登录注册
请使用微信扫一扫
关注公众号完成登录
根据轮毂坐标系的叠加计算结果,能够计算轮毂所受的载荷,进而可以用于传动系统的设计计算。齿轮箱的载荷形式、大小与整机的传动系统结构有关,其又直接影响着齿轮箱减振支撑的受力方式,下面介绍主要的齿轮箱减振支撑的结构形式与性能特点。
02、轴瓦式齿轮箱减振支撑
目前大部分采用三点支撑系统的风力发电机组(如图2,图3),其齿轮箱减振系统主要采用的轴瓦式弹性支撑。
轴瓦式齿轮箱减振支撑由上、下两瓣弹性体组成,安装时利用弹性体的偏心量,通过预压缩的方式将其固定于齿轮箱支撑座中。这种结构的齿轮箱减振系统的承载能力强,能承受来自径向和轴向的冲击载荷,有良好的阻尼及减振性能。1MW以下的风力发电机组,减振支撑的弹性体一般通过芯轴压装与齿轮箱扭力臂中,见图4。这种结构的减振支撑,其上下弹性体安装困难,且在端部无挡板,在轴向无约束,呈自由状态,在长期的交变载荷作用下可能会出现轴向窜出,从而影响产品的减振性能。在1MW以上的风机中,采用另一种减振结构形式。如图5所示。减振支撑的弹性体安装在齿轮箱两侧的支撑座内,每台4对。在弹性体的两端设置挡板,可以防止弹性体发生轴向窜出,并且弹性体安装简单,拆卸方便,1MW以上风机多数采用这种结构。
轴瓦式减振支撑在正常工作过程中主要承受齿轮箱的重量、低速轴的扭转载荷及部分重量。弹性支撑载荷的计算方案如图6所示,设齿轮箱两侧弹性支撑的载荷分别为R1,R2
R1=MXN/L +G/2
R2=MXN/L -G/2
其式中:MXN为低速轴施加的扭矩;L为两支撑座间的距离;G为齿轮箱的重量加主轴的部分重量。
为了获得良好的减振效果,需要根据载荷的大小来确定齿轮箱减振支撑的刚度指标。同时防止在传动系统出现严重的过约束问题,要求减振支撑的轴向刚度越小越好。
03、叠簧式齿轮箱减振支撑
叠簧式齿轮箱减振支撑主要用于四点支撑系统(双主轴轴承结构)的风力发电机组中,采用的是金属框式结构,如图7所示。
在齿轮箱扭力臂上、下各设置有一个橡胶垫,图8、图9所示。齿轮箱支撑安装时使上、下橡胶垫各产生一定的预压缩量,齿轮箱运转时的振动就在预压缩量的范围内进行。
这种结构的传动系统中,齿轮箱的重量主要是由低速轴来承担的,减振支撑主要承受低速轴的传动扭矩载荷,因此其所承受的载荷为:
R=MXN/L
在齿轮箱支撑两端各有一个调节装置,通过调整螺栓可实现对齿轮箱安装高度的微调,以避免系统出现过约束,使齿轮箱与主轴连接处受附加弯矩的作用。同时叶可以调整减振支撑整体的刚度性能以实现风机的变刚性设计。这种齿轮箱弹性支撑具有出色的阻尼及减振性能,可大大减少结构噪声的传递,承载大且安装方法简单,更换方便。
04、减振支撑的失效形式及检测
不管轴瓦式还是叠簧式减振支撑,其主要的工作零件就是上下两瓣弹性体。它是由钢瓦、橡胶组成。根据橡胶层数的不同,结构有所差异。轴瓦弹性体采用偏心式结构设计,在一定温度和压力下硫化成型。弹性体主要的失效形式是橡胶氧化及安装不到位造成的弹性体磨损。弹性体失效后会导致整体传动链系统浮动,造成齿轮箱运转下发生周期性的振动冲击,极易造成传动链系统失效。严重的话造成固定齿轮箱的螺栓断裂。根据风机安装的位置不同,对减振支撑的检查保养要求也不同。正常地带的风机2-3年检查一次减振系统,检查固定的螺栓力矩情况。沿海地区及高寒高海拔地区检查周期为1-2年左右。弹性体的更换周期一般为8-10年左右。沿海地区及高寒高海拔地区要进行缩短更换周期。弹性体的检查主要包括外观检查,弹性性能的检查。外观检查主要是弹性体的表面颜色变化、橡胶件的表面状况,若有氧化发白、表面开裂、发脆、剥落等现象都要及时更换弹性体。现风机上弹性性能的测量大体采用以监测齿轮箱运行状态来判断减振系统是否失效的间接测量为主。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
