登录注册
请使用微信扫一扫
关注公众号完成登录
表 1 测试电池基本参数
1.2 测试系统
本实验中我们自主设计了电加热和火焰一体式热失控触发试验箱,试验箱尺寸为500 mm×500 mm×500 mm(图2)。箱体底部中央为加热区域,下部安装有燃烧孔,可接入液化气和助燃气点燃进行火焰灼烧。加热器件上方设计有电池承托装置,采用托网式设计,在托网中心设置限位器,用于固定18650型柱状电池,而方型软包电池直接放置于承托装置的中心位置(图3)。电池上表面分别设置3个热电偶测温点如图3a~c所示,并在电池正上方500 mm处设置CO和HF传感器,用于实时监控试验箱内对应气体的浓度。
1.3 测试方案
实验方法参照GB38031—2020和T/CIAPS 0018—2022等标准。通过火焰灼烧电池底部中心靠近极耳处(如图 3左侧所示红点处)引发热失控,考虑电池4种不同SOC的影响(0、30%、50%、100%),研究热失控过程中温度、气态产物以及电池结构变化。
2 热失控实验结果分析
2.1 热失控行为及质量损失
温度数据的采集是通过K型热电偶完成的,其测量范围是0~700 ℃,采集的数据通过控制仪表进行记录分析。不同SOC电池的热失控行为如图4所示。
在火焰灼烧下,不同SOC电池均发生不同程度的热失控。它们的热失控模式具有一定的共性:最初,在极耳连接处会冒出少量烟雾或产生火苗;随着灼烧的持续,电池极耳所在的边以及两个侧边的外包装相继破裂,进而转变成喷射状火焰或者烟雾;最后,在活性物质完全反应或者燃烧箱内氧气耗尽后,火焰逐渐熄灭。
然而,不同SOC电池的热失控特征也存在显著的差异。具体而言,0%SOC电池热失控较为缓和,产生的烟雾较少,且电池残骸保持相对完整;30%SOC电池在热失控初期温度上升较慢,在外包装破裂后,热失控气态产物以烟雾状喷射,此时电解液和电极活性材料与空气接触产生大量热量,引发气体爆燃;而50%和100%SOC的电池由于热失控反应剧烈,电池温度迅速上升,致使电池直接发生剧烈火焰喷射,其中100%SOC的电池由于热失控反应过于剧烈,导致喷射物中还包含大量伴随火星的固态物质。
以点燃测试箱为时间原点(图4),随着SOC的升高,各电池起火的时间从38 s缩短至28 s,从起火到爆燃之间的间隔也逐渐从26 s降低至2 s,而30%SOC以上的电池火焰喷射直至熄灭均能持续53~68 s,这说明一旦发生单体电池热失控,就极易导致整个电池系统中电池的连锁热失控反应,酿成更严重的后果。
在热失控后,分别收集电池残骸及喷射的固体残渣并进行称量,通过统计得到不同SOC电池热失控前后的质量损失关系图(图5)。结合热失控行为可以发现,锂离子电池热失控过程中发生的质量损失主要有三个方面:一是电池外包装或连接材料等的燃烧热解,这对于所有电池都是同样的;二是电极材料在热失控过程中发生反应,生成热失控气态产物,这个过程随着SOC的升高越来越复杂、越来越剧烈;三是电池材料在热失控过程中的固液泄漏,例如电解液泄漏、固体物质喷溅等。对于第一种损失过程,所有电池均有轻微损失,对于后两种损失过程则是互相约束的关系。对于不同SOC的软包NCM电池,在低SOC区间,由于热失控反应的激增,第二个过程占主导地位,导致热失控产物的种类和数量迅速上升,超过一定SOC后,第三个过程权重增加,导致产物的量的上升趋势减缓,甚至有可能下降。
2.2 热失控温度及小分子产物
