登录注册
请使用微信扫一扫
关注公众号完成登录
1 实验系统与方法
1.1 实验研究对象
以容量为100 Ah的软包型锂离子电池为研究对象,采用磷酸铁锂作为正极活性材料,石墨为负极材料,电池规格参数如表1所示。本次实验采用Neware电池测试系统,将电池以0.3C恒流放电至2.5 V,再以0.3C分别充电至40%、60%、80%、100%SOC,随后恒压至0.05C以下。
表1 电池参数表
1.2 电池热失控实验
采用图1(a)所示方法对电池进行制样,在电池一侧的大面贴附加热膜(120 V,480 W,江西硕豪电热)模拟外部热源触发电池热失控的场景。在电池另一侧大面的上、中、下三个位置,分别布置了直径为1 mm的K型热电偶,分别命名为T1、T2、T3,用于精确测量电池表面不同位置的温度变化。此外,在电池的极耳处布置了电压线,用于实时监测电池电压的变化。
在图1(b)所示的实验平台上开展实验。该平台集成了多路数据记录仪(LR8431CN,日置(上海)测量技术有限公司)、直流电源(SSN-15005DS,东莞市不凡电子有限公司)、摄像机、通风机以及计算机。将电池样品放置于实验平台上,将电压线和热电偶与多路数据记录仪连接,数据记录仪的采样间隔设定为1 s。实验过程中,数据实时传输至计算机。加热片与直流电源相连,整个过热过程由摄像机全程记录。实验中,通风机持续运行,用于排除实验过程中产生的烟气,确保实验安全。当电池触发热失控后,立即关闭直流电源,以避免进一步的热能量输入。实验结束后,分别用电子天平测量电池质量损失,用工业计算机断层扫描(CT,METROTOM 1500,德国ZEISS公司)拍摄电池内部结构,用扫描电子显微镜(SEM,SU 8220,日本日立集团)观察正负极片材料形貌。
1.3 气体采集实验
本研究在自制的模组外壳中进行了电池热失控气体收集实验,如图2所示。实验在室温条件下进行,分别对40%、60%、80%、100%SOC的100 Ah LFP软包电池进行加热,电池触发热失控后关闭直流源。当电池热失控并产生大量气体时,迅速打开模组外壳上的排气口,使用抽气泵(AD1.5DC4,缘循智能科技)将产生的气体引导至预先准备的气体收集袋中,收集到的气体随后通过气相色谱仪(GC, 7820 A VL,安捷伦科技有限公司)进行成分分析。
2 实验结果与分析
2.1 不同SOC电池的热失控特性
2.1.1 实验现象
图3展示了在不同SOC下电池过热引发热失控的典型实验现象。实验结果表明,各SOC下电池热失控过程中的现象基本一致,主要表现为释放白烟而无明显火焰。热失控过程中的现象依次为:正常温升、产气膨胀、破裂冒烟、正极头部剧烈产气、负极头部剧烈产气、自然冷却。值得注意的是,不同SOC的电池在热失控时,破裂冒烟的位置均集中在电池的正极头部,这是因为在软包电池中,正极头部是集流体与电极材料的连接点,结构复杂,存在多个接口和连接点,这使得它成为潜在的失效点。此外,正极头部的包装材料需要进行热封和压接处理,这一过程中的高温和压力可能削弱了该区域的材料强度,加之这里是封装的接口,可能存在应力集中。当电池内部发生电解液分解等化学反应时,产生的气体倾向于在电池顶端聚集,而正极头部由于结构上的薄弱和密封问题,所以容易成为气体聚集并最终破裂的部位。在长时间缓慢冒烟后,电池表面温度达到热失控临界点,大量烟雾从正极顶封稳定释放,形成射流,随后电池的负极顶封也开始剧烈产气,形成稳定的喷射气流。与低SOC(40%)电池相比,高SOC电池在热失控时表现出更为剧烈的产气现象。此外可以发现,电池热失控后表面的铝塑膜因高温烟气作用而发生碳化变黑,这一现象在40%SOC电池中表现不明显,表明其生成的烟气温度较低且产气量较少,热失控剧烈程度较低。
2.1.2 过热机制
图4展示了不同SOC的LFP软包电池的温度电压变化曲线,可以发现,各SOC的电池表面温度与电压的演变趋势呈现出高度的一致性,这表明无论SOC如何变化,电池在过热环境下面临的热失控机制是一致的。为了更精确地分析热失控过程,定义了三个关键时间点:ta,tb,tonset。其中,ta表示电池温升放缓的时间点;tb表示电池温度出现波动下降的时间点;tonset为热失控的触发时间。在时间点ta、tb以及tonset处,热电偶记录的电池最高表面温度分别命名为Ta、Tb、Tonset。Tmax为电池热失控时的最大温度,对应的时间点为tmax。根据式(1),当相邻两个记录点T(k)和T(k+1)的温度差异大于1 ℃/s时,T(k)被定义为Tonset,其中T(k)代表数据记录仪在第k秒记录的温度数据。
![]() ![]() | (1) |
基于上述分析,图4将整个电池过热过程分为四个阶段,各阶段对应的内在机理如图5所示。
