登录注册
请使用微信扫一扫
关注公众号完成登录
1.2.2 系统效率及寿命
图 2 为 常 见 ESS 的系统效率和运行寿命比较。ESS 循环效率最高的是 SMES,它将电流储存在由电流流过超导线圈产生的磁场中,由于超导线圈没有电阻,损耗几乎为零,仅有附属电力设备如交流/直流转换器造成的 2%~3% 的损耗[22]。FES 和 Li-ion 的系统效率也较高。ESS 的能量损耗主要来源于不同组件之间的能量传递过程,通过调节充电和放电过程中的能量损耗,可以提高 ESS的效率。机械储能方式中 PHS 和 CAES 的使用寿命最长,分别为 40~80 年和 25~60 年。电池储能系统随着工作时间的延长,电池的化学性能变差,使用寿命相对较短,大多低于 20 年。氢储能系统的循环效率 为 35%~55%[ 2 0 , 2 3 ],低于常 规ESS,其主要受氢价值链中采用不同技术路径的影响,如汽车中氢燃料电池效率约为 60%,而通过内燃机的效率约为 20%,综合考虑氢能的价值链,氢储能的寿命为 15~50 年[24]。
1.2.3 系统响应时间及投资成本
图 3 为 常 见 ESS 的响应时间与投资成本比较。由图 3 可知,SMES、FES 和 Super-C 的单位投资成本低于其他储能技术,鉴于它们的快速响应时间,通常用于短期能量储存[5, 22]。在已开发的技术中,SMES 的单位投资成本最低,响应时间最短[22-24]。电池储能单位成本相对较高。氢储能系统投资成本适中,为 1500~2400 美元/kW[25]。响应时间在可接受的分钟级范围内,其系统成本及响应时间同样受氢价值链中采用不同技术路径的影响。
2 氢能在综合能源系统中应用路径
氢可以直接以纯净形式使用,或作为合成液态或气态氢基燃料(合成甲烷或合成柴油)以及其他能源载体(氨)的基础。目前大多数氢气用于工业领域,直接为炼化、钢铁、冶金等行业提供高效原料、还原剂和高品质热源,有效减少碳排放,其中炼油厂、氨生产、甲醇生产消耗氢气比例分别为 33%、27%、11%,另外 3% 的氢气用于钢铁生产[18]。长远来看,氢能可以广泛用于能源企业、交通运输、工业用户、商业建筑[17-19] 等领域,如图 4 所示。既可以通过燃料电池技术应用于汽车、轨道交通、船舶等领域,降低长距离高负荷交通对石油和天然气的依赖;还可以利用燃气轮机技术、燃料电池技术应用于分布式发电,为家庭住宅、商业建筑等供暖供电。表 1 列出了部分典型氢能利用案例。
2.1 氢能应用于工业用户
目前,工业用户中的氢几乎完全来自天然气、煤炭和石油的大规模制氢,对环境产生巨大影响,采用可再生能源发电制氢耦合工业用户,既可以提供无碳氢,又可以提供可再生电力,避免化石燃料的碳排放问题。氢用于工业用户中的途径有:(1)炼油,加氢处理和加氢裂化去除杂质,提高中间馏分油的精收效率;( 2) 化工,用于合成氨、甲醇,合成甲烷等工业原料和燃料;(3)钢铁,代替传统高炉及碱性氧气转炉系统中常用的焦炭和天然气[2, 17]。
基于氢的合成燃料储存更容易,可利用现有的基础设施输送,为海事、铁路、航空提供可靠的清洁燃料。2019 年 11 月,德国蒂森克虏伯钢铁集团正式注入杜伊斯堡 9 号高炉;奥地利林茨奥钢联钢厂 6 MW 电解制氢装置投产,开启了氢能冶金时代。中国宝武钢铁、鞍钢、酒钢等均开始可再生能源制氢-氢能冶金立项,探寻循环经济的可行性。
2.2 氢能应用于交通运输
长期以来,氢作为潜在的交通燃料,被视为石油和天然气的清洁替代品。氢动力系统因其零碳排放和广泛的适应性有望成为交通运输部门实现快速减排的少数选择之一,这依赖于燃料电池技术的发展,常见燃料电池包括:质子交换膜电池( proton exchange membrane fuel cell,PEMFC)、磷酸电池(phosphoric acid fuel cell,PAFC)、熔融碳酸盐电池(molten carbonate fuel cell,MCDC)
