登录注册
请使用微信扫一扫
关注公众号完成登录
1.2.2 系统效率及寿命
图 2 为 常 见 ESS 的系统效率和运行寿命比较。ESS 循环效率最高的是 SMES,它将电流储存在由电流流过超导线圈产生的磁场中,由于超导线圈没有电阻,损耗几乎为零,仅有附属电力设备如交流/直流转换器造成的 2%~3% 的损耗[22]。FES 和 Li-ion 的系统效率也较高。ESS 的能量损耗主要来源于不同组件之间的能量传递过程,通过调节充电和放电过程中的能量损耗,可以提高 ESS的效率。机械储能方式中 PHS 和 CAES 的使用寿命最长,分别为 40~80 年和 25~60 年。电池储能系统随着工作时间的延长,电池的化学性能变差,使用寿命相对较短,大多低于 20 年。氢储能系统的循环效率 为 35%~55%[ 2 0 , 2 3 ],低于常 规ESS,其主要受氢价值链中采用不同技术路径的影响,如汽车中氢燃料电池效率约为 60%,而通过内燃机的效率约为 20%,综合考虑氢能的价值链,氢储能的寿命为 15~50 年[24]。
1.2.3 系统响应时间及投资成本
图 3 为 常 见 ESS 的响应时间与投资成本比较。由图 3 可知,SMES、FES 和 Super-C 的单位投资成本低于其他储能技术,鉴于它们的快速响应时间,通常用于短期能量储存[5, 22]。在已开发的技术中,SMES 的单位投资成本最低,响应时间最短[22-24]。电池储能单位成本相对较高。氢储能系统投资成本适中,为 1500~2400 美元/kW[25]。响应时间在可接受的分钟级范围内,其系统成本及响应时间同样受氢价值链中采用不同技术路径的影响。
2 氢能在综合能源系统中应用路径
氢可以直接以纯净形式使用,或作为合成液态或气态氢基燃料(合成甲烷或合成柴油)以及其他能源载体(氨)的基础。目前大多数氢气用于工业领域,直接为炼化、钢铁、冶金等行业提供高效原料、还原剂和高品质热源,有效减少碳排放,其中炼油厂、氨生产、甲醇生产消耗氢气比例分别为 33%、27%、11%,另外 3% 的氢气用于钢铁生产[18]。长远来看,氢能可以广泛用于能源企业、交通运输、工业用户、商业建筑[17-19] 等领域,如图 4 所示。既可以通过燃料电池技术应用于汽车、轨道交通、船舶等领域,降低长距离高负荷交通对石油和天然气的依赖;还可以利用燃气轮机技术、燃料电池技术应用于分布式发电,为家庭住宅、商业建筑等供暖供电。表 1 列出了部分典型氢能利用案例。
2.1 氢能应用于工业用户
目前,工业用户中的氢几乎完全来自天然气、煤炭和石油的大规模制氢,对环境产生巨大影响,采用可再生能源发电制氢耦合工业用户,既可以提供无碳氢,又可以提供可再生电力,避免化石燃料的碳排放问题。氢用于工业用户中的途径有:(1)炼油,加氢处理和加氢裂化去除杂质,提高中间馏分油的精收效率;( 2) 化工,用于合成氨、甲醇,合成甲烷等工业原料和燃料;(3)钢铁,代替传统高炉及碱性氧气转炉系统中常用的焦炭和天然气[2, 17]。
基于氢的合成燃料储存更容易,可利用现有的基础设施输送,为海事、铁路、航空提供可靠的清洁燃料。2019 年 11 月,德国蒂森克虏伯钢铁集团正式注入杜伊斯堡 9 号高炉;奥地利林茨奥钢联钢厂 6 MW 电解制氢装置投产,开启了氢能冶金时代。中国宝武钢铁、鞍钢、酒钢等均开始可再生能源制氢-氢能冶金立项,探寻循环经济的可行性。
2.2 氢能应用于交通运输
长期以来,氢作为潜在的交通燃料,被视为石油和天然气的清洁替代品。氢动力系统因其零碳排放和广泛的适应性有望成为交通运输部门实现快速减排的少数选择之一,这依赖于燃料电池技术的发展,常见燃料电池包括:质子交换膜电池( proton exchange membrane fuel cell,PEMFC)、磷酸电池(phosphoric acid fuel cell,PAFC)、熔融碳酸盐电池(molten carbonate fuel cell,MCDC)
