间折旧成本系数;ubti,t,subti,t,s代表电化学储能站i在t时刻的启停状态;NDG代表分布式新能源的机组数量;PDGi,t,sPDGi,t,s代表第i个分布式机组在t时刻s场景下的出力;C(PDGi,t,s)C(PDGi,t,s)代表分布式机组在t时刻s场景下的成本函数;uDGi,t,suDGi,t,s为分布式机组的启停状态;kc,DGkc,DG代表弃风(弃光)惩罚成本系数;PpreDG,t,sPDG,t,spre代表分布式能源在场景s下t时刻的预测出力;kIDRAkIDRA、kIDRB,skIDRB,s分别为A类和B类IDR的成本系数;Δ|PIDRA,t|Δ|PIDRA,t|为A类IDR在t时刻调用量;Δ|PIDRB,t,s|Δ|PIDRB,t,s|为B类IDR在t时刻s场景调用量;kc,loadkc,load为负荷失电惩罚系数;Ploss,t,sPloss,t,s为负荷在t时刻s场景的失电量。
4.1.2 约束条件
1)功率平衡约束条件。
式中:DfixedDfixed为负荷中不随电价改变的部分;ΔPPDR,tΔPPDR,t为PDR负荷在t时刻的变化量;ΔPIDRA,tΔPIDRA,t为A类IDR负荷在t时刻的变化量;ΔPIDRB,t,sΔPIDRB,t,s为B类IDR负荷在t时刻场景s下的变化量。
2)常规机组运行约束条件。
①机组出力约束条件。
PminGi≤PGi,t,s≤PmaxGiPGimin≤PGi,t,s≤PGimax(4)
式中PminGiPGimin和PmaxGiPGimax分别为第i个常规机组出力上、
下限。
②机组爬坡约束条件。
{PGi,t,s−PGi,t−1,s≤ui,tRiPGi,t−1,s−PGi,t,s≤ui,t−1Ri{PGi,t,s−PGi,t−1,s≤ui,tRiPGi,t−1,s−PGi,t,s≤ui,t−1Ri(5)
式中RiRi为第i个常规机组的爬坡率。
3)分布式新能源出力约束条件。
0≤PDG,i,t,s≤PpreDG,i,t,s0≤PDG,i,t,s≤PDG,i,t,spre(6)
新能源发电的出力应当小于预测值。
4)储能电站运行约束。
①抽水蓄能储能电站约束条件。
抽水蓄能电站的约束条件主要是水库的可容纳水量约束、受到抽防水速率影响的爬坡率约束。
⎧⎩⎨⎪⎪⎪⎪Pminwater,t,s≤Pwater,t,s≤Pmaxwater,t,sVminPump≤Vwater≤VmaxPump|Pwater,t,s−Pwater,t−1,s|≤ΔPR′′{Pwater,t,smin≤Pwater,t,s≤Pwater,t,smaxVPumpmin≤Vwater≤VPumpmax|Pwater,t,s−Pwater,t−1,s|≤ΔPR″(7)
式中:Pminwater,t,sPwater,t,smin和Pmaxwater,t,sPwater,t,smax分别代表抽水电站的上下网电量的上、下限;VminPumpVPumpmin和VmaxPumpVPumpmax代表抽水蓄能电站的储水量上、下限;ΔPR′′ΔPR″代表抽水蓄能电站的爬坡率。
②电化学储能电站约束条件。
电化学储能主要受逆变器额定功率和储能电站的额定充放电功率约束。
{Pchaelec,t,s≤Pelec,t,s≤Pdiselec,t,sSSOCmin≤SSOCt,s≤SSOCmax{Pelec,t,scha≤Pelec,t,s≤Pelec,t,sdisSSOCmin≤SSOCt,s≤SSOCmax(8)
式中:Pchaelec,t,sPelec,t,scha和Pdiselec,t,sPelec,t,sdis分别是逆变器的额定充电功率和额定放电功率;SSOC为储能电站荷电状态;上下限;SSOCmaxSSOCmax、SSOCminSSOCmin为储能电站荷电状态上下限。
5)传输线的输电功率约束。
−Pmaxij≤Bij(θi,t,s−θj,t,s)≤Pmaxij−Pijmax≤Bij(θi,t,s−θj,t,s)≤Pijmax(9)
式中:PmaxijPijmax为节点ij之间传输线的最大输送功率;BijBij为节点ij之间的电纳;θi,t,sθi,t,s为i节点s场景t时刻的相角。