和固体氧化物电池(solid oxide fuel cell,SOFC),综合考虑工作温度、催化剂稳定性、电效率、比功率/功率密度等指标,最常用于交通运输行业的是 PEMFC。目前氢能燃料电池用于交通运输领域主要包括:(1)道路运输,如小型汽车、公共汽车、卡车和其他货车;(2)海事行业,如船舶、港口;(3)铁路和航空;(4)其他特殊领域,如救援车辆、深海装备等。
相比于纯电动汽车,氢燃料电池汽车、卡车及叉车的燃料加注时间短、续航里程长,但氢燃料汽车的综合能量利用效率仅为 25% 左右,虽然高于传统合成燃料内燃机汽车的 15%,但远低于纯电动汽车约 70% 的综合能量利用效率,研究表明当燃料电池成本为 75~100 美元/kW 时,氢燃料电池汽车可以在续航里程为 400~500 km 内与纯电动汽车竞争,氢燃料电池汽车对于有更高里程要求的消费者更有吸引力[17-18]。目前氢在海事、铁路和航空领域的应用处于示范阶段,主要用于辅助动力单元,而欧洲碳排放交易体系的不断扩大为氢能在这些领域的应用提供了潜在的空间。2019 年 11 月,中国首列氢燃料电池有轨电车在佛山投运。2020 年 1 月,美国国防部联合能源部启动氢燃料电池应急救援车 H2Rescue 项目,基于氢燃料电池/锂电池混合系统,开启微电网搭建、供热和供水一体化研究。
2.3 氢能应用于能源企业
目前,全球氢能发电比例很小,约占总发电量的 0.2%。随着对能源行业深度脱碳要求的进一步提高,氢能应用于能源企业路径主要有:(1)氢为燃气轮机或燃料电池提供燃料,作为备用电源或离网供电,为易停电和偏远地区的关键设施(如医院,通信基础设施等)提供备用电源,成为电力系统的一个灵活性电源;(2)氢转化成氨,与煤粉共燃,降低传统燃煤电厂的碳排放强度;(3)氢以压缩气体、氨或合成甲烷的方式储存,平衡电力需求和可再生能源的间歇性波动。
日本和韩国均明确了在能源企业中使用氢或氢基燃料的目标,日本希望在 2030 年氢发电能力达到 1 GW,韩国氢路线图设定目标是 2022 年电力行业中燃料电池装机容量为 1.5 GW,2040 年达到 15 GW[17]。2020 年 2 月,北美拟投资可再生能源-氢发电枢纽项目替代 1800 MW 的 Intermountain燃煤电站,为南加州提供可靠的清洁能源,从2025 年开始,每年春、秋两季将有 538 MW 可再生能源用来制氢,可再生能源制氢成本可能低至1.5~2.9 美元/kg,氢气将储存在地下盐洞,通过100% 氢燃料的燃气轮机进行发电[19]。
2.4 氢能应用于建筑热电联供
在住宅建筑领域,75% 的传统能源用于空间供暖、热水和烹饪。氢可与天然气混合(氢气掺混比例为 0~20%),通过基于燃气轮机或燃料电池的 CHP 技术,利用现有建筑和能源网络基础设施提供灵活性和连续性的热能、电力供应,从而取代化石燃料 CHP。
基于燃气轮机的 CHP 可通过布雷顿-朗肯循环来实现热、电联供,氢气通过高温燃气轮机进行燃烧,推动燃气轮机发电,燃烧形成的高温蒸汽通过余热锅炉吸收产生蒸汽,推动小汽轮机发电,汽轮机排汽作为热源提供热量,整体循环效率可达 55%。日本某微型氢燃气轮机已成功向社区供应 2.8 W 热能和 1.1 MW 电力[18]。
基于燃料电池的 CHP 最常用的是 PEMFC 和SOFC 技术。CHP 中的 2 种类型的电池都可以由热或电功率驱动,并且由于其紧凑的尺寸可以部署为微型 CHP。它们既可以直接用氢气作为燃料,也可以用天然气或沼气作为燃料,而在装置内部转化为氢气。如果产生的热量具有足够高的温度,则该系统还可以通过吸附(三联产)提供冷却,整体运行效率可达 60%。“Ene-Farm”项 目 从 2009 年开始,已相继投 入 30 多万套微 型CHP 单元,单元成本已从 3.5 万美元降至 0.9 万美元。此外,100% 的纯氢可通过氢锅炉用于建筑供热,但氢气价格需低至 1.5~3.0 美元/kg 时,才能与天然气锅炉和电动热泵竞争。2019 年 6 月,由BDRThermea 研制的世界第 1 台纯氢家用锅炉在荷兰罗森堡投入使用,初始供暖量将满足总热量需求的 8%,该项目与荷兰北部海上风电制氢、盐洞储氢及格罗宁根氢燃料电池列车构成了荷兰氢能利用蓝图的雏形。