和固体氧化物电池(solid oxide fuel cell,SOFC),综合考虑工作温度、催化剂稳定性、电效率、比功率/功率密度等指标,最常用于交通运输行业的是 PEMFC。目前氢能燃料电池用于交通运输领域主要包括:(1)道路运输,如小型汽车、公共汽车、卡车和其他货车;(2)海事行业,如船舶、港口;(3)铁路和航空;(4)其他特殊领域,如救援车辆、深海装备等。
相比于纯电动汽车,氢燃料电池汽车、卡车及叉车的燃料加注时间短、续航里程长,但氢燃料汽车的综合能量利用效率仅为 25% 左右,虽然高于传统合成燃料内燃机汽车的 15%,但远低于纯电动汽车约 70% 的综合能量利用效率,研究表明当燃料电池成本为 75~100 美元/kW 时,氢燃料电池汽车可以在续航里程为 400~500 km 内与纯电动汽车竞争,氢燃料电池汽车对于有更高里程要求的消费者更有吸引力[17-18]。目前氢在海事、铁路和航空领域的应用处于示范阶段,主要用于辅助动力单元,而欧洲碳排放交易体系的不断扩大为氢能在这些领域的应用提供了潜在的空间。2019 年 11 月,中国首列氢燃料电池有轨电车在佛山投运。2020 年 1 月,美国国防部联合能源部启动氢燃料电池应急救援车 H2Rescue 项目,基于氢燃料电池/锂电池混合系统,开启微电网搭建、供热和供水一体化研究。
2.3 氢能应用于能源企业
目前,全球氢能发电比例很小,约占总发电量的 0.2%。随着对能源行业深度脱碳要求的进一步提高,氢能应用于能源企业路径主要有:(1)氢为燃气轮机或燃料电池提供燃料,作为备用电源或离网供电,为易停电和偏远地区的关键设施(如医院,通信基础设施等)提供备用电源,成为电力系统的一个灵活性电源;(2)氢转化成氨,与煤粉共燃,降低传统燃煤电厂的碳排放强度;(3)氢以压缩气体、氨或合成甲烷的方式储存,平衡电力需求和可再生能源的间歇性波动。
日本和韩国均明确了在能源企业中使用氢或氢基燃料的目标,日本希望在 2030 年氢发电能力达到 1 GW,韩国氢路线图设定目标是 2022 年电力行业中燃料电池装机容量为 1.5 GW,2040 年达到 15 GW[17]。2020 年 2 月,北美拟投资可再生能源-氢发电枢纽项目替代 1800 MW 的 Intermountain燃煤电站,为南加州提供可靠的清洁能源,从2025 年开始,每年春、秋两季将有 538 MW 可再生能源用来制氢,可再生能源制氢成本可能低至1.5~2.9 美元/kg,氢气将储存在地下盐洞,通过100% 氢燃料的燃气轮机进行发电[19]。
2.4 氢能应用于建筑热电联供
在住宅建筑领域,75% 的传统能源用于空间供暖、热水和烹饪。氢可与天然气混合(氢气掺混比例为 0~20%),通过基于燃气轮机或燃料电池的 CHP 技术,利用现有建筑和能源网络基础设施提供灵活性和连续性的热能、电力供应,从而取代化石燃料 CHP。
基于燃气轮机的 CHP 可通过布雷顿-朗肯循环来实现热、电联供,氢气通过高温燃气轮机进行燃烧,推动燃气轮机发电,燃烧形成的高温蒸汽通过余热锅炉吸收产生蒸汽,推动小汽轮机发电,汽轮机排汽作为热源提供热量,整体循环效率可达 55%。日本某微型氢燃气轮机已成功向社区供应 2.8 W 热能和 1.1 MW 电力[18]。
基于燃料电池的 CHP 最常用的是 PEMFC 和SOFC 技术。CHP 中的 2 种类型的电池都可以由热或电功率驱动,并且由于其紧凑的尺寸可以部署为微型 CHP。它们既可以直接用氢气作为燃料,也可以用天然气或沼气作为燃料,而在装置内部转化为氢气。如果产生的热量具有足够高的温度,则该系统还可以通过吸附(三联产)提供冷却,整体运行效率可达 60%。“Ene-Farm”项 目 从 2009 年开始,已相继投 入 30 多万套微 型CHP 单元,单元成本已从 3.5 万美元降至 0.9 万美元。此外,100% 的纯氢可通过氢锅炉用于建筑供热,但氢气价格需低至 1.5~3.0 美元/kg 时,才能与天然气锅炉和电动热泵竞争。2019 年 6 月,由BDRThermea 研制的世界第 1 台纯氢家用锅炉在荷兰罗森堡投入使用,初始供暖量将满足总热量需求的 8%,该项目与荷兰北部海上风电制氢、盐洞储氢及格罗宁根氢燃料电池列车构成了荷兰氢能利用蓝图的雏形。