6)各场景调节约束调节。
{|PGi,t,s−PGi,t,bs|≤ψi|Perss,t,s−Perss,t,bs|≤ψerss{|PGi,t,s−PGi,t,bs|≤ψi|Perss,t,s−Perss,t,bs|≤ψerss(10)
式中:PGi,t,bsPGi,t,bs和Perss,t,bsPerss,t,bs分别为常规机组和储能电站的基准场景出力值;ψiψi和ψerssψerss分别为常规机组和储能电站的灵活调节能力。
7)各类DR资源的约束条件。
PminPDR≤PPDR,t≤PmaxPDRPPDRmin≤PPDR,t≤PPDRmax(11)
{0≤P+IDRA,t≤P+,maxIDRA0≤P−IDRA,t≤P−,maxIDRA{0≤PIDRA,t+≤PIDRA+,max0≤PIDRA,t−≤PIDRA−,max(12)
{0≤P+IDRB,t≤P+,maxIDRB0≤P−IDRB,t≤P−,maxIDRB{0≤PIDRB,t+≤PIDRB+,max0≤PIDRB,t−≤PIDRB−,max(13)
式中:PminPDRPPDRmin和PmaxPDRPPDRmax分别为PDR负荷的调用量下限和上限;P+IDRA,tPIDRA,t+和P+IDRB,tPIDRB,t+分别为A、B类IDR增加负荷量;P−IDRA,tPIDRA,t−和P−IDRB,tPIDRB,t−为A、B类IDR减少负荷量。
4.1.3 优化结果
通过优化算法对日前调度模型进行求解,将:1)常规机组启停状态;2)抽水蓄能机组充放电量;3)PDR调用量,A类IDR调用量。作为确定条件代入之后的日内和实时协调调度模型中。
4.2 日内滚动调度优化模型
日内滚动优化调度通常是将当前状态下实测的系统数据反馈到日内滚动优化模型中,结合未来4 h内时间尺度为15 min的风光负荷的预测数据来求解最优控制序列,
4.2.1 目标函数
日内滚动优化的目标函数同样为系统运行成本最小,相较于日前调度模型,滚动模型中改变的只有IDR类负荷的调用量成本,由于A类已经确定,负荷总成本为B类和C类IDR之和。fG,tfG,t、ferss,tferss,t、fDG,tfDG,t同上。
minf2=∑t=124fG,t+ferss,t+fDG,t+fload,tminf2=∑t=124fG,t+ferss,t+fDG,t+fload,t(14)
fload,t=∑s=1NSps[kIDRB,sΔ|PIDRB,t|+kIDRC,sΔ|PIDRC,t,s|+kc,loadPloss,t,s]fload,t=∑s=1NSps[kIDRB,sΔ|PIDRB,t|+kIDRC,sΔ|PIDRC,t,s|+kc,loadPloss,t,s]
(15)
式中:kIDRC,skIDRC,s为C类IDR的成本系数;Δ|PIDRC,t,s|Δ|PIDRC,t,s|为C类IDR在t时刻s场景的调用量。
4.2.2 约束条件
由于日内滚动模型同样采用了多场景随机规划方法来抑制不确定性带来的不利因素,因此其约束条件与日前调度模型中基本一致。多一条C类IDR的约束条件。在此不重复赘述。
4.2.3 优化结果
日内调度在日前调度已经确定常规机组启停状态、抽水蓄能机组充放电量、PDR调用量,A类IDR调用量的基础上(将其设置为已知代入计算),最终将确定:
1)分布式新能源机组启停计划。
2)电化学储能电站充放电量。
3)B类IDR负荷调用量。
4.3 实时调度模型
由于实时调度的时间尺度为5 min,对调度决策量的鲁棒性要求更高,适用于日前调度和日内滚动模型的多场景随即规划方法变得不再适用。本文采用数学模型中的机会约束方法,通过设置一定的约束条件,使得约束条件成立的概率不得小于某一置信水平。
4.3.1 目标函数
对于实时协调调度模型因为采用机会约束方法,设置备用容量的约束条件,使得约束条件小于置信水平,从而确定系统所需的旋转备用。