3 应用途径分析
为了实现《巴黎协定》中的目标,全球能源系统必须进行深刻的变革,可再生能源的低碳电力可能成为首选的能源载体,电力在全球终端能源消耗中的份额到 2050 年需要增加近 40%。但对于难以通过电气化实现脱碳的行业(如物流、工业用户),各国政府正在逐步认识到可再生能源耦合氢能是实现零碳净排放的重要选择之一。
(1)目前,90% 的氢用作工业原料,但这部分氢大多来源于化石燃料,未来工业用户的深度脱碳途径是利用可再生制氢来替代这部分氢气。制氢成本与碳排放成本是影响该用途进展的关键因素。氢气综合成本为 1.2~2.3 美元/kg 时,可再生能源制氢的竞争力大大提升,但这并不妨碍氢能在工业领域的广泛应用,预计到 2030 年,氢能需求量为 10~15 万 t/年[17],如图 5 所示。
(2)氢能已经逐步用于交通运输领域的城市用车、短程公共车,但大范围推广仍受限于氢燃料电池及车载氢罐的成本,以及氢供应链基础设施完善程度。但对于重型卡车或远程运输来说,氢能仍是该领域脱碳成本最低的方法之一。随着氢燃料和车辆成本的降低,鼓励政策的实施及加氢基础设施的完善,预计到 2030 年,交通运输行业氢能需求量为 7~15 万 t/年[18]。
(3)氢能主要作为清洁燃料为能源企业提供热量和电力,但目前仍受限于较高的制氢成本,但整体考虑系统年利用率及资本支出,氢能用于热电原料比例将会进一步提升。相比之下,氢能以储能的方式为电网提供平衡和灵活性的方法更有竞争力,大容量储氢成本未来低至 0.3 美元/kg。预计到 2030 年,能源企业的氢能总需求量为 10~18 万 t/年[6]。
(4)建筑的供热和电力需求约占全球能源需求的 1/3,而对于分布式供暖,氢能是少数几种可以与天然气竞争的低碳替代品,随着制氢成本和氢锅炉、燃料电池成本的下降,以及氢气利用现有天然气管道输送能力的提升,预计到 2030 年,CHP 中氢锅炉与氢燃料电池的成本为 900~2000 美元/(户·年),建筑热电联供的氢能需求量为 3 万~ 9 万 t/年[14]。
虽然氢能已经在能源系统中的许多领域得到应用,但氢能产业链中基础设施较为薄弱,氢能供应链中制氢技术的成本问题,长距离、大容量储运经济安全问题及终端加氢设施成本等问题仍是目前亟须解决的。
4 对中国氢能发展的启示
氢能在国内能源电力领域的应用前景仍有部分争议,几乎所有的氢能和燃料电池技术还依赖于公共财政的支持,但中国在制氢方面具有良好的基础,工业副产氢和可再生能源制氢已开展项目示范。中国氢能联盟已牵头开启氢能在综合能源系统中的应用研究。综合以上研究,对中国氢能发展带来以下启示。
(1)氢能产业目前仍处于市场导入期,氢能的“制—储—运—用”环节与世界先进水平仍存在较大差距。需要尽快将氢能经济纳入国家能源体系中,研究制订国家氢能发展路线图、明确氢能利用目标与产业布局,引导地方根据区域特点差异化发展氢能产业。
(2)除交通运输外,氢能在能源企业、工业用户及建筑部门的商业化应用应作为氢能战略参考指标,明确氢能在低碳能源系统转型中的战略作用。
(3)氢能产业化布局基础设施较为薄弱,应加强氢能产业链关键技术攻关和应用。加快推进可再生能源制氢、氢储能、氢能利用等关键技术协同研究,对关键材料及核心部件技术创新加大财政补贴。
5 结语
(1)随着氢利用技术的发展和进一步成熟,氢储能系统成熟度上升较快。与其他常规储能系统相比,氢储能系统在系统效率、运行寿命、机组响应时间和投资成本等关键参数上均处于中间位置,但考虑氢能在未来能源系统中深度脱碳的重要作用,氢储能系统具有广阔的应用途径。
(2)氢储能系统未来可用于工业用户,提供化工原材料及高温热源;用于交通运输中车辆的脱碳;用于能源企业,取代化石燃料发电、供暖,或者以储能的方式提高电网灵活性;用于建筑热电联供,提高能量利用效率。