3 应用途径分析
为了实现《巴黎协定》中的目标,全球能源系统必须进行深刻的变革,可再生能源的低碳电力可能成为首选的能源载体,电力在全球终端能源消耗中的份额到 2050 年需要增加近 40%。但对于难以通过电气化实现脱碳的行业(如物流、工业用户),各国政府正在逐步认识到可再生能源耦合氢能是实现零碳净排放的重要选择之一。
(1)目前,90% 的氢用作工业原料,但这部分氢大多来源于化石燃料,未来工业用户的深度脱碳途径是利用可再生制氢来替代这部分氢气。制氢成本与碳排放成本是影响该用途进展的关键因素。氢气综合成本为 1.2~2.3 美元/kg 时,可再生能源制氢的竞争力大大提升,但这并不妨碍氢能在工业领域的广泛应用,预计到 2030 年,氢能需求量为 10~15 万 t/年[17],如图 5 所示。
(2)氢能已经逐步用于交通运输领域的城市用车、短程公共车,但大范围推广仍受限于氢燃料电池及车载氢罐的成本,以及氢供应链基础设施完善程度。但对于重型卡车或远程运输来说,氢能仍是该领域脱碳成本最低的方法之一。随着氢燃料和车辆成本的降低,鼓励政策的实施及加氢基础设施的完善,预计到 2030 年,交通运输行业氢能需求量为 7~15 万 t/年[18]。
(3)氢能主要作为清洁燃料为能源企业提供热量和电力,但目前仍受限于较高的制氢成本,但整体考虑系统年利用率及资本支出,氢能用于热电原料比例将会进一步提升。相比之下,氢能以储能的方式为电网提供平衡和灵活性的方法更有竞争力,大容量储氢成本未来低至 0.3 美元/kg。预计到 2030 年,能源企业的氢能总需求量为 10~18 万 t/年[6]。
(4)建筑的供热和电力需求约占全球能源需求的 1/3,而对于分布式供暖,氢能是少数几种可以与天然气竞争的低碳替代品,随着制氢成本和氢锅炉、燃料电池成本的下降,以及氢气利用现有天然气管道输送能力的提升,预计到 2030 年,CHP 中氢锅炉与氢燃料电池的成本为 900~2000 美元/(户·年),建筑热电联供的氢能需求量为 3 万~ 9 万 t/年[14]。
虽然氢能已经在能源系统中的许多领域得到应用,但氢能产业链中基础设施较为薄弱,氢能供应链中制氢技术的成本问题,长距离、大容量储运经济安全问题及终端加氢设施成本等问题仍是目前亟须解决的。
4 对中国氢能发展的启示
氢能在国内能源电力领域的应用前景仍有部分争议,几乎所有的氢能和燃料电池技术还依赖于公共财政的支持,但中国在制氢方面具有良好的基础,工业副产氢和可再生能源制氢已开展项目示范。中国氢能联盟已牵头开启氢能在综合能源系统中的应用研究。综合以上研究,对中国氢能发展带来以下启示。
(1)氢能产业目前仍处于市场导入期,氢能的“制—储—运—用”环节与世界先进水平仍存在较大差距。需要尽快将氢能经济纳入国家能源体系中,研究制订国家氢能发展路线图、明确氢能利用目标与产业布局,引导地方根据区域特点差异化发展氢能产业。
(2)除交通运输外,氢能在能源企业、工业用户及建筑部门的商业化应用应作为氢能战略参考指标,明确氢能在低碳能源系统转型中的战略作用。
(3)氢能产业化布局基础设施较为薄弱,应加强氢能产业链关键技术攻关和应用。加快推进可再生能源制氢、氢储能、氢能利用等关键技术协同研究,对关键材料及核心部件技术创新加大财政补贴。
5 结语
(1)随着氢利用技术的发展和进一步成熟,氢储能系统成熟度上升较快。与其他常规储能系统相比,氢储能系统在系统效率、运行寿命、机组响应时间和投资成本等关键参数上均处于中间位置,但考虑氢能在未来能源系统中深度脱碳的重要作用,氢储能系统具有广阔的应用途径。
(2)氢储能系统未来可用于工业用户,提供化工原材料及高温热源;用于交通运输中车辆的脱碳;用于能源企业,取代化石燃料发电、供暖,或者以储能的方式提高电网灵活性;用于建筑热电联供,提高能量利用效率。
