登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
作者:赵瑞瑞 1 彭燕秋 1赖学君 1吴志隆 1高杰 1许文成 1王立娜 1丁沁 1方永进 2曹余良 2
单位:1.惠州亿纬锂能股份有限公司;2.武汉大学化学与分子科学学院
引用:赵瑞瑞,彭燕秋, 赖学君,等.焦磷酸磷酸铁钠基钠离子电池日历老化容量衰减机理研究[J].储能科学与技术, 2024, 13(11): 4124-4132.
DOI:10.19799/j.cnki.2095-4239.2024.0560
本文亮点:1.通过多种表征手段研究了Na4Fe3(PO4)2P2O7基钠离子电池的高温存储性能 2.揭示负极侧界面副反应是钠离子电池存储容量损失的主要因素。
摘 要 随着钠离子电池技术的不断发展,深入探索其存储过程中的容量损失机理对提高电池系统日历寿命具有重要意义。本文对焦磷酸磷酸铁钠[Na4Fe3(PO4)2P2O7]基钠离子电池的高温存储性能进行了详细研究,通过透射电子显微镜(TEM)、电感耦合等离子体发射光谱(ICP)、拉曼光谱、傅里叶变换红外光谱(FT-IR)及X射线光电子能谱(XPS)等多维度分析技术,全面剖析了正负极活性材料在高温存储过程中的容量损失率、结构、形貌及界面组分的变化。研究结果表明,高温存储后电极活性材料的比容量仅出现轻微衰减,正负极活性材料结构也未见受损,且正极铁元素溶出串扰并不显著。然而,负极侧固体电解质界面(SEI)膜增厚现象十分显著,表明存储期间负极SEI膜会不断溶解生长,且新生成的SEI膜以有机物为主。这一发现揭示了负极侧界面副反应是钠离子电池存储容量损失的主要因素。本研究不仅深化了对钠离子电池日历老化机制的理解,也为后续提升电池性能提供了重要的科学依据。
关键词 钠离子电池;日历老化;容量衰减机理;固体电解质膜;Na4Fe3(PO4)2P2O7正极
据国家能源局发布数据,2023年全国发电量已攀升至8909 TWh,其中风光发电占全社会用电量的15.3%。从2023年统计数据来看,为达成“碳中和”目标,风光发电占比需提升至60%以上,仅中国对储能系统的需求就不低于11000 GWh。当前,锂离子电池凭借其综合性能优势,在储能电源领域占据主导地位。然而,美国地质调查局数据显示,我国2022年锂资源可采储量(碳酸锂当量)约为1060吨,结合锂原矿收率为60%,该储量无法满足中国预期储能(11000 GWh)的需求。这一现实挑战促使我们必须寻找新型储能化学电源的解决方案。
在此背景下,钠离子电池因其钠资源丰富、成本低廉、安全性能好等优点,展现出了巨大的发展潜力和广阔的应用前景。作为锂离子电池的有力竞争者,钠离子电池的结构与锂离子电池相似,其负极主要选用硬碳材料,而正极则有过渡金属氧化物、普鲁士蓝类似物和聚阴离子型化合物等多种嵌入材料候选。其中,聚阴离子型正极,如焦磷酸磷酸铁钠[Na4Fe3(PO4)2P2O7,简称NFPP],具有稳定的材料结构和极其优异的循环寿命(>10000次循环),在大规模储能领域尤为引人瞩目[3]。然而需要指出的是,除了循环寿命这一关键指标外,储能电池的存储寿命也不容忽视。储能电站全生命周期中的大部分时间处于存储搁置状态,这期间电池内部会发生复杂的化学副反应,导致内阻增加、容量损失以及循环性能衰退等问题。因此,深入研究钠离子电池存储容量衰减机理,对于延长电池日历寿命和降低储能电站度电成本都具有重要意义。