(3)氢能还未充分发挥在低碳能源系统中的作用,需要从国家战略层面、核心技术研发投入、财政补贴等方面进一步加大支持力度,推动氢能产业实现跨越式发展。
参考文献:
[1]MARTINEZ CESENA E A, MANCARELLA P. Energy systems integration in smart districts:robust optimisation of multi-energy flows in integrated electricity, heat and gas networks[J]. IEEE Transactions on Smart Grid, 2019, 10(1): 1122–1131.
[2]Hydrogen Europe. Hydrogen roadmap Europe: a sustainable pathway for the european energy transition[EB/OL].(2019-02-11)[2020-02-10]. /publications/entry/innovation insights brief five steps to energy torage
[6]International Energy Agency. Technology road map: hydrogen and fuel cells[EB/OL]. (2015-06-15)[2020-03-01]. /reports/technology-roadmap-hydrogen-and-fuel-cells.
[7]彭生江, 杨淑霞, 袁铁江, 等. 广义风-氢-煤能源系统的挑战与展望[J]. 电力系统自动化, 2019, 43(24): 6–12.
PENG Shengjiang, YANG Shuxia, YUAN Tiejiang, et al. Challenges and prospects of generalized wind-hydrogen-coal energy system[J].Automation of Electric Power Systems, 2019, 43(24): 6–12.
[8]Pöyry. Hydrogen from natural gas: the key to deep decarbonisation [EB/OL]. (2019-07-11)[2020-02-20]. /news/articles/hydrogen-natural-gas-key-deep-decarbonisation.
[9]孔令国. 风光氢综合能源系统优化配置与协调控制策略研究 [D].北京: 华北电力大学, 2017.
KONG Lingguo. Research on optimal sizing and coordinated control strategy of integrated energy system of wind photovoltaic and hydrogen[D]. Beijing: North China Electric Power University, 2017.
[10]LI J R, LIN J, SONG Y H, et al. Operation optimization of power to hydrogen and heat (P2HH) in ADN coordinated with the district heating network[J]. IEEE Transactions on Sustainable Energy, 2019,10(4): 1672–1683.
[11]霍现旭, 王靖, 蒋菱, 等. 氢储能系统关键技术及应用综述 [J]. 储能科学与技术, 2016, 5(2): 197–203.