(3)氢能还未充分发挥在低碳能源系统中的作用,需要从国家战略层面、核心技术研发投入、财政补贴等方面进一步加大支持力度,推动氢能产业实现跨越式发展。
参考文献:
[1]MARTINEZ CESENA E A, MANCARELLA P. Energy systems integration in smart districts:robust optimisation of multi-energy flows in integrated electricity, heat and gas networks[J]. IEEE Transactions on Smart Grid, 2019, 10(1): 1122–1131.
[2]Hydrogen Europe. Hydrogen roadmap Europe: a sustainable pathway for the european energy transition[EB/OL].(2019-02-11)[2020-02-10]. /publications/entry/innovation insights brief five steps to energy torage
[6]International Energy Agency. Technology road map: hydrogen and fuel cells[EB/OL]. (2015-06-15)[2020-03-01]. /reports/technology-roadmap-hydrogen-and-fuel-cells.
[7]彭生江, 杨淑霞, 袁铁江, 等. 广义风-氢-煤能源系统的挑战与展望[J]. 电力系统自动化, 2019, 43(24): 6–12.
PENG Shengjiang, YANG Shuxia, YUAN Tiejiang, et al. Challenges and prospects of generalized wind-hydrogen-coal energy system[J].Automation of Electric Power Systems, 2019, 43(24): 6–12.
[8]Pöyry. Hydrogen from natural gas: the key to deep decarbonisation [EB/OL]. (2019-07-11)[2020-02-20]. /news/articles/hydrogen-natural-gas-key-deep-decarbonisation.
[9]孔令国. 风光氢综合能源系统优化配置与协调控制策略研究 [D].北京: 华北电力大学, 2017.
KONG Lingguo. Research on optimal sizing and coordinated control strategy of integrated energy system of wind photovoltaic and hydrogen[D]. Beijing: North China Electric Power University, 2017.
[10]LI J R, LIN J, SONG Y H, et al. Operation optimization of power to hydrogen and heat (P2HH) in ADN coordinated with the district heating network[J]. IEEE Transactions on Sustainable Energy, 2019,10(4): 1672–1683.
[11]霍现旭, 王靖, 蒋菱, 等. 氢储能系统关键技术及应用综述 [J]. 储能科学与技术, 2016, 5(2): 197–203.