通过热电偶和气体传感器实时监测试验箱内电池上表面以及灼烧点正上方的温度和CO、HF气体浓度(图6)。除了0%SOC电池以外,所有电池上表面均在灼烧后的100 s内达到最高温度,且随着SOC的升高,各电池起始升温的时间和到达最高温度的时间均有不同程度的缩短,如图6(a)~(c)所示。受到火焰的影响,电池前端的温度比较统一,而受到热失控行为的影响,电池中部和末端的最高温度随着SOC的增加而下降如表2所示。原因是高SOC时,热失控反应过于剧烈,导致部分活性物质尚未发生完全热失控就被抛洒到电池外部,致使原本可以发生的热失控反应未能发生,部分能量未得到释放。
表 2 不同SOC电池火焰触发热失控实验数据
同时通过传感器对HF和CO释放量实时监测结果[图6(d)]可以发现,只有在低SOC的气态产物中检测到HF,原因是在高温下,电解质溶液发生的反应更加复杂,F较多地参与形成C—F化合物。同时虽然在电池热失控后数秒内就能在测试箱内检测到CO的存在,但此时依旧以火焰危害为主要危险源,由于火焰的存在,导致CO可能被氧化为CO2,而当火焰熄灭后的200~400 sCO浓度迅速提升至1000 ppm以上,这一浓度已可严重威胁人员安全,且在相对密闭空间内,CO的浓度可持续1500~1800 s。
2.3 电池SOC对热失控产物的影响
通过集气袋采集电池热失控后气态产物,通入Hapsite进行分析,得到热失控后气态产物的组成与演变规律。不同SOC NCM电池热失控产物的气相色谱图如图7所示。从图中可观察到各SOC电池的热失控产物的保留时间均较短,根据各电池的热失控行为分析,可能由于各SOC电池均发生剧烈燃烧,导致产物中大分子被反应生成小分子产物。
结合热失控气态产物数据库和改进去卷积方法进行分析得到不同SOC NCM电池的热失控产物如表3和表4所示,表中IS#1和IS#2为Hapsite使用的两种内标气体,分别为1,3,5-三(三氟甲基)-苯和溴五氟苯。从表中可以发现随着SOC的增加,各电池热失控后产物种类随之增多,且高毒性毒物种类也逐渐增多。
表 3 不同SOC热失控产物中毒性物种统计
注:标记“×”表示该物质未在此SOC电池的热失控产物中检出。
表 4 不同SOC电池热失控产物明细
注:标记“—”表示该物质无毒性或毒性数据未知。
考虑不同SOC电池热失控的具体产物,如表 4所示。由于0%SOC电池未发生明显热失控,过程中没有产生明显火焰,因此气态产物中含有大量气化的电解质溶液碳酸甲乙酯以及较多的氟代苯。随着SOC的升高,热失控过程中均发生剧烈燃烧,产物中碳酸甲乙酯的浓度急剧下降,同时会产生较多的苯和二氧化碳。而且随着热失控反应剧烈程度的增大,产生的低碳数化合物种类增多,其中较易产生丙烯醛、丙烯腈等高毒性产物。
3 结构变化分析
3.1 正极
图8是电池热失控前后正极材料的SEM表征图,同时对各正极材料表面进行了EDS分析,其结果列于图9中。从图8(a)中可以看到正极材料结构完整,清晰,颗粒比较饱满,0%SOC[图(8b)]和30%SOC[图(8c)]电池因热失控过程比较缓和,正极材料的破坏不太严重,还能观察到较完整球状结构和表面颗粒,50%SOC[图(8d)]和100%SOC[图(8e)]电池在剧烈热失控后,表面结构已完全被熔融破坏,说明正极材料在热失控过程中参与到反应中。
图8 正极材料的SEM表征图(a) (f) 30%SOC热失控前;(b) (g) 0%SOC热失控后;(c) (h) 30%SOC热失控后;(d) (i)50%SOC热失控后;(e) (j)100%SOC热失控后
图9 不同SOC电池热失控前后正极材料EDS分析:(a) 新鲜电池30%SOC;(b) 0%SOC电池热失控后;(c) 30%SOC电池热失控后;(d) 50%SOC电池热失控后;(e) 100%SOC电池热失控后;(f) 表面元素含量