HUO Xianxu, WANG Jing, JIANG Ling, et al. Review on key technologies and applications of hydrogen energy storage system[J].Energy Storage Science and Technology, 2016, 5(2): 197–203
[12]许世森, 张瑞云, 程健, 等. 电解制氢与高温燃料电池在电力行业的应用与发展 [J]. 中国电机工程学报, 2019, 39(9): 2531–2537.
XU Shisen, ZHANG Ruiyun, CHENG Jian, et al. Application and development of electrolytic hydrogen production and high temperature fuel cell in electric power industry[J]. Proceedings of the CSEE, 2019, 39(9): 2531–2537.
[13]GAHLEITNER G. Hydrogen from renewable electricity: an international review of power-to-gas pilot plants for stationary applications[J]. International Journal of Hydrogen Energy, 2013,38(5): 2039–2061.
[14]International Renewable Energy Agency. Hydrogen from renewable power: technology outlook for the energy transition[EB/OL].(2018-09-20)[2020-02-20]. https://irena.org/publications/2018/Sep/Hydrogen-from-renewable-power.
[15]ROSEN M A, KOOHI-FAYEGH S. The prospects for hydrogen as an energy carrier: an overview of hydrogen energy and hydrogen energy systems[J]. Energy, Ecology and Environment, 2016, 1(1):10–29.
[16]FISCHEDICK M, NITSCH J, RAMESOHL S. The role of hydrogen for the long term development of sustainable energy systems: a case study for Germany[J]. Solar Energy, 2005, 78(5): 678–686.
[17]Adelphi Consult Gmbh. The role of clean hydrogen in the future energy systems of Japan and Germany[EB/OL]. (2019-09-20)[2020-03-01]. /events/the-future-of-hydrogen-seizing-todays-opportunities.
[19]Hydrogen Council. Path to hydrogen competitiveness: a cost perspective[EB/OL]. (2020-01-20)[2020-02-20]. https://hydrogencouncil.com/en/path-to-hydrogen-competitiveness-a-cost-perspective
[20]GAO D, JIANG D F, LIU P, et al. An integrated energy storage system based on hydrogen storage: process configuration and case studies with wind power[J]. Energy, 2014, 66: 332–341
[21]BECHERIF M, RAMADAN H S, CABARET K, et al. Hydrogen energy storage: new techno-economic emergence solution analysis[J].Energy Procedia, 2015, 74: 371–380.
[22]KOPANOS G M, LIU P, GEORGIADIS M C. Advances in energy systems engineering[M]. Cham: Springer International Publishing,2017.
[23]DE SANTOLI L, LO BASSO G, BRUSCHI D. Energy acterization of CHP (combined heat and power) fuelled with hydrogen enriched natural gas blends[J]. Energy, 2013, 60: 13–22.
[24]GUTIéRREZ-MARTíN F, CONFENTE D, GUERRA I.Management of variable electricity loads in wind-hydrogen systems:the case of a Spanish wind farm[J]. International Journal of Hydrogen Energy, 2010, 35(14): 7329–7336.
[25]GAMBINI M, GUIZZI G L, VELLINI M. H2/O2 cycles:thermodynamic potentialities and limits[J]. Journal of Engineering for Gas Turbines and Power, 2005, 127(3): 553–563.