HUO Xianxu, WANG Jing, JIANG Ling, et al. Review on key technologies and applications of hydrogen energy storage system[J].Energy Storage Science and Technology, 2016, 5(2): 197–203
[12]许世森, 张瑞云, 程健, 等. 电解制氢与高温燃料电池在电力行业的应用与发展 [J]. 中国电机工程学报, 2019, 39(9): 2531–2537.
XU Shisen, ZHANG Ruiyun, CHENG Jian, et al. Application and development of electrolytic hydrogen production and high temperature fuel cell in electric power industry[J]. Proceedings of the CSEE, 2019, 39(9): 2531–2537.
[13]GAHLEITNER G. Hydrogen from renewable electricity: an international review of power-to-gas pilot plants for stationary applications[J]. International Journal of Hydrogen Energy, 2013,38(5): 2039–2061.
[14]International Renewable Energy Agency. Hydrogen from renewable power: technology outlook for the energy transition[EB/OL].(2018-09-20)[2020-02-20]. https://irena.org/publications/2018/Sep/Hydrogen-from-renewable-power.
[15]ROSEN M A, KOOHI-FAYEGH S. The prospects for hydrogen as an energy carrier: an overview of hydrogen energy and hydrogen energy systems[J]. Energy, Ecology and Environment, 2016, 1(1):10–29.
[16]FISCHEDICK M, NITSCH J, RAMESOHL S. The role of hydrogen for the long term development of sustainable energy systems: a case study for Germany[J]. Solar Energy, 2005, 78(5): 678–686.
[17]Adelphi Consult Gmbh. The role of clean hydrogen in the future energy systems of Japan and Germany[EB/OL]. (2019-09-20)[2020-03-01]. /events/the-future-of-hydrogen-seizing-todays-opportunities.
[19]Hydrogen Council. Path to hydrogen competitiveness: a cost perspective[EB/OL]. (2020-01-20)[2020-02-20]. https://hydrogencouncil.com/en/path-to-hydrogen-competitiveness-a-cost-perspective
[20]GAO D, JIANG D F, LIU P, et al. An integrated energy storage system based on hydrogen storage: process configuration and case studies with wind power[J]. Energy, 2014, 66: 332–341
[21]BECHERIF M, RAMADAN H S, CABARET K, et al. Hydrogen energy storage: new techno-economic emergence solution analysis[J].Energy Procedia, 2015, 74: 371–380.
[22]KOPANOS G M, LIU P, GEORGIADIS M C. Advances in energy systems engineering[M]. Cham: Springer International Publishing,2017.
[23]DE SANTOLI L, LO BASSO G, BRUSCHI D. Energy acterization of CHP (combined heat and power) fuelled with hydrogen enriched natural gas blends[J]. Energy, 2013, 60: 13–22.
[24]GUTIéRREZ-MARTíN F, CONFENTE D, GUERRA I.Management of variable electricity loads in wind-hydrogen systems:the case of a Spanish wind farm[J]. International Journal of Hydrogen Energy, 2010, 35(14): 7329–7336.
[25]GAMBINI M, GUIZZI G L, VELLINI M. H2/O2 cycles:thermodynamic potentialities and limits[J]. Journal of Engineering for Gas Turbines and Power, 2005, 127(3): 553–563.
