北极星

搜索历史清空

  • 水处理
您的位置:电力配售电能源服务评论正文

深度文章|适用于多虚拟电厂交易的改进拜占庭容错算法共识机制

2024-02-07 11:37来源:中国电力关键词:虚拟电厂电力交易VPP收藏点赞

投稿

我要投稿

来源:《中国电力》2024年第1期

引文:张书涵, 艾芊, 李晓露, 等. 适用于多虚拟电厂交易的改进拜占庭容错算法共识机制[J]. 中国电力, 2024, 57(1): 71-81, 157.

编者按

目前的电力系统趋于信息物理高度融合、多能源互联协调,出现了参与者海量、单笔小额、位置分散等特点的点对点交易,使电力交易的组织方法出现了重大变化。随着售电侧市场对社会资本开放,市场主体更加多样,比较典型的有负荷聚合商、微电网、异构能源等,在电力供需两侧灵活性提升的同时,增加了传统电力交易中运算中心的数据处理压力,对多层级的补贴政策落实、消纳责任考核等多方面带来了新的挑战。需要进一步挖掘分布式资源间的多能互补支撑潜力,通过经济激励,鼓励分布式资源积极参与系统调控。《中国电力》2024年第1期刊发了张书涵等人撰写的《适用于多虚拟电厂交易的改进拜占庭容错算法共识机制》一文。文章提出基于区块链的多虚拟电厂交易架构,制定多虚拟电厂的交易流程,通过业务主体功能差异对节点进行分类,提出差异化信用评价指标,优化拜占庭容错算法(practical byzantine fault tolerance,PBFT)流程,算例分析表明该机制能有效契合多VPP交互场景。

摘要

分布式能源投资主体的多样性,使各资源在互动过程中的信任构建更加困难,因此需要探究多虚拟电厂交互模式并构建相应信任体系。基于主侧区块链技术构建了多虚拟电厂交易模型总体架构,明确了多虚拟电厂交易流程。通过主侧锚定技术构建跨链通道,实现多虚拟电厂链上协同运行模式。针对节点维护区块链网络环境积极性不高导致的信任环境缺失和区块链性能下降的问题,基于节点功能不同提出了一种差异化信用评价指标来规范节点行为,同时利用该指标对拜占庭容错算法(practical byzantine fault tolerance,PBFT)进行改进。实验结果表明使用差异化信用评价指标改进的共识算法在所提多虚拟电厂架构下能构建信任环境并提升共识效率。

01

基于区块链的多虚拟电厂交易模型设计

1.1 多虚拟电厂交易架构

直接交易在实践中的组织方式包括双边协商、集中竞价、挂牌交易等。本节提出了基于挂牌交易的多VPP能源交易系统(multi-virtual power plant listed energy trading system,MLTS)。MLTS采用区块链架构,在多VPP业务中应用主侧链技术,可避免区块链产生数据冗余及硬分叉问题,令各侧链可根据实际情况灵活调整运行策略使各VPP独立灵活运行,同时降低主要节点的运行压力并提高系统的运行效率。如图1所示,各VPP分别维护一条侧链,其内成员有负责管控内部分布式资源并与其他VPP交互的虚拟电厂管控中心(VPP management center,VMC)、储能、光伏、工业用户和居民负荷等,侧链主要维护VPP内部成员的交易。主链由电网交易中心、各VMC和MLTS节点共同运行,主链主要维护不同VPP成员间的交易。各主体作为交易的直接参与者时,可通过VMC在MLTS内发布交易需求;系统内部分节点通过选举获得验证交易的权力并获得由MLTS系统发放的信用值补贴,实现单个VPP内的自组织、自维护、自监督以及多个VPP间分布式资源有序交易。为保证能源传输以及MLTS系统运行安全,需要电网在保证电能流转的基础上兼顾节点准入及身份审核。

5.jpg

图1基于多链结构的多VPP交易架构

Fig.1Multi-VPP transaction architecture based on multi-chain structure

1.2 多虚拟电厂交易流程MLTS交易系统中,一轮次的交易设定有自由报价阶段、交易确认阶段、电力交割阶段和过渡阶段。其中上一轮次的过渡阶段与下一轮的自由报价阶段具有时间交叉特性。1)自由报价。MLTS支持卖方订单与买方订单2种。其中,卖方订单指卖方形成初始电价及当前时段可交易电量,买家根据自身需求与一个或多个卖方达成初步交易意向,意向订单不会锁死,但卖方可交易电量会根据当前达成意向订单而降低,同时用户需要向MLTS支付相应费用,若在本阶段撤销交易,卖方可交易电量及用户支付的相关费用将被返还。这类交易买方无法控制电价,但能保证本时段交易达成。