Q:什么是微点蚀?A:微点蚀不同于点蚀,常出现在硬齿面的齿顶和齿根部位。一.在齿轮齿面上观察到的表面疲劳现象(实质是齿面出现微小裂纹并伴有少量材料转移),也会出现在滚动轴承中。二.可能出现表面灰暗、斑点,局部变得粗糙,齿面脱落等。微点蚀引起的破坏性磨损,可能出现在工作的最初数个小时之
当前,我国风电累计并网装机已突破5亿千瓦,服役风电机组数量超20万台,在市场竞争加剧,技术迅速迭代的背景下,风电存量资产精细化运营管理,提高风场运维质量,降低风机运维成本,增加发电效益已成为产业持续上升的内在需求。为加强产业上下游交流合作,助力风场高效运维技改,北极星电力网、北极星
螺栓连接的连接方式广泛应用于机械设备、汽车、航空航天等领域,是紧固件连接中最基本的一种结构形式。设备在使用过程中因振动、高低载荷变化、冲击或长期处于工作状态时,螺栓就容易产生松动现象,直接影响设备的运转性能并降低其安全可靠性,甚至会造成严重的后果。本文将介绍风电齿轮箱中螺纹紧固件
当前,我国风电累计并网装机已突破5亿千瓦,服役风电机组数量超20万台,在市场竞争加剧,技术迅速迭代的背景下,风电存量资产精细化运营管理,提高风场运维质量,降低风机运维成本,增加发电效益已成为产业持续上升的内在需求。为加强产业上下游交流合作,助力风场高效运维技改,北极星电力网、北极星
风电齿轮箱的渗漏油问题,一直是风电齿轮箱的一大难点。在常见的渗漏中,在空中最难处理的属于内齿圈和箱体(含扭力臂)的接合面位置渗漏油。内齿圈和箱体(含扭力臂)的接合面一旦出现渗漏油,需要空中开箱处理,成本高昂。一、现有内齿圈油口密封结构结构介绍大部分风电齿轮箱的制造商在设计风电齿轮
齿轮箱清洁度的定义及标准简单来讲,风电齿轮箱在叶片轮毂和发电机之间,所承担的就是匹配转速和传递扭矩的作用,因此,齿轮箱的正常工作影响到整个系统的正常运行,它各方面的特性也随之重要。齿轮箱的清洁度作为评价齿轮箱装配质量的一个重要的指标,是贯穿整个装配过程始终的信条。齿轮箱上的清洁度
Q齿轮箱常见故障有哪几种?A:1齿轮损伤;2轮齿折断,断齿又分过载折断,疲劳折断以及随机断裂等;3齿面疲劳;4胶合;5轴承损伤;6断轴;7油温高等。Q如何检查齿轮箱异常高温?A:首先要检查润滑油供应是否充分,特别是在各主要润滑点处,必须要有足够的油液润滑和冷却;再次要检查各传动零部件有无卡滞
齿轮箱的轴端密封风电齿轮箱中的齿轮和轴承在运转过程需要润滑油进行润滑,故而必须考虑润滑油的密封,防止润滑油泄露污染环境甚至造成故障。由于风电齿轮箱中的齿轮和轴承运转时,会使油温升高,同时存在箱内外不均的气压,润滑油很容易发生漏油、甩油等问题。为了减小泄露损失,保证齿轮箱高效工作,
偏航机构与机组控制系统配合,转动机舱使风轮扫掠面与风向保持垂直,使风轮始终处于迎风状态,以保证风力发电机具有最大的发电能力。当机舱处于正确位置时,在风向不变的情况下,提供必要的锁紧力矩,使机舱定位,以保证风力发电机组的安全运行。偏航齿轮箱一般竖直向上安装和运行。变桨机构是通过改变
安维士联合中国船级社、南高齿以及业主单位、主机厂、齿轮箱厂等,依据多年的齿轮箱后市场维修经验,编制了齿轮箱检修技术规范并依据执行。
10月20日—22日,全球风电盛会——2025北京国际风能大会暨展览会(CWP2025)将在北京·中国国际展览中心(顺义馆)举办,洛阳轴承集团股份有限公司(以下简称“洛轴”)将盛装亮相CWP,展位号:E3-A05。洛阳轴承集团股份有限公司是一家综合性轴承制造企业,产品广泛应用于航空航天、风力发电、轨道交通