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
北极星氢能网获悉,4月15日上午,由宁夏嘉泽集团有限公司投资建设,总投资80亿元的绿氢醇航油化工联产项目在黑龙江省鸡西市鸡东县化工园区正式开工。据了解,绿氢醇航油化工联产项目主要以生物质秸秆为原料,经发酵生产绿色乙醇,催化合成绿色航油。项目建成后可达到年产绿色甲醇45万吨、绿色乙醇15万
上周,德国候任总理弗里德里希·默茨(FriedrichMerz)领导的基民盟/基社盟(CDU/CSU)与社民党(SPD)达成联合执政协议,标志着德国能源转型(Energiewende)从绿党主导的“激进脱碳”转向“平衡务实”的新阶段。在执政协议中,气候能源政策以“技术中立、市场导向”为核心,在坚守2045年气候中和目标
北极星氢能网获悉,4月15日,四川金顶(集团)股份有限公司(简称“四川金顶”)发布关于控股子公司引入投资人增资扩股暨公司放弃优先认购权的公告,公告显示其控股子公司——四川新工绿氢科技有限公司(简称“新工绿氢”)拟引入投资人四川兴雍私募基金管理有限公司(简称“兴雍基金”)进行增资,公
北极星氢能网获悉,4月15日,东方希望数字化供应链平台发布“新塑年产80万吨煤制烯烃煤化工专项组碱水电解制氢装置招标公告”,采购1套规格为333.33m/min95℃的电解槽(20000Nm/h电解槽),招标人为新疆东明塑胶有限公司。据了解,新疆东明塑胶有限公司为上海东方希望化工控股有限公司全资子公司。据此
北极星氢能网获悉,4月11日,河北省公共资源交易服务平台发布《昌黎县氢能示范一期项目投资人招标招标计划》,该项目总投资2.2亿元。招标项目概况:昌黎县氢能示范一期项目购置150辆49吨氢能源重载半挂牵引车卡车,并在县域内向主要钢铁企业投放,引导企业使用氢能源汽车运输,实现绿色运输场景,配套
北极星氢能网获悉,4月15日,江西省九江市政府采购中心发布关于九江公交氢能源电池公交车采购项目的公告,计划采购15辆氢燃料公交车,预算金额2775万元,最高限价2636.25万元。详情如下:
北极星氢能网获悉,4月14日,国家市场监督管理总局发布研制典型储运氢特种设备关键测试技术与基本安全要求公开招标公告,预算金额490万元人民币。相关链接:国家出手!氢能产品标准研制全面启动该项目技术需求及服务要求为搭建固态储氢气瓶安全性能测试装置,开展固态储氢气瓶系统性安全性能测试,建立
守正创新担当作为奋力谱写河南能源高质量发展新篇章河南省发展改革委党组成员,河南省能源局党组书记、局长夏兴党的二十届三中全会对规划建设新型能源体系作出了系统部署,2025年全国能源工作会议进一步对能源重点任务提出了明确要求,为推动能源工作实现“十四五”圆满收官、“十五五”良好开局指明了
北极星氢能网获悉,4月12日,质子汽车与绿动重工(江苏)有限公司举行首批20辆氢燃料电池牵引车交车暨氢能产业战略合作签约仪式。此次交付的帝江Re系氢燃料电池牵引车具有节能高效、安全可靠、管理智能、维护便利等多重优势,特别是长续航能力可大幅提升运输效率。同时,其搭载的智能管理系统可根据车
北极星氢能网获悉,4月15日,大连检验检测认证集团(以下简称“大检集团”)举行国产首台直管结构70MPa压缩氢气加气机检定装置验收暨新品发布会,这项填补国内空白的技术成果,标志着我国在氢能计量领域取得重大突破,为氢能产业高质量发展提供了关键性技术支撑。以加氢站为核心的氢能基础设施建设和氢
北极星氢能网获悉,4月14日,中信证券股份有限公司(简称“中信证券”)IPO企业辅导公告发布关于山东东岳未来氢能材料股份有限公司(简称“未来材料”)首次公开发行股票并上市辅导工作进展报告(第一期)。截至目前,中信证券对未来材料的上市辅导工作仍在进行中。相关链接:东岳氢能变更上市辅导机构