目前,虽然鲜有报告研究钠离子电池日历老化容量衰减机理,但仍可以从锂离子电池日历老化的研究中获取有价值的参考经验。例如,Vetter等发现,锂离子电池在存储过程中,正负极中活性材料及其他组件均会发生老化,但其中负极的老化对电池寿命的影响尤为显著。Markovsky等探究锂离子电池在不同温度下的性能衰减,认为石墨负极在存储过程中其表面薄膜部分发生溶解和重排,固体电解质界面(SEI)膜组分和厚度不断发生变化,导致电池内阻增加。Zhuang等将18650型电池充电至60%SOC在55 ℃条件下存储44周后,利用傅里叶变换红外光谱(FT-IR)对石墨负极极片进行分析测试以探究其界面组分变化。研究发现,存储前SEI膜主要组分为Li2C2O4、RCOOLi、LiOCH3,存储后SEI膜出现LiOH、CH3OH和LiHCO3等新的物质。Kjell等为探究循环和存储过程中正负极界面成分变化,对室温、55 ℃循环和存储后的极片分别进行X射线光电子能谱(XPS)分析测试。结果表明,循环和存储过程中负极SEI膜出现类似的变化,电解液组分在负极表面发生副反应造成SEI膜增长,高温加剧了分解和增长过程。荷电态负极在存储时,长期处于极低的电位(约0.1 Vvs.Li+/Li),其具有较高的反应活性,导致电解液与负极界面间发生持续的副反应,进而引发SEI膜不断生长,造成活性锂损失和阻抗增加,是负极侧容量损失的主要机理。有鉴于此,考虑到钠离子电池的SEI膜组分比锂离子电池具有更高的溶解度,这可能导致更严重的存储自放电现象。
同时,研究者还发现,锂离子电池电解液中的微量水会引发LiPF6水解形成HF,HF对正极材料具有腐蚀作用并造成过渡金属元素溶出。溶出的过渡金属离子不仅催化电解液分解,还可能迁移至负极表面被还原为金属单质,从而使SEI膜电子绝缘能力劣化,进一步加剧SEI膜生长和活性锂、电解液的消耗,造成存储过程中的容量衰减。据此,有理由推测正极过渡元素的溶出串扰也可能是钠离子电池日历老化容量损失的潜在机理。
尽管近年来钠离子电池技术发展迅速,但其日历老化机理却鲜见系统研究。当前关于钠离子电池存储性能的研究工作多采用扣式半电池开展,然而钠金属电极上形成的SEI膜会串扰至工作电极,影响工作电极上SEI膜的化学性质和溶解性。为了揭示钠离子电池日历老化容量衰减机理,本文以NFPP基钠离子全电池为研究对象,通过透射电子显微镜(TEM)、电感耦合等离子体发射光谱(ICP)、拉曼光谱、FT-IR及XPS等多维度分析技术等表征手段,对电池存储过程中电极的结构、形貌及界面组分的变化进行系统性研究,识别钠离子全电池日历老化容量损失主要机理,以期对提升钠离子电池存储性能的研究提供一定的参考。
1 实验
1.1 电池制备与存储
方形铝壳因结构强度较高、耐腐蚀、密度低等优势,在大规模储能领域获得广泛应用。选择方形铝壳设计能更为准确地反映钠离子电池和锂离子电池存储性能差异。将NFPP正极(深圳珈钠)、硬碳负极(日本可乐丽)制成方形铝壳电池。对NFPP方形铝壳电池和LFP方形铝壳电池(亿纬锂能自制)分别以0.5 P恒功率充电至3.45 V和3.65 V,将满电态电池于60 ℃的环境中搁置7天进行高温加速老化实验。
1.2 扣式半电池的组装与电化学测试
拆解以上方形铝壳电池获取双面涂覆的正负极极片,使用无水乙醇(Aladding公司,99.5%)擦除负极一侧活性材料,使用二甲基亚砜(DMSO,Aladding公司,99.0%)擦除正极一侧活性材料,自然晾干后得到单面极片,使用手动切片机将单面极片裁切成直径为12 mm的圆片。使用直径18 mm金属钠片(Na,天津产,电池级)作为负极,制成CR2032型扣式电池,对存储前后正、负极活性材料比容量进行检测。
在CT-4008T充放电测试柜(深圳产)对扣式半电池进行充放电测试。正极材料的扣式半电池以0.1 C恒流充电至3.45 V,转恒压充电至0.025 C,搁置30 min后,以0.1 C恒流放电至1.5 V。负极材料的扣式半电池以0.1 C恒流放电至0.005 V,转恒压放电至0.025 C,搁置30 min后,以0.1 C恒流充电至2.0 V。
1.3 物理表征