同时根据EDS的结果分析,在低荷电状态下正极表面的Ni、Co、Mn元素的比例在热失控前后变化不大,而在高荷电状态下,Ni的比例有明显降低,这是因为高Ni正极材料稳定性较差,随着SOC的升高,其更容易被氧化释放更多热量。而在热失控过程中,正极材料整体原子占比有所减少,其可能的反应路径有两条,一是参与到正极与其他电池材料发生反应,二是随着喷射物从正极材料中脱出。
进一步对正极材料进行了X射线衍射谱(XRD)表征,结果如图10所示。在新鲜的30%SOC正极材料中可以观察到三元材料一系列的特征峰,包括(003)(104)(101)等,0%SOC电池热失控后的正极材料的XRD谱图几乎没有变化,仅有部分峰位置发生了偏移,这可能是由于放电过程中Li+的脱出导致晶格尺寸发生一定变化,而在热失控过程中电池正极材料并没有发生剧烈改变。30%SOC电池热失控后正极材料发生了较大变化,XRD谱图中已观察不到三元材料的特征峰,在2θ=44.5°、51.8°和76.4°能观察到Ni金属的特征峰(111)(200)和(220)(PDF#87-0712),同时在2θ=37.2°、43.3°和62.9°处能观察到NiO等金属氧化物的特征峰(111)(200)和(220)(PDF#78-0429)。50%SOC电池热失控后依然能在正极材料中发现Ni金属和其氧化物的特征峰,不同的是NiO的空间结构由Fm-3m转变为R-3m(PDF#89-3080)。100%SOC电池热失控后正极材料的XRD谱图中,2θ=38.4°和78.0°处能观察到Al的特征峰(111)和(311)(PDF#89-2837),说明随着荷电状态的升高,热失控反应的温度也进一步上升。同时还能够观察到Co的特征峰(PDF#89-7093),在其影响下,使得Ni的晶格常数增大。在2θ=26.4°还能观察到石墨的特征峰(002)(PDF#41-1487),说明随着热失控反应的剧烈程度增加,部分负极材料进入正极发生了反应。
采用X射线光电子能谱(XPS)对不同SOC电池热失控前后的正极材料进行了组成成分分析,如图11所示。其中图11(a)为30%SOC的新鲜电池热失控前正极材料的C1s分峰结果,可知在热失控前正极表面的C存在C—C、C—O、C=O和—CO3及其他碳化物形态,其中C—C主要以导电炭黑、烷基基团构成,C—O和C=O主要由正极电解质界面(CEI)膜中的酯链或醚链等结构贡献。随着SOC的变化,CEI膜的成分也逐渐改变,同时在热失控的过程中,CEI在高温下分解,最终主要以—CO3的形式存在。同时随着电解质的分解,电极表面的含F物种逐渐增多。在高SOC状态下,由于热失控反应剧烈,出现金属碳化物的特征峰,同时正极表面的其他C元素也多以石墨化形式存在。
3.2 负极
图12是电池热失控前后负极材料的SEM表征图,同时对各负极材料表面进行了EDS分析,其结果如图13所示。从图12(a)中可以看到热失控前电池负极材料表现出良好的层状结构,表面SEI膜完整清晰,0%SOC[图12(b)]和30%SOC[图12(c)]电池热失控过程比较缓和,负极材料还能保持较好的层状结构,同时表面附着有部分隔膜熔融物,SEI膜有少量分解,50%SOC[图12(d)]和100%SOC[图12(e)]电池在剧烈热失控后,层状结构被完全破坏,说明负极材料在热失控过程中发生剧烈反应。
图12 负极材料的SEM表征图:(a) (f) 30%SOC热失控前;(b) (g) 0%SOC热失控后;(c) (h) 30%SOC热失控后;(d) (i) 50%SOC热失控后;(e) (j) 100%SOC热失控后
图13 不同SOC电池热失控前后负极材料EDS分析:(a) 新鲜电池30%SOC;(b) 0%SOC电池热失控后;(c) 30%SOC电池热失控后;(d) 50%SOC电池热失控后;(e) 100%SOC电池热失控后;(f) 表面元素含量