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
北极星氢能网获悉,据3月12日中国证券监督管理委员会信息,山东东岳未来氢能材料股份有限公司(下称“东岳氢能”)再次在山东证监局重新进行了IPO辅导备案,此次上市辅导机构也由中信建投更换为中信证券。据悉,3月11日,东岳氢能的辅导状态由“辅导备案”变为“撤回辅导备案”。此次更换辅导机构后,
北极星氢能网获悉,近日全球首款可换氢燃料电池10吨叉车在舟山片区六横区块成功完成组装调试,即将交付使用。据悉,这款叉车由国氢(舟山六横)新能源科技有限公司自主研发,填补了全球大吨位氢燃料电池叉车领域的空白。与传统燃油和锂电池叉车相比,可换氢燃料电池叉车的燃料成本较柴油降低1/4,能量
北极星氢能网获悉,近日,总投资1500万元,占地2400平方米的常发新能源氢能存储及制备技术中试基地项目开工仪式,在高新区SEPP中欧跨采先进制造产业园举行。常发新能源2021年落户高新区,致力于光解水制氢技术的研发。作为一家以科技创新为核心驱动力的企业,常发新能源始终坚持以突破关键核心技术为目
北极星氢能网3月13日,陕西永寿县召开氢能产业项目座谈会,与陕西氢能产业发展有限公司就氢能产业发展项目合作进行对接洽谈。座谈会上,相关领导详细介绍了陕西氢能产业发展有限公司成立背景、基本概况,氢能产业工作成效及下一步发展计划等情况,双方就项目合作进行交流。会议提出氢能源是未来产业进
北极星氢能网获悉,3月13日,成都市人民政府发布《2025年成都市政府工作报告》全文。通过工作报告获悉,2024年,成都市在新兴产业加速培育工作中,新推广氢能商用车480辆,全国首列氢能源市域列车达速试跑,氢能产业“制—储—运—加—用”完整产业链条基本形成。2025年,将继续推进壮大先进制造业集群
近日,在潍坊诸城市奥扬高压四型储氢瓶项目建设现场,呈现一派繁忙的景象。工人们正紧锣密鼓地进行厂房建设收尾工作,各类生产设备的安装工作也在有序展开。这个项目的快速推进,是诸城市推动新能源产业蓬勃发展的一个缩影。“高压四型储氢瓶项目计划投资3.41亿元,主要建设一座1.7万平方米的综合厂房
北极星氢能网获悉,为推动《山西省氢能产业发展中长期规划(2022-2035年)》实施,促进氢能产业高质量发展,山西省发展和改革委员会与省工信厅联合印发《山西省氢能产业链2025年行动方案》(以下简称《行动方案》)。《行动方案》包括持续开展关键核心技术攻关,建设高水平科技创新平台,持续提升基础
近日,陕西省委常委、西安市委书记方红卫在调研氢能产业发展情况时强调,要把握全球能源变革发展大势和机遇,以西安区域科技创新中心建设为统领,聚焦氢能制、储、运、用各环节,加快关键核心技术攻关和成果转化运用,持续丰富拓展应用场景、优化全产业链布局,积极抢占未来新赛道,加快培育和发展新质
北极星氢能网获悉,3月12日凌晨,长征八号遥六运载火箭以“一箭十八星”的方式,在海南商业航天发射场将千帆星座第五批组网卫星送入预定轨道,发射任务取得圆满成功。作为我国新一代中型低温液体运载火箭,由中国航天科技集团一院抓总研制的长征八号遥六运载火箭的二级主动力采用液氢液氧发动机,对液
北极星氢能网获悉,3月13日重庆市经济和信息化委员会、重庆市财政局发布《关于开展2025年市工业和信息化领域重点专项资金项目申报工作的通知》,通知指出,将8个项目纳入渝中区2025年市工业和信息化领域重点专项资金申报项目名单,据悉,多个加氢站建设运营项目获专项资金补贴.具体通知及名单如下:根
据中国石油网消息,截至3月10日,独山子石化绿色低碳示范工程项目——塔里木120万吨/年乙烯项目二期的全厂地上管网完成率88%,混凝土浇筑完成率71%。这个项目利用副产氢气生产合成氨,对推动工业领域氢能应用具有良好的示范作用。近年来,独山子石化公司加快推进加氢裂化、加氢精制等环节利用清洁低碳