将存储前后的电芯在氩气手套箱(水、氧含量< 0.5 ppm,1 ppm=10-6)中进行拆解,以防止水分、空气对SEI膜的污染。为清除拆解所得正负极表面残留的钠盐,使用碳酸二甲酯(DMC)对极片进行3次清洗并静置晾干。采用日本电子JSM-7610FPlus型扫描电子显微镜(SEM)对正负极表面形貌进行分析;采用PerkinElmer Optima8000型电感耦合等离子体发射光谱仪(ICP-OES,美国产)测试负极、电解液铁元素含量;分别使用Tongda TD-3500型X射线衍射仪(XRD,中国产)和XploRA PLUS拉曼光谱仪(法国产)对正负极结构信息进行分析;采用PerkinElmer Spectrum Two型号傅里叶变换红外光谱仪(FT-IR,美国产)对负极活性物质表面SEI膜组分进行分析;采用日本电子JEM 2100F透射电子显微镜(TEM)观察负极界面SEI膜形貌;采用Thermo Scientific K-Alpha+ X射线光电子能谱仪(XPS,美国产)对负极表面SEI膜组分及结构进行分析。
2 结果与讨论
2.1 锂、钠离子方形铝壳电池高温存储性能对比
为快速评估钠离子电池和锂离子电池存储寿命差异,分别对LFP锂离子电池和NFPP钠离子电池进行60 ℃高温存储,以加速电池寿命老化,模拟长期常温存储容量损失情况。如图1所示,经过7天60 ℃存储后,LFP锂离子电池的容量恢复率达到99.2%,而NFPP钠离子电池则为97.4%。两者之间存在2%左右的差距,这说明钠离子电池的存储性能逊色于锂离子电池。这种差异可能源于锂、钠离子电池在材料、结构和老化反应机制等方面的不同。另外,据P公司2023年新品发布会数据,其钠离子电芯60 ℃存储7天后的容量恢复率为96.0%。说明当前钠离子电池普遍存在存储性能较差的问题,这一报道无疑引起了行业对钠离子电池存储性能的高度关注,同时也提醒整个行业需要更加重视这一问题。
借鉴锂离子电池日历老化研究经验,正负极活性材料结构破坏、界面副反应、过渡金属溶出等情况都可能造成NFPP基钠离子电池日历老化容量损失。因此,对存储前后电芯进行拆解,分别对正负极电化学性能、体相结构、界面形貌及化学组分进行分析。
2.2 NFPP正极衰减机理分析
日历老化过程中,NFPP正极侧引起容量衰减可能的原因有活性材料结构失效、正极-电解液界面副反应、过渡金属Fe2+溶出。因此,本工作采用XRD、ICP、XPS等表征手段对NFPP正极结构及界面变化情况进行分析。
2.2.1 正极电化学性能
存储前与存储后电池NFPP正极扣式半电池的0.1C放电曲线如图2所示,存储前和存储后正极放电比容量分别为93.59 mAh/g和93.40 mAh/g,存储前后正极比容量损失仅为0.2%,表明存储过程中NFPP材料相对稳定。而全电池经存储其不可逆容量损失约为2.6%,可见正极侧容量衰减并非是NFPP钠离子电池日历老化容量衰减的主要原因。
2.2.2 结构与界面分析
为深入分析存储前后正极活性材料的结构变化,对正极片进行了XRD测试。如图3(a)所示,存储前后NFPP正极的特征峰的强度一致,衍射峰位置未见任何偏移,也无杂峰的出现,说明存储后正极的晶体结构没有被破坏,保持了良好的结构稳定性。
此外,还对NFPP正极材料的SEM形貌进行了分析。如图3(b)和(c)所示,NFPP正极材料存储前后形貌基本保持一致,存储后NFPP材料颗粒保持完整,正极界面无明显电解液分解产物堆积。这一观察进一步证实了在存储过程中NFPP正极界面与电解液间保持了相对稳定的化学状态。这主要归因于NFPP正极的工作电压处于电解液的热力学稳定区间,从而确保了正极界面的稳定性。
2.2.3 铁元素溶出串扰
前期对LFP电池存储机理研究表明,电解液中产生的HF会引发正极Fe2+溶出,造成正极结构破坏,引起不可逆容量损失。溶出的Fe2+可通过电解液迁移至负极表面,由于Fe2+/Fe (-0.44 V vs. SHE)相较于Na+/Na (-2.71 V vs. SHE)具有更高的还原电势,Fe2+容易在负极表面还原沉积。沉积于负极表面的铁对电解液分解具有催化作用,造成SEI膜不断生长,引起额外的活性离子损失。