同时根据EDS的结果分析,热失控前的样品、0%SOC和30%SOC热失控后的样品,表面元素变化不大,50%SOC和100%SOC电池表面能够观察到少量的Ni、Co、Mn元素,说明在热失控过程中随着热失控程度的增强,部分正极材料也进入负极,与负极负表面发生剧烈反应,同时在负极表面还能观察到Al元素的存在,说明反应的高温已使隔膜融化、正极铝箔熔融进入到负极。
进一步对负极材料进行XRD表征,结果如图 14所示。新鲜的30%SOC电池负极材料的XRD谱图中可以观察到Cu(PDF#99-0034)和石墨(PDF#75-2078)的特征峰,与正极材料一样,由于0%SOC电池热失控轻微,其后的XRD谱图基本没有变化。30%SOC电池热失控后负极材料的XRD谱图除了Cu和石墨的特征峰外,在2θ=36.5°处可观察到CoO的特征峰(111)(PDF#75-0393)、在38.8°处可观察到MnO2的特征峰(040)。50%SOC电池热失控后Cu和石墨的晶格常数都有所减小,这可能是随着热失控反应剧烈程度的增大,热失控温度升高所导致的。100%SOC电池热失控后的XRD谱图,在2θ=43.5°、50.8°和74.4°还可以观察到金属碳化物的特征峰(111)(200)和(220),在2θ=38.5°、44.5°、44.9°和45.1°附近可以观察到Al、Co、Mn、Ni等金属的特征峰,在2θ=32.0°处可以观察到铝氧化物的特征峰(220),这些特征峰的存在均说明在热失控反应的过程中正极材料也通过破损的隔膜进入电池负极,发生剧烈热失控反应。
通过XPS对热失控前后负极材料表面成分进行分析,结果如图15所示。根据分峰结果表明负极材料表面C元素主要以C—C、C=O、—CO3和石墨化结果存在,其中主要集中在固体电解质膜(SEI)和负极石墨材料中。随着SOC的升高,SEI中的烷基碳酸锂逐渐转变为碳氧基锂,使得C—O的含量逐渐升高,同时随热失控的剧烈程度上升,SEI分解加剧,最终负极表面的C元素也多以—CO3和石墨化结构存在。与正极材料一样,50%SOC和100%SOC电池热失控后的负极表面,由于高温与剧烈燃烧,残留有部分金属碳化物。
3.3 隔膜
图16所示为热失控前后隔膜的SEM表征图片。图16(a)为30%SOC电池热失控前的隔膜,图中可以观察到隔膜的结构完整,边缘清晰,孔隙致密。图16(c)为0%SOC电池热失控后的隔膜,其上的结构已经发生改变,孔隙消失,内部发生部分熔融,同时从图16(d)中可以发现隔膜的宏观结构也有所变化,因受热发生膨胀而产生纵向挤压。图16(e)和图16(g)可以发现,随着荷电状态的进一步上升,电池热失控愈发剧烈,隔膜表面颗粒也开始溶解,其中以50%SOC的情况更为显著,其中部分表面颗粒已经融为一体。100%SOC的电池在热失控的过程中燃烧更为猛烈,已无法找到完整的隔膜碎片,只能从正负极材料表面附着物中进行寻找,同时图16(i)中也可以发现,隔膜已完全溶解,表面颗粒及结构已遭到彻底的破坏。
图16 不同隔膜的SEM表征图:(a) (f) 热失控前;(b) (g) 0%SOC热失控后;(c) (h) 30%SOC热失控后;(d) (i) 50%SOC热失控后;(e) (j) 100%SOC热失控后