式中:fR,tfR,t为系统旋转备用成本;kR,GkR,G、kR,DGkR,DG、kR,ersskR,erss分别为常规机组、分布式机组和抽水蓄能储能的旋转备用成本系数;R+Gi,tRGi,t+、R−Gi,tRGi,t−分别为常规机组的正、反旋转备用;R+wateri,tRwateri,t+、R−wateri,tRwateri,t−分别为抽水蓄能储能电站的正、反旋转备用。
4.3.2 约束条件
日内调度确定了常规机组启停状态、PDR和A类IDR、抽水蓄能储能站的调度量,日内滚动确定了分布式机组启停状态、B类IDR和电化学储能站的调度量。因此在此只剩下了功率平衡约束条件、C类和D类的IDR约束条件和备用容量约束条件。而系统约束条件和IDR约束条件与前面基本相同,本节不再赘述。主要阐述备用容量约束条件。
式中:Pr{}Pr{}为置信度表达式;αα,ββ分别是满足正旋转备用容量和负旋转备用容量的置信度,取值为0.95。
4.3.3 优化结果
对实时调度模型进行优化计算,可以确定以下优化结果:
1)所有机组启停状态和出力。
2)旋转备用容量。
3)C类IDR和D类IDR调用量。
5 算例分析
5.1 算例介绍
为能够实际解决新能源消纳受限严重的情况,本文调研了华东区域某新能源消纳受限严重的区域电网,以此作为算例对本文所提调度策略进行验证。该区域电网包含6个常规火电机组,分别位于节点1、2、5、8、11、13处,火电机组参数见附录A表A1。在节点2处接入一个400 MW的风电场和一个50 MW/200 MW•h的电化学储能电站,在节点8接入一个100 MW/400 MW•h的抽水蓄能电站。拓扑图见附录A图A2。假设PDR变化范围为总负荷的10%,A类、B类、C类IDR的调用量不超过总负荷的5%,D类IDR的调用量不超过总负荷的3%。为简化计算过程,IDR的补偿成本系数均采用固定值,数值见附录A表A2。模型在MATLAB平台中的YALMIP工具包调用CPLEX软件进行求解。
负荷和风电的预测均根据实测数据加上白噪声生成(预测误差服从正态分布),其中实测曲线的时间尺度从1 h的基础上拓展到15 min,即每小时内的4个数据相同,都是每个小时点的数据,共96个数据点。负荷的日前、日内、实时的预测误差分别为3%、1%、0.5%。风电的日前、日内、实时的预测误差分别为5%、3%、1%。负荷和风电实测和预测曲线见附录A图A2。
5.2 调度结果分析
图1为风电的正调峰和反调峰2种场景下的调度计划,每一条曲线为前一条曲线加对应机组(或DR资源)出力的总和。图2为2种场景下DR资源调用计划。图3为2种场景下抽水蓄能储能电站和电化学储能电站的调度计划。
分别对2种场景调度计划进行分析,可以获得以下结论:
1)当风电正调峰时,风电出力曲线趋势与负荷曲线基本吻合,风电高发时段为日中(10:00—14:00)与午后(16:00—19:00),此段时间因为系统非需求响应型负荷量高,IDR类资源调用量比反调峰场景同时段少。
2)当风电反调峰时,风电出力曲线趋势与负荷曲线不吻合,风电高发时段为凌晨(2:00—6:00)
图1 系统调用计划Fig. 1 System scheduling plan
图2 DR资源调用计划Fig. 2 DR resource scheduling plan
和傍晚(16:00—21:00),此时段系统非需求响应型负荷低,通过IDR资源正调用和储能电站充电来提高该时段的风电消纳水平。
图3 储能电站调用计划Fig. 3 Energy storage power station scheduling plan
3)从图2各部分调用计划可以看出,主要还是由常规机组承担功率调整,完成调峰调频任务,IDR类因为调用量限制较小,只能对变化较为剧烈的功率调整量做出响应。
4)从图3各类DR资源调用情况基本可以看出,在白天时IDR资源主要用于削峰以及平抑风电波动,在晚上时,IDR资源主要用于填谷。
5)从图2看出风电正调峰时,储能调用量比风电反调峰场景下更小。面对风电突变与负荷突变时段,抽水蓄能无法做到快速响应调节,电化学储能可以完成快速响应调节。2种储能电站的存在能够更好地提供削峰填谷能力。结合图3,风电的弃风情况基本被消除。
5.3 调度模式策略对比分析