据此,为了探究存储前后NFPP正极可能存在的铁溶出及其“串扰”影响,对存储前后电解液及负极片取样进行ICP和XPS测试,结果如表1和图4所示。
表1 存储前后电解液、负极片ICP分析结果
从表1可知,存储前后电解液中均未检测出Fe元素,存储后硬碳负极表面铁元素含量仅从初始的20.59 ppm略微增加至25.38 ppm。硬碳负极表面XPS结果(图4)显示,存储前Fe 2p负极谱图中710 eV处的信号为氟元素的能量损失特征峰,存储后负极Fe 2p图谱信号非常微弱,未见其自旋-轨道分裂对应的2个信号峰。据此推断,存储时NFPP正极铁离子溶出“串扰”较少,对存储容量衰减影响较小。
2.3 硬碳负极衰减机理
针对硬碳负极侧在存储过程中可能存在的结构变化和界面副反应,对存储前后的硬碳负极采用拉曼光谱、SEM、TEM、FT-IR、XPS进行分析。
2.3.1 负极电化学性能
存储前后电池的硬碳负极扣式半电池的0.1C放电曲线如图5所示。存储前和存储后硬碳放电比容量分别为287.6 mAh/g和285.5 mAh/g。尽管存储后出现了轻微的负极容量损失,但考虑到全电池中N/P比大于1.1,这一轻微的负极容量损失对全电池存储容量损失没有直接的影响。
2.3.2 物相结构分析
为评估存储后负极活性材料结构是否发生变化,对硬碳负极极片进行了拉曼表征,结果如图6所示。存储前后硬碳D峰、G峰峰位置均位于1353 cm-1和1594 cm-1附近,未见明显偏移,且存储前后硬碳负极ID/IG比值不变。由此表明,存储期间硬碳石墨微晶层间结构与边缘缺陷未受破坏。据此可推断,存储容量损失也并非由负极结构失效引起。
2.3.3 界面分析
利用SEM对存储前后硬碳负极界面形貌变化进行表征,结果如图7(a),(d)所示。从图中可清晰地观测到,经过存储后,硬碳表面变得更为粗糙,出现了许多约50 nm的颗粒状沉积物,这可能是由于电解液在其表面还原分解产生副反应产物。为更准确地分析硬碳负极表面SEI膜的厚度变化,对存储前后负极取样进行TEM表征。存储前SEI膜形貌见图7(b)、(c),经过化成处理的硬碳颗粒表面形成厚度约为7 nm的SEI膜,其致密度不高,不能完全包覆硬碳颗粒表面,暴露出来的负极表面会促进电解液持续还原。图7(e),(d)为存储后SEI膜形貌,经存储后的硬碳颗粒表面SEI膜厚度显著增长,且变得更为致密,对硬碳形成较好的包覆。这一现象表明,存储过程中负极界面处发生副反应,导致SEI膜显著增长,造成活性钠离子损失。
为了深入了解存储前后负极界面膜组分、结构的变化情况,采用FT-IR和XPS对负极表面膜进行分析。从图8可知,与存储前电池的负极相比,存储后的电池负极界面C—O、C=O、O—CO2等有机SEI组分的特征峰信号均略微增强,而归属于CO32-的无机SEI组分的特征峰信号在存储后则显著减弱。这主要是因为化成形成的SEI膜疏松多孔,不能完全包覆负极表面,且存在许多亚稳态的有机成分。在存储过程中,负极SEI膜中的有机/无机组分不断溶解,导致溶剂在暴露出来的新鲜电极表面处被还原,形成持续增厚的SEI膜。而新形成的SEI膜中有机组分含量大于无机组分,其电子绝缘能力进一步下降,这将进一步加速溶剂副分解反应,直至SEI膜增长至一定厚度。这一结果为理解负极的衰减机理提供了重要的证据。
进一步利用氩离子溅射XPS对存储前后负极SEI膜组分进行深度刻蚀分析,表征结果如图9所示。C 1s 谱图中283.6 eV处信号峰来自钠化硬碳Nax-HC,284.8 eV处峰源于C—C/C—H,285.8 eV处的峰为C—O官能团,287.6 eV处的峰来自C=O,289.8 eV处的峰来自于CO32- 。F 1s谱图中主要分为2个峰,684.5 eV处的峰对应SEI膜中的NaF,686.8 eV处的峰来自钠盐分解产物NaxPOyFz及溶剂分解产物中—C—F官能团。S 2p谱图中的3对信号峰源于含RSO2R’产物、NaxSxOy和Na2S。