进一步对隔膜的表面情况进行了XRD表征,结果如图17所示。在新鲜电池热失控前的XRD谱图中,2θ=21.6°和24.1°处能观察到隔膜材料聚乙烯的特征峰(110)和(200),同时在2θ=25.6°、35.2°、43.3°、52.6°和57.6°处可以观察到成膜添加剂Al2O3的特征峰(110)(211)(210)(220)和(321),说明此时隔膜的结构完整。0%SOC电池热失控后,隔膜表面聚乙烯的特征峰减弱,30%SOC电池热失控后已观察不到聚乙烯的特征峰,而当超过50%SOC后,左侧的大包峰彻底消失,说明随着SOC的增加,热失控过程中隔膜结构破损愈加严重直至彻底解体,在50%SOC和100%SOC电池热失控后残骸中已无法有效分辨出隔膜残渣可以证明这一点。同时随着SOC的升高,热失控过程中Al2O3从隔膜中脱落的程度也愈大,其峰强度也愈小,在50%SOC电池热失控后的隔膜中还可以观察到石墨的特征峰(002),Ni/Co/Mn等金属的特征峰(210)(111)(200)(220)以及NiO等金属氧化物的特征峰(101)(110),说明此时热失控过程中,正负极已充分接触,剧烈反应并放出大量热量。当SOC超过100%,热失控后仅能观察到少量的石墨以及Ni/Co/Mn等金属的特征峰,说明此时电池结构已被完全破坏。
4 结论
本工作通过自主搭建的火焰触发热失控测试平台,对NCM锂离子电池火焰触发热失控特性进行了分析,通过收集温度、气态产物等相关参数,研究其在锂离子电池安全性中发挥的作用,得出以下结论。
(1)随着锂离子电池荷电状态的增加,存在一个荷电状态的安全临界点,荷电状态低于30%的电池不易发生热失控,或在极端条件下发生的热失控反应非常轻微,难以对周围环境或人员造成伤害。荷电状态高于30%的电池,随着荷电状态的升高,锂离子电池热失控的现象愈来愈显著,包括但不限于烟气喷发、剧烈燃烧等现象,热失控起始温度和最高温度也明显上升,因此在储运过程中对荷电状态的限制是非常有必要的。
(2)在锂离子电池热失控的过程中,无论荷电状态的高低,均会有大量挥发性气体产物生成,低荷电状态下因热失控反应不明显,产物气体以挥发的电解液为主要成分,随着荷电状态的升高,电池内部热失控反应加剧,导致产物的种类明显增加,标志着电池内部各重要部分之间的反应非常复杂,同时生成的气态产物中具有毒性的物种数目和浓度也呈现出上升的趋势,尤其是CO的浓度在热失控后较短时间内就可以升高到数千ppm,并可维持1800 s左右,若处于密闭或小型空间内,且无法及时进行通风换气,有可能对人员造成严重的伤害。
(3)通过热失控前后锂离子电池的结构衰变分析,低SOC的电池热失控程度轻微,热失控前后结构保持相对完好。随着SOC的升高,电池结构逐渐发生破损,尤其是在隔膜处,导致正负极相互接触引发更加严重的热失控反应,加重电池热失控的剧烈程度。
第一作者:周添(1988—),男,博士,讲师,主要研究方向为化学防护、电化学、新能源与能源安全
通讯作者:孙杰,教授,主要研究方向为先进能源、先进材料、能源安全
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
近日,江苏省副省长方伟走访天合光能,就稳外贸工作及绿色低碳发展开展调研。光伏科学与技术全国重点实验室主任、天合光能董事长高纪凡陪同调研并汇报有关情况。方伟详细了解天合光能生产经营、科技创新及国际市场拓展情况,并与企业负责人座谈交流。当了解到天合光能210组件累计出货量稳居全球第一,
日前,河北张家口南山汽车产业基地与三维(陕西)电池技术有限公司举行三维固态特种电池生产基地项目签约仪式。项目将建设第四代智能化电池工厂,计划总投资10亿元,总占地70亩,规划建筑面积10.2万平方米,分两期实施。其中,一期投资6亿元,二期投资4亿元,预留产能扩展空间。建成后可新增1GWh三维固
北极星储能网在天眼查APP获悉,4月27日,东营时代新能源科技有限公司成立,法定代表人为曲涛,注册资本20亿元,经营范围包含:新兴能源技术研发;电池制造;电池销售;电子专用材料制造;电子专用材料销售等。股东信息显示,该公司由宁德时代全资持股。值得注意的是,近几个月,宁德时代在山东接连注册