为能够体现2种储能电站接入对提高风电消纳率,减少弃风现象,降低系统成本的作用。本文同样在风电的正、反调峰2种场景下,设置对比案例进行讨论。
调度方案1。没有储能电站参与,同时不考虑多时间尺度调度,所有调度计划均为日前调度计划。
调度方案2。抽水蓄能储能电站参与,同时不考虑多时间尺度调度,所有调度计划均为日前调度计划。
调度方案3。本文调度策略。即2种储能电站同时参与的多时间尺度调度。
表1为3种不同调度方案下的结果对比情况。
1)无储能电站参与的调度方案1,特别是在风电反调峰场景下,在风电高发时段(2:00—6:00,16:00—21:00)少量的需求响应负荷调用无法满足对
表1 不同调度方案对比Tab. 1 Comparison of different scheduling schemes
风电的大规模消纳,导致严重的弃风现象,弃风率达到23.34%。
2)单一抽水蓄能水电站参与的调度方案2中,由于抽水蓄能电站不具备快速调节特性,在风电反调峰场景下无法做到及时反应,因此反调峰场景与正调峰场景下,该调度策略模式下2种场景的弃风率基本相同。
3)2种储能电站参与调度的方案3,电化学储能电站的快速调节特性与抽水蓄能电站的大容量高功率运行形成互补,加上需求响应资源的小幅调节,能够实现在正反调峰场景下,弃风率的大幅减小,以及系统运行成本的小幅减小。
综上所述,对比单一抽水蓄能储能电站对“源网荷储”系统新能源消纳能力的改善研究,本文所提的考虑2种储能电站特性的多时间尺度调度策略能够更好地消除新能源预测的不确定性带来的不利影响,更好地提升新能源消纳能力。
为了更好地验证本文所提方法在不同电网环境下,对区域电网的新能源消纳能力、系统运行成本的优化。在前文案例的电网结构基础上,改变常规机组的安放位置、容量配置,改变储能电站的容量配置以及出力特性,以此作为新的算例对本文方法进行适用广泛性的验证。拓扑图如附录A图A5所示,常规火电机组分别位于节点1、2、22、27、23、13,火电机组参数见附录A表A3。节点2接入400 MW风电场并处于反调峰场景,同节点2处接入10 MW/40 MW•h电化学储能电站,节点8接入40 MW/100 MW•h抽水蓄能电站。DR资源配置与风电负荷预测结果同上,不再赘述。
针对弃风率更高的风电反调峰场景进行调度方案对比,方案设置同上,结果见表2。
表2 不同调度方案对比Tab. 2 Comparison of different scheduling schemes
对比新案例的区域电网,在改变电网拓扑结构以后,由调度方案1结果可见,改变电源分布位置后的无储能电站参与的区域电网的风电消纳能力基本相同,而系统运行成本由于机组出力分配不同有了一定程度的变化。根据调度方案2、3的结果,储能电站容量配置的减小,使得储能电站无法对高发时期风电进行消纳,导致电网弃风率和成本较之前有所提高。但新算例验证了本文方法在不同电网环境下,均能提高区域电网的新能源消纳能力,降低区域电网的运行成本。
6 结论
本文提出了综合考虑抽水蓄能和电化学储能电站时间特性和DR资源的多时间尺度特性的“源-储-荷”调度计划。对2种储能电站的出力特性进行分析,并结合DR资源的多时间尺度特性进行互动,实现了日前调度计划的制定,并通过日内滚动与实时修正对新能源预测与负荷预测的不确定性进行一定程度的抑制。算例的结果表明:
1)2种储能电站参与调度计划的制定能够提高风电消纳,降低风电惩罚成本从而降低系统运行成本。
2)电化学储能电站有快速调节能力,能够有效地对抽水蓄能储能电站的调节能力进行互补,为高发时期的风电与火电提供更好的存储空间。实现在不同时间的调峰效果。
3)多时间尺度能够更好地利用电化学储能电站和DR资源的快速调节能力。使得系统对预测数据的精确性有了更好的提升。
4)本文所提调度方法能够广泛适用在新能源出力受限的区域电网,提升风电消纳能力。
将本文方法与文献[15-16]所提的仅计及需求响应的调度策略的研究结论进行对比,本文对储能电站进行了基于时间特性的研究,结合了抽水蓄能的大功率储能效果以及电化学储能的快速调节特性,更有效地缓解了由于风电出力与负荷需求呈逆向分布导致的大量弃风现象,更有效提高了风电消纳能力。对“源网荷储”系统的新能源消纳有更好的参考作用。