从图9(a)中可看出,存储前,经化成形成的SEI膜较薄,硬碳负极溅射深度为0和10 nm时都检测出钠化硬碳Nax-HC和Na2CO3。经存储后,硬碳负极表面(0 nm处)Nax-HC和Na2CO3的信号峰显著减弱,且含C—C/C—H、C—O、C—F物质增加。这主要归因于电解液溶剂分子或添加剂在负极表面分解,SEI膜增厚,且新生成的SEI膜以有机成分为主。硬碳负极界面与电解液之间的副反应造成活性钠损失,引起存储容量的不可逆衰减。图9(b)展示了存储前后SEI膜F 1s谱图的变化,可以看出存储后SEI膜表层的F含量大幅下降,其主要原因为存储期间SEI膜的不断溶解和生成,导致SEI膜增厚,且表层新生成的SEI以有机组分为主,使大部分处在内层的无机含氟钠盐被掩盖。从图9(b),(c)的F 1s和S 2p谱中可以看出,尽管SEI膜无机成分在电解液中的溶解度低于有机成分,但存储后SEI膜表层NaF、NaxPFyOz、Na2S、Na2SxOy等无机成分,以及含-CF、RSO2R’等有机成分均出现了同步减少的趋势。与锂离子相比,钠离子半径大,体电荷密度低,因此其钠盐化合物的溶解度比锂盐化合物高。钠离子电池中负极SEI有机组分中含有大量高溶解度的低聚物,而镶嵌在内的无机钠盐也具有较高溶解度。有机物的溶解导致内嵌的无机组分失去支撑进而脱离电极表面,导致存储期间SEI整体难以在电解液中稳定存在,负极界面与电解液间持续的副反应造成持续的容量损失。
为探究常温条件下长期存储后SEI膜的变化,对常温条件下存储6个月电芯硬碳负极界面膜组分进行分析,结果如图10所示。从图10(a)的C 1s谱图中可以看出,常温存储后SEI的碳含量也显著增加,这主要归因于SEI持续生长增厚,SEI膜外层的无机组分如Na2CO3、NaF因SEI膜溶解和生长增厚而被掩盖。常温条件下存储6个月后的SEI膜组成和结构与高温短期存储后的SEI膜相似,说明高温存储和低温存储存在于相同的SEI膜生长机制,高温加速了SEI膜溶解和生长进程,负极界面处的副反应是造成NFPP基钠离子电池日历老化容量衰减的主要原因。
因此,构筑低溶解度、高稳定性的SEI膜将是提升钠离子电池存储性能的关键。这需要通过优化电解液配方、负极材料表面改性等方法来减少SEI膜在存储过程中的溶解和破坏,从而实现钠离子电池的长期稳定。
3 结论
钠离子电池作为未来储能的技术方案之一,其日历寿命的研究至关重要,本文针对NFPP钠离子容量衰减机理进行定性分析。基于电化学性能测试及物理表征,存储后NFPP正极容量损失轻微,界面处没有明显副反应,正极材料铁元素溶出串扰不显著,正极衰减并非NFPP钠离子电池存储寿命衰减的主要原因。硬碳负极比容量没有明显劣化,石墨微晶层间结构及边缘缺陷未受损。TEM、FT-IR、XPS等结果表明,存储过程中负极SEI膜不断溶解和增长,且新SEI膜中有机组分含量大于无机组分。综上所述,硬碳负极界面SEI膜溶解度高、稳定性差导致活性钠消耗是NFPP钠离子电池存储容量衰减的主要原因。由此看来,钠离子电池能否满足储能系统对电源的日历寿命要求,关键在于稳定SEI膜的构筑。而如何调控SEI膜的组成和结构,将成为下一个关注的焦点。
考虑到钠离子电池在成本、资源丰富性等方面的潜在优势,如何提升其存储性能,成为了行业内亟待解决的问题。我们期待未来通过材料创新、工艺优化等手段,能够推动钠离子电池在存储性能上的进步,以满足日益增长的市场需求。
第一作者:赵瑞瑞(1988—),女,博士,工程师,主要研究方向先进电池材料与技术,E-mail:029018@evebattery.com;
通讯作者:曹余良,博士,教授,主要研究方向钠离子电池,E-mail:ylcao@whu.edu.cn。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