阶段Ⅰ (0 s~ta,温升阶段):电池温度从初始环境温度稳步上升至Ta ≈ 100 ℃,电池表面温度的一致性较好,表明在此过程中电池内部各部分的响应较为均匀。同时,电池电压略有上升,主要归因于电极材料在高温下的活化,高温条件下电池内部的电化学反应变得活跃,内部电阻降低,导致开路电压略有升高。
阶段Ⅱ (ta~tb,温度平台阶段):电池的温升速率开始减缓,形成了一段温度变化较为平缓的平台,同时电池表面各部位的温度差异逐渐增大。此阶段锂离子电池内部开始发生副反应,SEI膜分解产生O2和C2H4,同时释放热量,促使电池内部温度持续攀升。同时,电解液吸收热量蒸发产生气体,加速电池膨胀,导致电池表面传热和散热不均匀。
阶段Ⅲ (tb~tonset,温度波动阶段):当电池内部产气压力达到阈值时,电池两端的铝塑膜发生破裂冒烟,带走部分热量,导致电池温度出现小幅度下降,随后电池持续吸收加热膜输入的能量,温度继续上升,电解液持续蒸发并与负极的嵌锂反应生成有机气体,内部隔膜收缩开始出现短路。值得注意的是,此阶段电池的电压在大部分时间保持稳定,只有在热失控即将发生之前出现轻微的下降趋势,这表明在软包电池的前端内部发生了较为轻微的内部短路现象。
阶段Ⅳ(tonset~,热失控阶段):这一阶段标志着锂离子电池从热失控状态过渡到自然冷却的过程。持续的高温促使电池隔膜融化,进而使得正负极材料直接接触,触发电池内部的大规模内短路。在极短的时间内,电池内部产生大量的热量,这引发了负极锂与电解液反应、正极材料分解、电解液分解以及黏结剂反应等一系列连锁放热反应,导致温度急剧飙升,出现剧烈的产气和产热,最终促成了热失控的发生。在几十秒内,电池温度迅速攀升至峰值,电池表面不同位置之间的温差变大,电压迅速下降至0 V。
2.1.3 电压特性
通过对图6的实验图的分析,我们观察到在电池热失控发生前,电池电压开始出现下降,但并未完全降至0 V。这一现象表明,电池电压的轻微下降可以作为电池失效的早期预警信号。另外,不同SOC水平的电池在电压开始明显下降到热失控正式开始的时间间隔存在显著差异。对于100%、80%、60%、40%SOC的电池,这一时间间隔分别为22 s、28 s、61 s、104 s,而电压下降幅度则分别为3.05 V、2.07 V、0.44 V、0.05 V。这些数据揭示了一个重要趋势:SOC越高,从电压开始下降到热失控发生的预警时间越短,电池内部大规模短路的发生也越迅速。这一发现对后续电池管理系统的设计具有重要意义,提示我们应开发更为敏感和快速响应的热失控预警机制,以提高电池系统的整体安全性和可靠性。
2.1.4 产热特性
如表2所示,不同SOC条件下,电池的热失控触发温度Tonset稳定在160~175 ℃范围内。这一现象主要归因于电池材料与隔膜的熔点限制,进一步证明了过热触发电池热失控主要是因为隔膜熔化。在热失控过程中,电池的最高温度Tmax呈现随SOC提升而明显增高的趋势。在100%、80%、60%、40%SOC条件下,Tmax分别达到422.8、387.3、291.3、236.1 ℃。这一趋势表明,在高SOC条件下,电池中储存的能量更高,当发生内部短路时,这些能量以焦耳热的形式迅速释放,导致温度急剧升高。值得注意的是,热失控瞬间的温升速率也与SOC密切相关。在100%、80%SOC条件下,电池的最大温升速率分别高达78.9、64.9℃/s,而60%、40%SOC条件下,这一速率则显著降低至8.3、2.2 ℃/s。这表明,当电池SOC高于60%时,热失控瞬间的副反应剧烈程度将显著增加,温升速率呈倍数上升,对电池安全构成更大威胁。
表2 不同SOC的电池热失控特征参数
为了量化热失控过程中的内部产热,参考Feng等、宋来丰等的计算方法,按照公式(2)计算了电池热失控时的内部电热耦合产热率,结果如图7(a)所示。在热失控过程中,不同SOC水平的电池的产热特性存在显著差异。具体而言,100%、80%、60%、40%SOC电池的峰值产热率分别达到140.34、115.44、14.76和3.91 kW。这一结果表明,高SOC电池的产热率远高于低SOC电池,其中100%SOC时的瞬时产热率比40%SOC时提升了35.89倍,突显了SOC对热失控产热率的显著影响。通过式(3)对产热率Pb进行积分处理,可以得到整个热失控阶段的总产热量。如图7(b)所示,当SOC分别为100%、80%、60%、40%时,电池释放的热量依次为464.24、373.35、229.81、121.31 kJ。从曲线可发现,SOC与热失控释放能量之间存在线性增长关系。