北极星氢能网获悉,近日,国内单体容量最大的光伏适应性电解制氢系统,在中国华能张掖绿电制氢示范站顺利满负荷产氢,并完成TV南德第三方见证测试。这标志着中国华能在氢储能助力新能源大规模消纳应用领域取得又一重要进步,对增强新型电力系统的灵活调节能力具有重要意义。该项目由中国华能甘肃新能源
北极星氢能网获悉,3月12日,国家电力投资集团有限公司二〇二五年度第20批集中招标(江西核电棉船风电配套制氢储能项目PEM电解水制氢设备)已具备招标条件,现进行公开招标。招标人为国家电力投资集团有限公司,招标代理机构为中国电能成套设备有限公司。该项目位于江西省九江市彭泽县,为江西省彭泽县
北极星氢能网获悉,3月11广州市南沙区2025年政府工作报告发布,报告中指出,要稳步扩大制度型开放,推动“7+2+3”,即智能网联与新能源汽车、生物医药与健康、绿色石化与新材料、半导体与集成电路、新能源与新型储能、低空经济与航空航天、船舶与海洋工程7个战略性产业集群;现代金融、物流与供应链2个
2025年3月6日,宁夏政务服务网发布信息显示:宁夏宝丰能源集团股份有限公司太阳能电解制氢储能及应用示范扩建项目企业投资(内资)项目备案准予通过。信息显示:宁夏宝丰能源集团股份有限公司太阳能电解制氢储能及应用示范扩建项目,建设地点位于宁东能源化工基地临河综合工业园区B区,总投资141185万
北极星储能网获悉,氢蓝时代成功中标中国能建黑龙江省电力设计院总包的40MW氢能发电项目,中标金额达3.7亿元。该项目不仅是全球目前最大规模的氢燃料电池(PEM)调峰发电项目,也是国内最大规模的氢能调峰发电项目。我国氢能发电在规模化、商业化道路上迈出了关键一步。在中标的同时,氢蓝时代同步释放
北极星储能网获悉,3月3日,丰镇市风光制氢一体化氢储能调峰电站EPC总承包项目中止公告发布,公告称,因产业政策调整,导致本项目无法按照原计划进行开标工作,现将本项目招标中止。据了解,该项目为全球最大的氢储能项目,项目位于内蒙古乌兰察布丰镇市,投资85亿,招标人为源网荷储新能源科技(丰镇
北极星储能网获悉,2月21日,内蒙古乌兰察布化德县电网侧独立储能示范项目EPC总承包工程中标候选人公示,项目规划建设100MW/400MWh储能。第一中标候选人为中国电建集团河北工程有限公司、上海勘测设计研究院有限公司、中国能源建设集团浙江省电力设计院有限公司,投标报价42998.987995万元,折合单价1.
2月20日,昌吉州人民政府与东方电气集团东方锅炉股份有限公司(以下简称东方锅炉股份有限公司)签订合作框架协议,共创合作发展新局面。根据协议,昌吉州与东方锅炉股份有限公司将聚焦国家能源安全,依托各自优势,围绕高端压力容器装备、氢能应用示范、风电资源开发等领域开展深度合作。东方锅炉股份
2月17日,三十六团与广东南控电力有限公司董事长刘香峰成功签约总投资53.3亿元的三十六团氢储能调峰电站建设项目。此次签约的三十六团氢储能调峰电站建设项目由广东南控电力有限公司下属新疆南创新能源有限公司投资建设,主要聚焦绿氢和电力研发生产,计划建设规模为200MW/800MWh的氢储能电站。项目投
北极星储能网获悉,2月17日,新疆生产建设兵团第二师三十六团在广东省佛山市与广东南控电力有限公司签约三十六团氢储能调峰电站建设项目。项目总投资53.3亿元,由广东南控电力有限公司下属新疆南创新能源有限公司投资建设,主要聚焦绿氢和电力研发生产,计划建设规模为200MW/800MWh的氢储能电站。项目
2月17日,工业和信息化部等八部门印发《新型储能制造业高质量发展行动方案》,提出适度超前布局氢储能等超长时储能技术。延伸阅读:《新型储能制造业高质量发展行动方案》