4月22日,巴彦淖尔市能源集团旗下巴能(乌拉特中旗)能源管理有限公司发布了巴彦淖尔市乌拉特中旗德岭山500千伏变电站电网侧储能项目PC总承包招标公告。项目位于内蒙古自治区巴彦淖尔市乌拉特中旗德岭山镇附近,建设规模为100MW/400MWh,储能系统采用全户外预制舱式布置,户外放置80个储能电池预制舱和
2025年4月15-19日,第137届广交会在广州盛大开幕,本届广交会以绿色化、智能化和数字化为亮点,展现中国发展新动能。作为光伏逆变器ODM智造领域的领军者,盛能杰再次重磅出击,推出新一代单相并网逆变器SE2-10.5KTL系列,离网逆变器SE6KFG-S1/LV,以及覆盖多元应用场景的低压储能系统与高压储能系统解
在“双碳”目标和能源转型加速推进的背景下,国家能源集团持续深化新型储能研究与建设。截至2025年3月底,国家能源集团在运新型储能项目132项,总规模4934MW/10956MWh,技术路线涵盖电化学、飞轮、熔盐储热及复合储能,积极支撑新型电力系统建设。据了解,132项在运新型储能项目中,电化学储能项目占主
新能源电池产业作为“绿电+先进制造”的优质赛道,是云南省近3年来增速最快的产业之一,工业增加值增速均保持在20%以上。依托良好的资源禀赋和产业基础,全省新能源电池产业今年1至2月持续走高,工业总产值同比增长45.1%,工业增加值同比增长79.2%,发展势头强劲,彰显了中国新能源电池产业重要基地的
近日,徐矿新能源公司丰县储能电站项目开工建设,这是继垞城储能电站项目、睢宁储能电站项目后徐矿集团建设的第三个新型储能电站项目。该项目位于江苏丰县丰邑大道东侧,装机规模为50MW/100MWh,采用磷酸铁锂电池技术路线,项目共包含12套储能系统,并配套建设110KV升压站,每套储能系统作为一个运行单
作为推进能源向清洁化转型的关键产品之一,锂电池本身需要做到低碳、零碳,既有政策的迫切性要求,也是企业自身社会责任的重要体现。据电池中国不完全统计,目前中国动力、储能电池主流企业,都已经在积极推进零碳产品、零碳工厂、零碳园区的构建或规划。与此同时,部分头部企业,已经制定了明确的碳中
LG新能源周一宣布,已正式退出在印度尼西亚的一个价值142万亿印尼盾(617亿人民币)的电动汽车电池制造项目,该项目旨在建立一条完整的电动汽车电池供应链。LG新能源在一份声明中表示,“考虑到市场条件和投资环境等多种因素,我们同意正式退出印尼GrandPackage项目。不过,我们将继续以印尼电池合资企
4月22日,云南省武定县禄金200MW/400MWh电化学储能电站示范项目在禄金新型工业片区开工建设。据悉,该项目占地约54.79亩,总投资达10.3亿元,建设总装机容量为200MW/400MWh的储能电站1座及其它配套设施建设。该项目建设周期为4个月,计划8月30日投产,采用先进的“磷酸铁锂”电化学储能技术,年放电量
北极星储能网获悉,4月21日,江苏华电仪征120MW/240MWh风光集中配建储能电站项目40MW/80MWh储能系统中标候选人公示。第一中标候选人为上海派能能源科技股份有限公司,投标报价4487.3万元,折合单价0.561元/Wh;第二中标候选人为安徽通盛能源科技股份有限公司,投标报价4181.3万元,折合单价0.523元/Wh
北极星储能网获悉,近日,广州储能(8.82MW/17.5MWh)清远欧派集成家居储能项目举办投产发电启动仪式。该项目是广州储能集团深耕用户侧储能市场的又一里程碑,项目总投资2312万元,使用宁德时代314Ah磷酸铁锂电芯,搭载阳光电源先进全液冷却技术、新一代PCS及EMS系统,分4个子站接入欧派园区10kV用电系
北极星储能网获悉,4月21日,宁德时代举行“超级科技日”活动并在现场发布了公司第二代神行超充电池——全球首款兼具800公里超长续航和峰值12C充电能力的磷酸铁锂电池,峰值充电功率达1.3兆瓦,可实现1秒2.5公里的补能速度,充电5分钟,续航超过520公里。与目前市场上量产的主流4C快充相比,该款产品效