本文方案对于电化学储能电站的组成仅考虑锂电池这一种情况,不同的电池类型和储能技术会有不一样的出力特性[11]。未来的电力系统会接入形式各异的大规模储能系统,对各类储能技术的建模方法各不相同,接下来的研究中可以对各种储能技术以及各类电化学储能技术展开进一步的研究。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
近期,多座储能电站获最新进展,北极星储能网特将2025年5月12日-2025年5月16日期间发布的储能项目动态整理如下:安徽和县天能电池基地37.5MW/100.5MWh用户侧储能电站项目并网5月10日,安徽马鞍山市和县天能电池基地37.5MW/100.5MWh磷酸铁锂用户侧储能电站项目并网。项目由浙江荣能电力工程有限公司承建
北极星储能网获悉,5月15日河南省许昌市禹州市东部200MW独立新型储能项目公开招标招标计划,招标公告计划发布时间2025年6月,估算投资51000万元,项目概况新建200MW/400MWh(一期)储能电站一座,业务用房3200㎡,配套建设业务用房、变配电设备、给排水及消防设备,项目区内道路及硬化、绿化工程、围墙、
北极星储能网讯:5月14日,宁夏市场监管厅发布《构网型电化学储能系统接入电力系统技术规范》《构网型储能参数整定技术规范》《虚拟电厂并网运行技术规范》、《新能源场站风光资源监测技术规范》《构网型储能系统接入电网测试规范》等5项地方标准征求意见稿。《构网型电化学储能系统接入电力系统技术规
北极星储能网讯:5月16日,平湖众顺新能源有限公司发布浙江平湖市独山港120MW/240MWh网侧储能项目招标,项目地点位于浙江省平湖市独山港高新技术产业园地块,项目资金为28800万元,约合单价1.2元/Wh。储能系统采用磷酸铁锂电池1500V液冷系统,室内站房式布置。主变压器容量需满足储能电站规模120MW/240
5月,短短一周时间,上能电气、汇川技术、中储科技、楚能新能源、天合储能、思格新能源、蜂巢能源、赢科数能等储能企业接连拿下超10GWh储能大单,引发业内广泛关注。这也说明,全球能源转型释放的储能需求仍在持续。5月14日,上能电气官微报道,上能电气与土耳其知名新能源公司Europower正式签署框架合
北极星储能网户获悉,近日,天水市发展改革委联合中核新华黄龙抽水蓄能发电有限公司组织市直相关部门、清水县及小陇山林业中心山门林场组成甘肃黄龙抽水蓄能电站上水库截流阶段移民安置初(自)验收委员会,深入清水县开展上水库截流阶段移民安置验收,验收委员会严格参照《水电工程建设移民安置验收规
北极星储能网获悉,5月15日,上海市政府公示对市政协十四届三次会议第0068号提案的答复。原文如下:对市政协十四届三次会议第0068号提案的答复台盟界别:贵界别提出的“关于在上海地区规模化试点电化学储能的提案”收悉,经研究,现将办理情况答复如下:新型储能是建设新型能源体系、保障能源电力安全
日前,金下基地杨家湾子光伏项目配套储能系统全容量并网,成为金下基地首个落地的电化学储能项目。该配套储能系统采用高压液冷磷酸铁锂电池组,通过优化电芯布局与集成技术,单舱电池容量提升至5兆瓦时,总容量为37.6兆瓦时。相比传统电池组布局,体积能量密度提升52%,质量能量密度提升22%,有效降低
北极星储能网获悉,近日,第十七届深圳国际电池技术展览会(CIBF2025)于5月15-17日在深圳盛大举办。比亚迪储能携多款展品亮相,全方位展示其在储能领域的深厚技术积淀与行业引领地位。2025年3月重磅发布的MCCube-TProBESS,搭载比亚迪自研储能专用刀片电池,深度融合CTS超级集成技术。产品创新采用模
5月15日,第十七届深圳国际电池技术交流会/展览会在深圳会展中心盛大启幕,楚能新能源系统性展示了覆盖储能、动力等领域的全场景产品矩阵,并重磅推出了472Ah超大容量储能电芯、“浸默2.0”安全系统、CTP3.0大面液冷技术等多项行业突破性成果,彰显了“技术引领、场景驱动、全球布局”的战略图景。创新