来源:《中国电力》2025年第1期引文:鲁玲,苑涛,杨波,等.计及?效率和多重不确定性的区域综合能源系统双层优化[J].中国电力,2025,58(1):128-140.编者按为了推动可再生能源持续发展,助力建设新型能源体系,如期实现“双碳”目标任务,须加快构建完善综合能源系统(integratedenergysystem,IES)。多能
海上综合能源系统发展研究(来源:中能传媒研究院作者:马杰刘林桐)(中国海油集团能源经济研究院)综合能源系统是实现能源绿色低碳发展的重要手段。综合能源系统通过集成电力、热能、天然气等多种能源形式,优化资源配置,提升能源供应的安全性、可靠性和灵活性。欧洲北海综合能源系统的成功实践表明
1月7日下午,国家开发投资集团有限公司(以下简称“国投集团”)党组书记、董事长付刚峰与到访的上海电气集团党委书记、董事长吴磊举行会谈,双方就深化战略合作、推动产业协同发展进行深入交流。付刚峰对吴磊一行的到访表示欢迎,并简要介绍了国投集团近年来在战略规划、业务布局以及创新发展等方面取
随着环境污染与化石能源储备逐渐耗竭,电力行业的碳排放成为一个须迫切解决的核心问题,同时可再生能源出力具有不确定性和波动性,给电力系统调度运行带来了更大的挑战。因此,构建“横向多能互补,纵向源网荷储协调”的综合能源系统(integratedenergysystem,IES)是适应未来能源需求和环境保护的必
一、专栏概况园区是我国产业聚集、工业化、城市化的重要载体,其绿色低碳发展是我国实现“碳达峰、碳中和”目标的重要抓手。2021年,国务院发布《2030年前碳达峰行动方案的通知》,强调要“打造一批达到国际先进水平的节能低碳园区”,“建设绿色工厂和绿色工业园区”,“推进产业园区循环化发展”等。
北极星售电网获悉,7月4日,东方汽轮机多场景源网荷储智慧低碳综合能源系统正式投运。该系统立足于东方汽轮机在设备研发和综合能源系统成套解决方案方面的优势,利用自主研发的燃气轮机冷热电三联供、直流微电网、钒液流储能、有机工质朗肯循环余热回收、能源数字化管控等多种前沿技术,打造了多个应用
北极星储能网获悉,6月24日,焦作市人民政府发布关于印发《焦作市推动大规模设备更新和消费品以旧换新实施方案》(以下简称《方案》)的通知。《方案》指出,推动节能降碳改造。加快重点领域用能设备集成化更新和智能化改造,持续提升需求侧管理能力,加强用户侧储能、电动汽车和综合智慧能源系统等灵
北极星售电网获悉,近日,重庆市商务委员会印发《推动美丽重庆建设促进绿色商务发展规划(2024一2030年)》,规划提到,大力推广绿电供能,探索构建“源网荷储”智慧综合能源系统。规划还提到,加快培育壮大智能网联新能源汽车、新型电子产品、先进材料、专业软件开发、节能环保装备、清洁能源及储能等
为构建清洁低碳安全高效的能源体系,以煤炭等化石能源的清洁高效利用支撑新型电力系统建设,最近,盐城供电公司500千伏变电运检中心,配合完成射阳港电厂1号机组并网操作,顺利实现并网发电,将高效清洁煤电接入电网系统,有效缓解地区用电负荷压力,改善了区域电网结构,提高了区域供电可靠性、稳定性
我国“双碳”重大战略背景下,构建“清洁低碳、安全充裕、经济高效、供需协同、灵活智能”的新型电力系统,已成为能源电力领域的重点任务,支撑着我国社会经济社会高质量发展。伴随新能源的不断发展,配电网、微电网作为直接部署于用户侧的电力系统关键载体,与分布式综合能源系统融合发展,不断构建出
2024年全国两会政府工作报告中强调,将“大力推进现代化产业体系建设,加快发展新质生产力”列为首项工作任务。新质生产力是由技术革命性突破、生产要素创新性配置、产业深度转型升级催生的当代先进生产力,起点是“新”,关键在“质”,落脚于“生产力”。新质生产力的本身就是绿色生产力,在能源领域
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!