北极星风力发电网获悉:在风电产业蓬勃发展的当下,有这样一家企业,在风电齿轮箱领域占据着举足轻重的地位。凭借卓越的技术与优质的产品,南高齿在全球风电齿轮箱市场中脱颖而出,市场占有率连续多年稳居榜首。数据显示,从2013年至今,在风电齿轮箱全球细分市场,南高齿占有率已连续11年排名第一,截
Q:什么是微点蚀?A:微点蚀不同于点蚀,常出现在硬齿面的齿顶和齿根部位。一.在齿轮齿面上观察到的表面疲劳现象(实质是齿面出现微小裂纹并伴有少量材料转移),也会出现在滚动轴承中。二.可能出现表面灰暗、斑点,局部变得粗糙,齿面脱落等。微点蚀引起的破坏性磨损,可能出现在工作的最初数个小时之
2025年4月25日,南高齿2025风电客户日在蜀绣春深的成都盛大启幕。本次活动以“高质驭风,共创未来”为主题,南高齿集团携手风电整机厂商、风电开发商及行业专家共150余人齐聚一堂,围绕全球能源变革机遇与关税贸易壁垒加剧的双重背景,共商风电产业破局之道,探寻全生命周期降本增效的高质量发展路径。
4月15日,远景酒泉零碳产业基地风机齿轮箱制造项目开工仪式在酒泉经开区(酒泉高新区)东园举行。据悉,远景酒泉零碳产业基地风机齿轮箱制造项目开工,是酒泉经开区(酒泉高新区)进一步补强风电装备产业链,持续巩固扩大酒泉风电装备制造产业优势,聚力打造全国重要的新能源装备制造基地的重要实践,
3月26日,广东省阳江市人民政府办公室发布《关于印发阳江市2025年重点建设项目计划的通知(阳府办〔2025〕3号)》。《通知》显示,2025年阳江市共安排重点建设项目168项,总投资2861.6亿元,年度计划投资513.4亿元。其中,投产项目29项,续建项目57项,新开工项目82项。安排开展前期工作的预备项目128
近日,山东省发改委发布《关于印发2025年海洋强省建设重点项目名单的通知》。《通知》显示,为加快推进山东省海洋经济高质量发展,经各市择优推荐、专家评审等程序,确定79个项目作为海洋强省建设重点项目库新入库项目,动态调整后,2025年共有在库项目201个。根据《2025年海洋强省建设重点项目名单》
在全球风电装备领域,南高齿凭借其卓越的滑动轴承技术,再次彰显了其作为行业领军企业的技术实力和市场影响力。在“十四五”国家重点研发计划“可再生能源技术”重点专项的引领下,南高齿作为“风力发电机组用滑动轴承关键技术及应用”项目课题牵头单位,成功攻克了滑动轴承技术的一系列难题,为风电齿
《风能》:国内不少风电齿轮箱与整机企业都在尝试研制滑动轴承,为何远景能源能率先实现批量应用?娄益民:滑动轴承技术是一项复杂的系统工程,涉及设计、制造、测试以及在齿轮箱、传动链和整机中的应用。远景能源在这一领域实现了全链条贯通,从设计制造到测试验证,再到小批量试验和批量应用,形成了
历经五年自研自制挂机应用,远景能源宣布,500台机组上的滑动轴承至今零失效。滑动轴承,是近年来备受风电行业关注的技术创新点,但在应用阶段却始终雷声大雨点小。直至近日,远景能源公开了其自研自制滑动轴承的一系列成果:采用滑动轴承的齿轮箱已真正实现产业化批量应用,实际运行表现远超海外品牌
胡吉春:创新引领,绿色赋能胡吉春南京高速齿轮制造有限公司董事长2024年,全球风电行业在能源转型的浪潮中持续发展,同时也面临着日益激烈的市场竞争和技术迭代压力。对于南高齿而言,更是机遇与挑战并存、坚守与突破共进的关键之年。南高齿秉持对产品创新的执着追求、对高质量的坚守不渝以及对绿色低
2025年5月4日,随着青海格尔木风电场最后一台风机机组自动灭火装置调试完成,普若泰克科技发展(北京)有限公司中标的国电投黄河公司海南风电分公司、格尔木分公司所属风电场加装自动灭火装置项目实现全面竣工。该项目历时近116个工作日,覆盖两地19座风电场,成功为1154台风电机组加装自动灭火装置,