4月17日,海南矿业公告,近日布谷尼锂矿采矿权转移事项已获得马里政府相关部门审批,证书已登记至其控股子公司LMLB名下,初始有效期为10年(即2025年—2034年),采矿权证到期后可依法延续。据了解,2024年11月海南矿业控股子公司KMUK及其全资子公司FM、LMLB,此前与马里政府就Bougouni锂矿(简称“布
芳源股份17日公告,决定终止投资不超过30亿元的“电池级碳酸锂生产及废旧磷酸铁锂电池综合利用项目”,并将在股东大会审议通过本次终止投资事项后办理后续芳源锂业注销等有关事项。公告称,该决定旨在优化资源配置、降低经营风险,提高公司运营效率,不会对公司业务发展产生不利影响。历时两年,战略性
今年以来,碳酸锂价格持续下跌。近日,在特朗普关税冲击下,碳酸锂价格一举跌破7万元/吨,其中碳酸锂期货LC2505价格最低跌至6.8万元/吨。此前,高工锂电对于碳酸锂价格走势有过分析,随着下游去库存调整,以及上游原材料产能释放,碳酸锂价格呈现的波动性逐步收窄,旺季带动的涨幅也逐渐缩小。相比于过
北极星储能网获悉,4月17日,德方纳米在投资者互动平台表示,公司现有产品纳米磷酸铁锂、磷酸锰铁锂等正极材料及补锂增强剂等高性能辅助材料适用于固态电池体系。公司的补锂增强剂产品是固态和半固态电池的重要材料之一,目前已经在部分客户中实际应用,按照测算,固态电池和半固态电池对补锂剂的添加
北极星储能网获悉,4月10日,湖南创大钒钨有限公司年产2.3万吨电池级碳酸锂建设项目环境影响报告书进行了报批前信息公示。资料显示,该项目建设地点位于湖南衡东经济开发区大浦工业园,总投资100000万元。项目总用地面积145863.6㎡(约218.8亩),项目总建筑面积约76929㎡,本次新建建构物总建筑面积为30
北极星储能网获悉,4月15日,天华新能在投资者互动平台表示,公司控股子公司主要开展固态电池体系的关键电池材料及体系的开发与联合应用,包括:高比能高安全正极材料、氧化物及硫化物固态电解质等关键材料开发,多材料体系匹配研究和电芯体系的综合设计、制造及应用等。富锂锰基等正极材料已经完成研
近日,研究机构EVTank联合伊维经济研究院共同发布了《中国固态电池行业发展白皮书(2025年)》,EVTank数据显示,2024年全球固态电池出货量达到5.3GWh,同比大幅增长4.3倍,全部为半固态电池,主要为中国企业生产。EVTank预计全固态电池将在2027年实现小规模量产,到2030年将实现较大规模的出货。《中国
北极星储能网获悉,4月9日,东峰集团在投资者互动平台上表示,公司重点布局新能源新型材料领域相关的核心技术突破,其中在固态电池领域的研发聚焦于材料创新与工艺优化,包括与蓝廷新能源合作开发固态电解质及半固态复合隔膜、设立汕头博盛复合集流体科技有限公司拓展复合集流体技术、以及与中南大学合
市场竞争加剧的情况下,跨界企业开始收缩布局。金浦钛业4月7日公告,决定终止子公司南京钛白化工有限责任公司与兰州金川科技园有限公司、甘肃镍都产业投资基金有限合伙共同投资设立参股公司的投资计划。原因是市场环境变化导致项目可行性降低,加之南京钛白资金压力,最终促使公司终止投资。时间回溯至
作者:梁振飞1王兴兴2胡皓晨3李艳红2欧阳博学2孙晓云3高瑞茂2叶骏2王德仁3单位:1.华电(海西)新能源有限公司,青海海西817000;2.中国华电科工集团有限公司,北京100160;3.北京科技大学新材料技术研究院,北京100083引用:梁振飞,王兴兴,胡皓晨,等.锌溴液流电池电解液与隔膜技术研究进展[J].储能科学
作者:王钦1张艳岗1梁君飞1王华2单位:1.中北大学能源与动力工程学院;2.北京航空航天大学化学学院引用:王钦,张艳岗,梁君飞,等.硅基固态电池的界面失效挑战与应对策略[J].储能科学与技术,2025,14(2):570-582.WANGQin,ZHANGYangang,LIANGJunfei,etal.Challengesandstrategiesforinterfacefailuresinsil