买方订单指买方向MLTS提交包含价格期望、电量等信息的订单,等待卖家响应自身需求,这类交易买方无法控制交易是否能在本时段完成,但能控制电价在自己的期望范围内。

由于单个VPP内交易双方及跨VPP交易双方电气距离远近不可预知,设定由买方承担过网费。用户在MLTS系统内与其他参与者交易时,系统会根据本笔订单双方信息自动生成可能产生的过网费用供客户参考。

2)交易确认。本阶段将锁定上一阶段产生的意向订单,买卖双方均不可以随意撤销交易,否则将受到相应惩罚。主节点将把当前系统内订单打包出块,并交由共识节点验证。

3)电力交割。该阶段中,共识节点验证无误后,对该区块进行数字签名,智能合约将自动把该区块上链,并按照各订单信息完成资金及能源交割。同时卖家将形成新一轮报价并改变自身可交易电量。

由于参与方的发用电量可能会与其自身预期产生偏差,引入电网对此部分偏差电量进行消纳。分布式发电方对自身超发电量无消纳能力,超发部分按照基准上网电价卖给电网;对自身少发电量无补偿能力,少发部分按照电网售电价向电网购买再供给买家,由此产生的亏损、过网费等将由卖方承担。电力用户用电量少于交易协议又无余电消纳能力,其将按照基准上网电价卖给电网,此时亏损部分为用户购电价减去电网收购价;用电量超出交易协议又无备用电能,超出部分由用户按当前电网对外售电价向电网购买,以上超支、亏损部分由用户自身承担。

4)过渡阶段。该阶段中,各参与方将根据自身用电情况确定下一时段的买卖身份,卖家将形成新一轮报价并改变自身可交易电量,买方将形成自身购电期望。

1.3 主侧成链机制及多链协同运行模式

1.3.1 主侧链成链机制

在多虚拟电厂交易中,主要存在2种情况:一是发生在VPP内部分布式资源间的交易;二是交易主体分别来自不同的VPP。2种场景下的成链流程如图2所示。

6.jpg

图2MLTS系统主侧链成链流程

Fig.2MLTS main chian and side chain formation process

1)交易方属于同一虚拟电厂时,交易双方通过VMC在系统中发布购售电信息(此处设定交易方通过VMC向系统提交申请是为了第2个场景中辨识交易双方是否来自同一VPP);在系统中达成交易意向;交易确认阶段双方确认交易,系统将交易细则返回至VMC(单个VMC可能由多个交易方通过且并不一定都成功交易,因此需要系统返回成功交易的细则,降低VMC处理压力);VMC将交易信息打包出块,交给共识节点验证;共识通过后智能合约将区块链接至该VPP本地区块链。2)交易双方分属不同虚拟电厂时,交易双方通过各自VMC向系统发布购售电信息;在系统中达成交易意向;交易确认阶段双方确认交易,系统将该笔交易打包出块,返回至所有VMC;各VMC将对区块进行验证以达成共识;共识通过后智能合约将区块链接至主链。交易双方若想查询本笔交易,需要用到跨链技术,买(卖)方通过交易凭证应先调用至侧链,通过侧链与主链的锚定通道查询到位于主链上的信息,这样是为了防止大量分散资源向系统提交查询申请,提前预留好每笔跨链交易的数据锚定关系,更加高效,也降低了系统压力。

1.3.2 多链协同运行模式

为了保留分布式资源交易自由灵活特点,同时降低主要节点运算压力,本节所提主从多链模型主要基于数据结构不同的两种区块。侧链记录虚拟电厂内部分布式资源间交易信息,当不同虚拟电厂间产生交易时,主链对此类交易进行上链存证,同时侧链协同区块与主链区块锚定,既保证链内交易和跨链交易的数据隔离,又缓解关键节点的数据存储压力。

表1给出了主链区块与协同区块的数据结构,由于侧链普通区块的工作原理与主链区块相同,不再单独列出。

表1区块数据结构Table 1Block data structure

7.png

投稿与新闻线索:陈女士 微信/手机:13693626116 邮箱:chenchen#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

虚拟电厂查看更多>电力交易查看更多>VPP查看更多>