北极星储能网获悉,5月15日,湖南省湘乡市经开区100MW/200MWh储能电站经过前期安装建设及调试,已全容量并网。南都电源为项目提供了全系统集成设备与服务,该项目位于湖南省湘乡市经开区,占地面积1.3万平方米,设置60个集装箱式电池舱,30个PCS交直流转换一体舱,是湖南省内规模最大的储能电站之一。
北极星输配电网整理了5月12日~5月16日的一周输配电政策动态。甘肃《关于开展电网公平开放现场监管工作的通知》5月15日,甘肃能源监管办发布《关于开展电网公平开放现场监管工作的通知》,甘肃能源监管办拟于2025年5月下旬至6月开展电网公平开放现场监管工作,了解相关情况,并听取意见建议。通知指出,监
改革是电力行业发展的核心驱动力之一。进入“十四五”以来,在我国“双碳”目标的提出,以及能源安全韧性的拷问下,新一轮电力体制改革全面提速,为构建新型电力系统探索适配的“软件系统”。(来源:电联新媒作者:翁爽)根据国家能源局公布的数据,2025年一季度,我国风电光伏发电合计新增装机7433万
5月15日,甘肃能源监管办发布《关于开展电网公平开放现场监管工作的通知》,甘肃能源监管办拟于2025年5月下旬至6月开展电网公平开放现场监管工作,了解相关情况,并听取意见建议。通知指出,监管范围涵盖六方面。其中,在接网工程投资建设及回购情况方面,重点监管对新能源、储能等各类主体配套送出工程
5月15日,中国能建党委书记、董事长宋海良拜会来华进行国事访问的哥伦比亚总统佩特罗。双方就积极落实两国元首重要共识和中拉论坛第四届部长级会议成果,以哥伦比亚加入共建“一带一路”倡议为契机,进一步深化海水淡化、水利水务、新能源、储能、电力互联互通、交能融合、数能融合等领域务实合作进行
北极星售电网获悉,5月15日,甘肃能源监管办发布关于开展电网公平开放现场监管工作的通知,甘肃能源监管办拟于2025年5月下旬至6月开展电网公平开放现场监管工作,了解相关情况,并听取意见建议。详情如下:关于开展电网公平开放现场监管工作的通知有关电力企业:为深入贯彻党的二十届三中全会精神,切实落
新能源车主在用电深谷时充电,用电高峰时向电网放电,通过参与电网削峰填谷获取收益,这样的“好事”在山东淄博成为现实。淄博市车网互动V2G试点项目是国家首批车网互动规模化应用试点项目,示范站配有光伏发电系统,年可实现减碳220吨。
北极星储能网获悉,5月9日,辽宁发改委印发《辽宁省2025年第三批风电、光伏发电项目建设方案(征求意见稿)》,其中明确风光项目建设规模8.35GW,以共享储能电站等方式落实项目调峰责任。据悉,辽宁发改委2025年以来已连续发布三批风光项目开发方案,总规模达25.95GW,其中风电共17.55GW、光伏共8.4GW
北极星储能网获悉,近日,龙蟠科技发布公告称,与楚能新能源股份有限公司(简称“楚能新能源”)的全资子公司签署了协议,自2025至2029年间合计向其销售15万吨的磷酸铁锂正极材料,合同总销售金额超50亿元。具体情况如下:5月9日晚间,龙蟠科技发布公告称,公司控股子公司常州锂源新能源科技有限公司(
科技赋能发展创新引领未来为建设电力科技强国贡献力量——在第二届电力行业科技创新大会上的主旨报告(2025年5月8日)辛保安今天我们召开第二届电力行业科技创新大会,深入贯彻党的二十大和二十届二中、三中全会精神,围绕电力科技发展交流思想、分享成果、凝聚合力,对于推动电力行业高质量发展,加快
IntersolarEurope2025展会期间,思格新能源在慕尼黑BrainlabTower举办盛大发布会,展示其在人工智能、电力电子与能源数字化方面的最新成果。活动现场汇聚了全球500余位合作伙伴、媒体与行业专家,共同见证思格新品与未来战略的发布。思格新能源董事长、CEO许映童在发布会上致辞,回顾了公司快速成长的
5月8日,中国能建党委书记、董事长宋海良在公司总部与山东能源集团党委书记、董事长李伟举行会谈。双方就深化传统能源、新能源、储能、氢能、交能融合、“人工智能+”、科技研发、“一带一路”等领域务实合作进行交流。宋海良对李伟一行表示欢迎,对山东能源集团给予中国能建的支持和帮助表示感谢,并