4月29日,江都经济开发区246MW/492MWh分布式储能电站项目中标公示,江苏威达建设集团有限公司以59000万元中标该项目,折合单价1.199元/Wh。项目招标人为扬州市江都区江舟产业发展有限公司,项目位于江苏省扬州市。本项目拟利用江都经济开发区内企业现有场地建设储能电站,规划安装容量为246MW/492MWh。
动力电池出货量同比增长41%,储能电池出货量增长120%。高工产研锂电研究所(GGII)初步调研数据显示,2025Q1中国锂电池出货量314GWh,同比增长55%。其中动力、储能电池出货量分别为210GWh、90GWh,同比增长分别为41%、120%。2024-2025Q1中国锂电池出货量(GWh)说明:动力锂电池含乘用车、商用车、工程
近日,南京市宏观经济研究中心公布《2025年度南京市瞪羚企业名单》,林洋储能凭借在新型储能领域的持续创新与高质量发展,荣获南京市“瞪羚企业”称号!作为具有高成长性、高技术含量和高附加值特征的创新型企业群体,瞪羚企业已成为新质生产力的重要代表。2025年全国两会《政府工作报告》中提出“支持
2025年以来全球储能市场波动较大,作为装机前二地区的中国和美国均有重大政策发布。美国方面,由于中美贸易战,近期关税已经达到了64.9%(3.4%基础关税+7.5%301条款关税+20%对华普征关税+34%新增对等关税),预计2026年1月1日起301条款关税上升至25%,届时储能出口美国产品将面临82.4%的关税。尽管从政
交通运输和能源行业都是国家战略性和基础性产业,也是降碳减污、扩绿增长的重点领域。推动交通运输与能源深度融合发展,对于保障国家能源安全、加快发展新质生产力、积极稳妥推进碳达峰碳中和、在中国式现代化进程中率先实现交通运输现代化,在全面建成社会主义现代化强国中率先建成交通强国具有十分重
北极星储能网讯:4月27日,江苏扬州江都经济开发区246MW/492MWh分布式储能电站项目招标公告发布。文件显示,项目投资总价约59000万元,折合单价1.199元/Wh,计划工期365日历天,不接受联合体投标。以下为招标原文:江都经济开发区246MW/492MWh分布式储能电站项目招标公告一、招标条件本招标项目“江都
北极星储能网讯:面对新一代数据中心对高能效与高可靠的极致追求,4月26日,全球通信与数据中心储能电池市场的领航者——双登股份以技术革新破局,震撼发布重磅新品:数据中心“浸卫”高压锂电系统。以极致安全、卓越性能重塑行业标准。四大硬核特性,引爆行业关注01极致安全,全浸没防采用创新全浸没
面对行业内卷、资本收紧新周期,储能企业正在批量扎堆港股IPO。2024年下半年以来,宁德时代、海辰储能、思格新能源、南都电源、双登集团、正力新能等多家储能企业进击港股,港股上市成为2025年储能行业的重要战略选择。高工储能据此提出简单五问,希冀揭秘储能企业扎堆港股IPO的来龙去脉以及行业影响。
日前,河北张家口南山汽车产业基地与三维(陕西)电池技术有限公司举行三维固态特种电池生产基地项目签约仪式。项目将建设第四代智能化电池工厂,计划总投资10亿元,总占地70亩,规划建筑面积10.2万平方米,分两期实施。其中,一期投资6亿元,二期投资4亿元,预留产能扩展空间。建成后可新增1GWh三维固
北极星储能网获悉,4月29日消息,欧洲汽车巨头Stellantis与美国初创公司FactorialEnergy联合研发的FEST固态电池成功通过车规级验证。据了解,FEST固态电池容量为77Ah,能量密度达到375Wh/kg,理论上可使电动车续航突破1000公里。经600次充放电循环后仍保持90%以上容量,达到车规级耐久标准。具备4C放电