4月22日,巴彦淖尔市能源集团旗下巴能(乌拉特中旗)能源管理有限公司发布了巴彦淖尔市乌拉特中旗德岭山500千伏变电站电网侧储能项目PC总承包招标公告。项目位于内蒙古自治区巴彦淖尔市乌拉特中旗德岭山镇附近,建设规模为100MW/400MWh,储能系统采用全户外预制舱式布置,户外放置80个储能电池预制舱和
2025年4月15-19日,第137届广交会在广州盛大开幕,本届广交会以绿色化、智能化和数字化为亮点,展现中国发展新动能。作为光伏逆变器ODM智造领域的领军者,盛能杰再次重磅出击,推出新一代单相并网逆变器SE2-10.5KTL系列,离网逆变器SE6KFG-S1/LV,以及覆盖多元应用场景的低压储能系统与高压储能系统解
新能源电池产业作为“绿电+先进制造”的优质赛道,是云南省近3年来增速最快的产业之一,工业增加值增速均保持在20%以上。依托良好的资源禀赋和产业基础,全省新能源电池产业今年1至2月持续走高,工业总产值同比增长45.1%,工业增加值同比增长79.2%,发展势头强劲,彰显了中国新能源电池产业重要基地的
作为推进能源向清洁化转型的关键产品之一,锂电池本身需要做到低碳、零碳,既有政策的迫切性要求,也是企业自身社会责任的重要体现。据电池中国不完全统计,目前中国动力、储能电池主流企业,都已经在积极推进零碳产品、零碳工厂、零碳园区的构建或规划。与此同时,部分头部企业,已经制定了明确的碳中
北极星储能网获悉,4月21日,新能源新材料领域领先企业东峰集团发布2024年年报。2024年,公司实现营业总收入14.24亿元,同比下降45.87%;归母净利润亏损4.89亿元,上年同期盈利1.51亿元;扣非净利润亏损4.96亿元,上年同期盈利1.64亿元;经营活动产生的现金流量净额为3353.44万元,同比增长327.08%;报
北极星储能网讯:4月21日,江苏无锡市市场监督管理局发布《2025年无锡市储能产品产品质量监督抽查实施细则》。本细则适用于无锡市市场监督管理局组织的储能产品产品质量监督抽查检验。其中规定电力储能用锂离子电池(单体)产品检验项目包括25℃初始充放电性能试验、过充电性能试验、过放电性能试验、
北极星储能获悉,4月21日,云南公司曲靖国电电力新能源宣威电厂储能电站EPC总承包公开招标中标结果公告,湖北省电力规划设计研究院有限公司中标该项目。据此前发布的中标候选人公示显示,项目第一中标候选人为湖北省电力规划设计研究院有限公司,投标报价6979.019327万元,折合单价0.997元/Wh;第二中
北极星储能网获悉,4月21日,碳酸锂主力合约一度跌超2%,跌破70000元/吨重要关口,创阶段性新低。截至当日收盘,碳酸锂主力合约报69000元/吨,跌1.54%。
北极星储能网获悉,德赛电池4月22日披露2025年第一季度报告。公司实现营业总收入43.69亿元,同比增长6.69%;归母净利润4866.18万元,同比增长10.96%;扣非净利润3179.91万元,同比下降3.63%;经营活动产生的现金流量净额为5.92亿元,同比下降21.72%;报告期内,德赛电池基本每股收益为0.1265元,加权平
随着全球储能市场规模不断扩大,储能系统需求向更大容量、更高效率发展,“降本增效”成为产业发展趋势,匹配超大容量电池、提升系统体积能量密度是实现极致降本的重要手段。尤其在储能行业关键变革期,电池企业更需创新升级增强竞争力,头部企业积极寻求大容量电池“更优解”。勘破迷障!探寻系统集成
北极星储能网讯:4月21日,四川省宜宾市60MW/120MWh天原工业储能项目储能系统招标公告发布。项目资金来源为自筹资金9500万元,折合单价约0.7917元/Wh,招标人为宜宾海丰和锐有限公司,主要从事化学原料和化学制品制造。项目位于四川省宜宾市江安县,在宜宾海丰和锐有限公司220kV天锐变电站预留土地内建
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!