北极星氢能网获悉,4月14日,四川省住房和城乡建设厅发布关于公开征求《四川省氢燃料电池汽车车用加氢站建设运营管理暂行办法(征求意见稿)》意见的通知。《通知》指出,该暂行办法适用于四川省内加氢站的规划、建设、运营等管理,有效期2年。该暂行办法所称加氢站,是指为氢燃料电池汽车的储供氢装置
北极星氢能网获悉,日前,甘泉堡经济技术开发区(工业区)与江苏富仕宝新能源科技有限公司签订投资协议,建设绿氢智慧能源一体化示范项目。项目建成后,可实现年产15万吨绿氢、60万吨绿色甲醇和40万吨绿氨项目。据了解,该绿氢智慧能源一体化示范项目计划总投资62亿元,主要生产绿氢、绿色甲醇和绿氨。
北极星氢能网获悉,4月9日,内蒙古锡林郭勒盟行政公署办公室发布《锡林郭勒盟关于推进优势特色产业集群建设的指导意见》的通知。通知指出,谋划布局重力储能、压缩空气储能、氢储能等项目。依托绿电氢氨醇装备市场,进一步引进制氢电源、氢能储运加等装备制造项目,做全氢能装备制造产业链。依托绿电资
北极星氢能网获悉,近日,南充市经济和信息化局牵头起草,以南充市人民政府名义印发了《南充市支持氢能产业发展的若干政策措施》(以下简称《政策措施》),现将有关内容解读如下。一、出台背景氢能作为一种来源丰富、绿色低碳、应用广泛的二次能源,在未来能源体系中,是推动传统化石能源清洁利用和促
北极星售电网获悉,4月9日,内蒙古锡林郭勒盟行政公署办公室关于印发《锡林郭勒盟关于推进优势特色产业集群建设的指导意见》(以下简称《意见》)的通知。《意见》指出,积极谋划园区绿色供电、源网荷储一体化等市场化项目;结合增量配电网政策基础,探索在多伦县、正镶白旗等地区谋划增量配电网项目。
北极星氢能网获悉,4月7日,国家电力投资集团有限公司发布2025年度第20批集中招标公告,针对江西核电棉船风电配套制氢储能项目中的PEM电解水制氢设备进行重新招标,投标截止时间为4月28日。此次招标标段为棉船风电配套制氢储能项目PEM电解水制氢设备,招标范围为新购1套100Nm/h的PEM制氢成套装置,成套
据北极星氢能网不完全统计,2025年3月,国内共有5个项目进行电解水制氢设备招标,其中包括中国能建、国家电投、中国石油等企业,详情如下:3月7日,中能建石家庄鹿泉区光伏制氢及氢能配套产业项目EPC总承包项目碱性电解槽制氢装置、电源、球形储罐、往复式压缩机、氢气隔膜压缩机、氢气充装柱等设备招
北极星氢能网获悉,近日,江苏大学能源与动力工程学院发布有关于太阳能制氢/储氢一体化系统的科研成果。该项目在太阳能制氢储氢一体化系统取得了显著成果,技术特点鲜明,拥有高效的光电转换效率和催化活性,实现了制氢与储氢的无缝对接。在主要技术参数方面,系统具有稳定的光电转化效率,催化剂表现
北极星氢能网获悉,3月31日,四川省甘孜州经济和信息化局发布关于公开征求《甘孜州氢能全产业链发展实施方案(2025-2028年)(征求意见稿)》意见建议的公告。总体目标指出,到2028年,全州氢能产业规模持续扩大,创新能力显著提高,氢能全产业链技术取得较大进展,氢能与可再生能源源高效耦合发展,产
2025年一季度,又一批氢能项目传来消息,据北极星氢能网不完全统计,这一季度获批、签约、开工、投产的氢能项目共计28个,其中获批和签约的氢能项目分别占据10个,迎来一批热潮。此外,这一季度项目涉及到中国能建、中广核等多家企业。详情如下:获批1月,中能建敖汉旗及元宝山区风光制氢氨一体化项目
据北极星氢能网不完全统计,2025年3月,国家以及各地方共出台20条氢能政策。从国家层面来看,3月28日,工业和信息化部等十部门联合印发《铝产业高质量发展实施方案(2025—2027年)》,鼓励企业参与氢能、储能系统开发建设。从地方层面看,3月,新疆哈密市、河南濮阳市、山西吕梁市分别发文宣布正式加