4月25日,在山东省市场监督管理局的指导下,国际独立第三方检测、检验和认证机构德国莱茵TüV大中华区(简称“TüV莱茵”)联合山东省储能学会、山东省产品质量检验研究院在青岛举办“2025华北区新能源产业先进技术研讨会”。本次研讨会以“探索绿色可持续开创能源新未来”为主题,汇聚了专家学者和行
LG新能源4月29日宣布,与法国环境服务商Derichebourg成立电池回收合资企业,将投建电池回收工厂。按照计划,两家公司在合资公司中的持股比例各为50%,电池回收工厂选址于法国北部瓦兹河畔布吕耶尔,预计2026年动工,2027年投产,年处理能力超2万吨。随着新能源汽车行业的蓬勃兴起,动力电池回收正逐渐
日前,正泰发布一周热点资讯(2025/4/21~4/25)。荣誉正泰安能、正泰新能获评浙江省独角兽企业4月24日,由民建浙江省委会、浙江省工商联、中国投资发展促进会主办的第九届万物生长大会在杭州举办,会上发布浙江省独角兽企业系列榜单,正泰安能、正泰新能双双上榜,首次获评浙江独角兽企业;正泰安能还
近日,内蒙古通辽市经济技术开发区就通辽市昌通新能源科技有限公司新能源再生利用项目进行了环境影响评价首次信息公示。公示信息显示,项目主要回收利用废旧锂离子电池、报废光伏机组、风机叶片等,项目建成后年梯次利用废旧锂离子电池1万吨、拆解破碎废旧锂离子电池2万吨,拆解报废风电、光伏机组2万
北极星储能网获悉,4月25日,国轩高科发布变更募集资金用途的公告,在其第九届董事会第十二次会议和第九届监事会第十二次会议上,审议通过了《关于变更募集资金用途的议案》,公司拟将原募投项目名称“年产20GWh大众标准电芯项目”变更为“大众标准电芯产线项目”,项目实施内容由“年产20GWh动力锂离
日前,美国清洁能源协会声称,一项对2012年以来美国发生大规模电池储能系统火灾事故的第三方审查发现,这些火灾均未导致污染物浓度达到引发公众健康担忧或需要进一步处理程度。2025年1月16日,莫斯兰汀电池储能系统发生火灾与此同时,美国清洁能源协会还发布了电池储能系统安全蓝图。建议电池储能系统
北极星储能网获悉,4月25日,国轩高科发布2024年度业绩报告。报告称,2024年,公司实现营业收入3,539,181.71万元,同比上升11.98%;实现营业利润128,344.97万元,同比上升31.58%;实现利润总额126,310.97万元,同比上升33.22%;实现净利润115,413.42万元,同比上升19.09%,其中,实现归属于母公司所有
亮点:1.提出了一种采用电热膜对电池模组快速加热的方法。2.研究了电池加热功率、加热部位及模组多维度错位协同加热方法对电池温度场及其升温速率的影响。摘要在低温环境下,电池加热是提升储能系统性能、延长电池寿命以及确保其安全性的重要技术手段。针对储能用高容量锂离子电池的低温加热问题,本工
北极星储能网获悉,4月24日,鹏辉能源发布2024年度业绩报告。报告期内,公司实现营业收入79.61亿元,同比增长14.83%;归属于上市公司股东的净利润-2.52亿元。报告期末,公司资产总额168.68亿元,同比增长7.66%;归属于上市公司股东的净资产为50.88亿元,同比下降5.82%。报告显示,公司主营锂离子电池、
4月25日,四川省天府锂业有限责任公司成立,注册资本5亿人民币,经营范围包括矿产资源勘查、非煤矿山矿产资源开采、非金属矿及制品销售等。值得注意的是,该公司由四川省自然资源投资集团有限责任公司全资持股,后者是四川省自然资源领域省管国有资本投资公司,集团资产总额近343亿元。可以说,新公司