近期,多座储能电站获最新进展,北极星储能网特将2025年5月12日-2025年5月16日期间发布的储能项目动态整理如下:安徽和县天能电池基地37.5MW/100.5MWh用户侧储能电站项目并网5月10日,安徽马鞍山市和县天能电池基地37.5MW/100.5MWh磷酸铁锂用户侧储能电站项目并网。项目由浙江荣能电力工程有限公司承建
北极星储能网讯:5月14日,宁夏市场监管厅发布《构网型电化学储能系统接入电力系统技术规范》《构网型储能参数整定技术规范》《虚拟电厂并网运行技术规范》、《新能源场站风光资源监测技术规范》《构网型储能系统接入电网测试规范》等5项地方标准征求意见稿。《构网型电化学储能系统接入电力系统技术规
北极星储能网讯:5月16日,平湖众顺新能源有限公司发布浙江平湖市独山港120MW/240MWh网侧储能项目招标,项目地点位于浙江省平湖市独山港高新技术产业园地块,项目资金为28800万元,约合单价1.2元/Wh。储能系统采用磷酸铁锂电池1500V液冷系统,室内站房式布置。主变压器容量需满足储能电站规模120MW/240
5月15日,在第十七届深圳国际电池技术交流及展览会(CIBF2025)现场,海辰储能5MWh集装箱储能系统获得由权威机构TüV莱茵颁发的欧标与美标双重认证证书。这一成果不仅意味着该产品获得了欧美市场通行证,更标志着海辰储能在电气安全、环境适应性及国际标准合规性方面已达到全球领先水平,可为全球储能
5月,短短一周时间,上能电气、汇川技术、中储科技、楚能新能源、天合储能、思格新能源、蜂巢能源、赢科数能等储能企业接连拿下超10GWh储能大单,引发业内广泛关注。这也说明,全球能源转型释放的储能需求仍在持续。5月14日,上能电气官微报道,上能电气与土耳其知名新能源公司Europower正式签署框架合
5月16日,阿特斯发布2025年第一季度业绩以及2025年第二季度、2025年度经营展望的公告。根据公告,CSIQ2025年第二季度预计总收入在19亿至21亿美元(折合人民币约136.4亿至150.8亿元)之间,毛利率预计在23%至25%之间,全年预计总收入在61亿至71亿美元(折合人民币约438.0亿至509.8亿元)之间。CSIQ2025
北极星售电网获悉,近日,“全国一体化算力网络”和林格尔数据中心集群绿色能源供给示范项目实现绿电供给,标志着内蒙古首个“绿电直供”算力中心项目投运。据悉,“全国一体化算力网络”内蒙古和林格尔数据中心集群绿色能源供给示范项目于2022年11月纳入自治区首批工业园区绿色供电项目清单,总投资16
美国公用事业厂商佐治亚州电力公司(GeorgiaPower)已经开始在佐治亚州建设一个装机容量为765MW的电池储能系统。2024年12月,佐治亚州公共服务委员会(PSC)一致投票通过了佐治亚州电力公司部署电池储能项目组合计划。当时,这些电池储能项目计划部署总装机规模为500MW。根据该公司最近发布的公告,McG
北极星储能网获悉,5月15日,云南省楚雄州永仁县500MW/2GWh全钒液流电池储能系统集成生产线项目首条电堆生产线正式建成投产。该项目由楚雄州金江能源集团有限公司与浙江聚合储能科技有限公司共同投资建设,生产线设计年产能达100MW,可实现年产值2.9亿元人民币,纳税754万元,创造工作岗位40个。同时,
刚刚结束的财报披露季,光伏组件行业可谓一片惨淡,或许“破界”早已成为诸多企业的战略之一。事实上,这也是新型电力系统构建下的必然路径,多元一体或将是新能源企业的统一选择。组件四寡头光伏制造行业的惨烈同样展现在头部企业。聚焦组件环节,此前北极星根据企业披露数据以及调研情况公布了今年一
北极星储能网获悉,5月16日,深圳市首航新能源股份有限公司发布投资者关系活动记录表,表示2025年,公司将在继续巩固、强化已有的优势业务外,持续积极拓展光伏逆变器地面电站业务、工商业储能及集中式储能业务以及新兴市场业务。根据目前了解到的市场与客户需求情况,2025年公司的整体收入预计将保持
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!