在当前全球能源结构深刻转型的浪潮中,我国的氢能产业,尤其是绿氢领域,作为我国战略性新兴产业的关键一环,正迎来一个前所未有的黄金发展期,被视为塑造未来产业格局中具有前瞻性和潜力的培育方向。面对“碳达峰、碳中和”目标的紧迫挑战,“加速构建以绿色低碳为核心的新型能源体系”已成为国家层面
智能充电桩连接着铺有光伏板的停车棚,每个充电桩由智能系统控制优先使用光伏电……在青海省西宁市城北区工作的李政辉惊喜地发现,单位附近最近安装了6台配备光伏停车棚的充电桩。“这种充电桩实现电力自发自用,扫码就能启动,充电更高效。”李政辉说,以前在西宁开新能源车最头疼的就是充电问题,许
2025年这个节点,这个万亿级赛道仍有来自石油巨头、通信寡头、工业巨擘的跨界奇袭。全球能源革命浪潮下,储能产业正经历前所未有的裂变,中国市场内卷严重,不少跨界者铩羽而归。数据显示,2024年新型储能行业洗牌加剧,注销、吊销等异常储能相关企业数量翻番。当前,新型储能行业经历了三个阶段,第一
2025年3月26日,北京市第十六届人民代表大会常务委员会第十六次会议表决通过了《北京市可再生能源开发利用条例》(以下简称《条例》),《条例》自2025年5月1日起施行。立法背景能源安全事关经济社会发展全局。党的十八大以来,习近平总书记对大力发展可再生能源、推动经济社会绿色低碳转型、应对气候
新型电力系统形态量化推演方法的总体框架与功能设计来源:中国电力作者:李健,张钧,韩新阳,靳晓凌国网能源研究院有限公司,北京100192引用本文Cited李健,张钧,韩新阳,等.新型电力系统形态量化推演方法的总体框架与功能设计[J].中国电力,2025,58(3):1-7,97.LIJian,ZHANGJun,HANXinyang,etal.Overallfram
近年来,随着全球能源革命和“双碳”目标的推进,传统能源行业正经历前所未有的变革。在这一背景下,中国新能源巨头宁德时代与石油化工领军企业中石化的战略合作,成为行业关注的焦点。近日,双方签署协议,宣布将共同建设覆盖全国的换电生态网络,计划今年落地不少于500座换电站,并剑指远期10000座的
日前,《环球时报》聚焦上海电气在积极推进“双碳”战略取得的阶段性成果——位于吉林洮南的全球首个风电耦合生物质绿色甲醇一体化示范项目,采用自主研发的纯氧加压循环流化床气化等国际领先技术,将农林废弃物与绿电高效转化为绿色甲醇,填补国内规模化生产空白。项目创新“绿电制氢+生物质气化”耦
2024年,国家能源局发布《关于做好新能源消纳工作保障新能源高质量发展的通知》,明确构网型新型能源系统在网架结构薄弱地区的建设需求,积极打造电力系统瞬时功率支撑能力,支撑电网持续接入风光绿电。作为改善源网短路容量和转动惯量缺失问题的创新型方案,构网型储能正式迈向发展快车道,天合洞察市
2024年10月,内蒙古出台《关于建立高耗能企业可再生能源电力强制消费机制若干措施》(以下简称《强制消费机制》)与《内蒙古自治区绿电消费指南》(以下简称《指南》)等政策,持续推动工业领域绿电消纳。再加上此前发布的包括工业园区绿色供电、源网荷储一体化、风光制氢一体化在内的六类市场化并网消
近日,华润电力、长峡电能、浙江新能、湖南红太阳、十一科技全国多岗招聘,北极星整理如下:华润电力云南公司统筹华润电力在滇所有业务,业务覆盖风、光、水、火、储等电源项目开发、建设、运营,以及综合能源服务,项目覆盖云南省多个地区。截至2024年底,公司正式员工200余人;并网装机容量112.83万千
近日,清源科技受邀参加“容领世界·继创未来”松下电子部品(江门)有限公司合作伙伴大会,并荣膺2024年度节能贡献大奖。三度携手树立行业标杆清源科技与松下江门展开深度合作,三度携手完成光伏项目建设:一期3.357MW分布式光伏项目、二期582.4KW光伏扩建项目以及光储一体化项目(4MW/8MWh)。这些项目
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!