动力电池出货量同比增长41%,储能电池出货量增长120%。高工产研锂电研究所(GGII)初步调研数据显示,2025Q1中国锂电池出货量314GWh,同比增长55%。其中动力、储能电池出货量分别为210GWh、90GWh,同比增长分别为41%、120%。2024-2025Q1中国锂电池出货量(GWh)说明:动力锂电池含乘用车、商用车、工程
为深入贯彻落实国家“双碳”战略,推动与能源电力领域领军企业深度融合,4月27日,西安交通大学校长、中国工程院院士张立群带队赴中国南方电网有限责任公司(以下简称“南方电网”)推进合作交流,并与南方电网总经理、党组副书记钱朝阳座谈。中国工程院院士、南方电网专家委员会名誉主任委员李立浧,
2024年,由于此前产能迅速扩张导致的阶段性、结构性过剩问题仍未解决,锂电产业产能建设进入“理性期”,主要表现为投资放缓,产能扩张减速。进入2025年一季度,各领域的产能投建呈现出不同的特征,少数头部企业扩产态势不减,更多的企业则根据具体情况适当削减项目,回笼资金。四巨头“悬崖勒马”去年
4月21日以来,碳酸锂期货价格再次连续大跌!21日跌破7万元/吨心理防线,22日跌破6.9万元/吨,23日一度跌破6.8万元/吨。海外矿价下跌,美国关税带来的需求增量担忧,以及宁德时代“钠电池”的量产与技术替代,这三大因素的叠加导致碳酸锂市场接连遭遇成本坍塌、需求未卜、技术替代的“打击”。下一步,
2023年8月17日,欧盟新电池法正式生效,对电池企业提出了全生命周期的严格约束,涵盖碳足迹、回收责任、材料使用、安全标准等多个维度。其中,储能电池属于工业电池范畴,从时间节点来看,进入欧盟市场需要在2026年2月前提供产品碳足迹报告。具体来看,欧盟新电池法要求电池制造商必须提供包括电池材料
北极星储能网讯:近日,教育部公布《2024年度普通高等学校本科专业备案和审批结果》,共有19所院校新开设了储能科学与工程专业。截至目前,全国累计已有103所高校开设储能科学与工程专业,覆盖27个省市。文件显示,有南京理工大学、营口理工学院、上海第二工业大学、淮南师范学院、合肥理工学院、淮北
北极星储能网获悉,2025年4月19日,由中国化工学会指导,中国化工学会储能工程专业委员会和中国可再生能源学会氢能专业委员会联合主办的“2025长三角(绍兴)氢能+储能产业技术交流与发展大会”在浙江省绍兴市上虞区隆重举行。大会上,一批高质量的氢能与储能项目正式签约,落户国家级杭州湾上虞经济技
4月17日,海南矿业公告,近日布谷尼锂矿采矿权转移事项已获得马里政府相关部门审批,证书已登记至其控股子公司LMLB名下,初始有效期为10年(即2025年—2034年),采矿权证到期后可依法延续。据了解,2024年11月海南矿业控股子公司KMUK及其全资子公司FM、LMLB,此前与马里政府就Bougouni锂矿(简称“布
芳源股份17日公告,决定终止投资不超过30亿元的“电池级碳酸锂生产及废旧磷酸铁锂电池综合利用项目”,并将在股东大会审议通过本次终止投资事项后办理后续芳源锂业注销等有关事项。公告称,该决定旨在优化资源配置、降低经营风险,提高公司运营效率,不会对公司业务发展产生不利影响。历时两年,战略性
今年以来,碳酸锂价格持续下跌。近日,在特朗普关税冲击下,碳酸锂价格一举跌破7万元/吨,其中碳酸锂期货LC2505价格最低跌至6.8万元/吨。此前,高工锂电对于碳酸锂价格走势有过分析,随着下游去库存调整,以及上游原材料产能释放,碳酸锂价格呈现的波动性逐步收窄,旺季带动的涨幅也逐渐缩小。相比于过
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!