近日,丹麦能源署批准将总装机容量23MW的萨姆索(Sams)海上风电场的电力生产许可证延长10年,这是丹麦首次对老式海上风电场进行延寿许可。萨姆索海上风电场建于2002年,是世界上最古老的海上风电场之一,由十台2.3MW的风电机组构成,总装机容量为23MW。其中一台风电机组曾于2015年坠入海中,随后该机
近期,山东、广东、内蒙古相继发布省级“136号文”配套细则,旨在通过市场化机制推动新能源可持续、高质量发展。但相较陆上风电起步略晚、且已经在上一轮的国补退出中快速降本的海上风电产业,在造价、成本分摊、供应链韧性、消纳能力及国际竞争力等多方面存在发展难题,亟待优化。电价不确定下,地方
谁能想到,一颗拧在风电叶片根部的螺栓,竟差点引发一起重大设备事故——智能螺栓提前“报警”,避免了一场灾难!案例背景:山里的风电场,隐藏的风险某风电场,20台5.0MW大型风电机组日夜运转。风从峡谷呼啸而过的山脊上,一项“黑科技”正在悄然守护它们的安全——MS9000叶根智能螺栓监测系统。自202
近日,《广东省促进海洋经济高质量发展条例》已由广东省第十四届人民代表大会常务委员会第十八次会议于2025年5月28日通过,现予公布,自2025年7月1日起施行。文件指出,省、地级以上市人民政府能源等有关主管部门应当加大海洋油气资源勘探开发力度,推进液化天然气等接收及储气设施、配套码头和配套外
北极星风力发电网获悉,2025年5月25日,由内蒙古二连浩特市蒙能易达新能源有限公司投资建设的蒙能150万千瓦保障性并网风电项目实现了全容量并网,这是近年来二连浩特市在新能源领域取得的重大成果,直接推动该市新能源装机突破207.9万千瓦,实现近三倍增长。10兆瓦风机是目前国内陆上商业化运行的单机
项目背景:法兰变形成验收“拦路虎”风电机组要实现满功率发电(以下简称满发),从设计、制造到安装,任何一个环节掉链子都会导致“不能验收”。某海上风电机组在安装单管桩时,由于管桩倾斜,液压锤非均匀敲击法兰表面造成单管桩基础顶部法兰向下变形(见图3)。变形区域位于90#xB0;方位,有6根螺栓
5月24日,由全球风能理事会(GWEC)和阳江市风能协会主办的海陵岛国际风能大会(2025)在广东阳江开幕。大会以“完善海上风电生态,打造国际绿能之都”为主题,围绕海上风电产业链协同发展、风电前沿技术与应用突破、绿能产业融合发展、智能运维与风险管理升级等核心议题,汇聚全球智慧,共享创新成果
当千吨级吊车在山间盘旋,当百米高风机叶片在云端拼装,中国风电吊装领域正上演着一场前所未有的产业变局。2025年,随着136号文掀起的风电抢装潮席卷而来,这个看似传统的工程机械领域,正在被推上时代的风口浪尖#x2014;#x2014;一边是风机单机容量不断突破新高的挑战,一边是吊装价格如过山车般回归常
近日,“第五届(2025)无故障风电场建设年会暨2024年无故障风电场管理成果发布会”在安徽池州圆满举行。金风慧能电气团队负责人杨长梓发表《风力发电机组智慧运维服务探索及应用》主题演讲。杨长梓指出,随着风电机组走向沙戈荒、远海等复杂环境,运维侧面临更加严峻的挑战和更高要求,金风慧能智慧运
近日,龙源电力工程技术公司“海上风电海缆运行状态监测与快速故障诊断关键技术研究”项目成果通过中国电机工程学会科学技术成果鉴定,总体技术位居国际领先水平,填补了国内海缆磁场探测技术的空白,标志着我国海上风电水下探测技术取得重大突破。项目围绕海上风电输变电安全运维重大需求,针对行业长
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!