为了更直观地展现电池在热失控过程中释放能量的危害程度,本研究运用TNT当量法将释放的能量转化为等效TNT量,并据此计算破坏半径,以此量化热失控事件的潜在危害程度,具体计算方法如式(4)与(5)所示。如图7(c)所示,100%、80%、60%、40%SOC电池释放的能量分别相当于104.63、84.14、51.79、27.33 g TNT的爆炸能量。这一结果表明,电池热失控的危害与SOC呈正相关,即SOC越高,热失控的危害越大。值得注意的是,40%SOC时,电池能量破坏半径仅为3.59 m,而100%SOC时,这一数值增加至5.90 m,相比40%SOC时提升了近64.3%。因此,对于电池热失控的预防和控制策略,应特别关注高SOC条件下的电池状态,以减少潜在的安全风险。
![]() | (2) |
![]() | (3) |
![]() | (4) |
![]() | (5) |
式中,Pb为电池热失控期间的产热功率,kW;cb为电池的比热容,本实验电池为0.98 kJ/(kg·K);mb为电池的质量,kg;QTR为电池热失控时释放的能量,kJ;tmax为电池达到最大温度时的时间,s;tonset为电池热失控的触发时间,s;WTNT表示TNT当量,g;η表示爆炸效率,本文取1;HTNT表示单位TNT的爆炸能量,其变化范围是4437~4765 J/g,本文取4437 J/g;HR表示单位TNT的破坏半径,取13.6 m;R表示破坏半径,m。
2.1.5 残骸分析
如图8(a)所示,电池的质量损失率随SOC的变化规律与其最高温度的变化趋势一致。在100%、80%、60%、40%SOC条件下,质量损失率分别为22.74%、19.62%、17.62%、16.89%,呈现出随着SOC增加而递增的趋势。这一现象可归因于两个主要因素:首先,SOC越大,内部短路导致更多的电量转化为焦耳热,触发更多的链式副反应,从而导致产气量的增加;其次,高温条件下,电池的铝塑膜可能熔化并黏附在加热膜上,进一步加剧了质量损失。为了深入观察电池热失控后的内部结构变化,本工作采用了CT表征热失控后的残骸形貌。如图8(b)所示,电池内部的极片卷绕结构在热失控后发生了显著的弯曲变形,极片之间出现了大量间隙。值得注意的是,SOC越大,电池的变形程度和极片间隙也越大。这一现象主要归因于热失控过程中剧烈的产气导致内部压力急剧增加,从而引发电池内部结构的膨胀和变形。
如图9所示,为了深入理解电池热失控的特征及其内部反应机制,本工作对热失控后的电池极片进行了SEM表征形貌。在低SOC条件下(40%、60%),正极材料颗粒呈现出类似粘连的方块状结构。然而,在高SOC条件下(80%、100%),LiFePO4正极材料在热失控后的形貌转变为团聚的不规则球状。这一变化表明,在高SOC条件下,电池热失控过程更为剧烈,LiFePO4正极材料参与的副反应更为严重。同时,高温和延长的退火时间导致材料晶相发生显著变化,引发热失控过程中材料结构的深度演变。对于负极电极,SEM分析揭示了SOC对石墨层状结构的影响。在40%SOC时,石墨负极的层状结构得以保持,但从60% SOC开始,石墨阳极原有的层状结构消失,其形貌转变为许多团聚的球形颗粒。这些立体颗粒的形成与热失控时阳极侧的放热反应密切相关。高温下SEI组分发生分解以及负极插层锂与电解质反应生成Li2CO3,是导致这一现象的两个关键因素。此外,随着温度的升高,负极Li与氟化黏结剂反应生成LiF ,进一步加剧了石墨负极的结构变化。值得注意的是,随着SOC的增加,石墨负极的团聚现象更加严重,这表明在高SOC条件下,参与反应的物质增多,热失控反应的严重程度也随之增加。
2.2 不同SOC下电池的排气行为
2.2.1 产气成分分析
由图10所示,电池热失控过程中的主要产气成分包括CO2、H2、CO、C2H4,并伴随少量CH4、C2H6、C3H6、C3H8等烃类气体的产生。随着SOC的增加,电池产H2量呈现上升趋势,分别为26.38%、39.54%、51.39%、57.92%,而CO2产量则相应下降,分别为60.36%、43.49%、26.57%、19.69%。CO含量在40%~80%SOC时基本一致,但在SOC达到100%时,CO含量显著上升,分析机理如下。
H2生成机理:电池热失控过程中,阳极在高温下释放出一定量的锂,锂与水反应生成H2 [(式(6)],同时产生大量热量。此外,在温度高于260 ℃时,PVDF黏结剂与锂反应并释放H2 [式(7)]。因此,当SOC增大时,电池负极的活性物质利用率增加,导致热失控过程中更多的活性锂参与反应,从而产H2量上升,同时,由前面的产热特性对比可知,SOC越高,热失控反应越剧烈,Tmax越大,更有利于黏结剂与Li反应生成H2。所以H2含量随着SOC的上升而增加。
![]() | (6) |
![]() ![]() | (7) |
CO2生成机理:CO2主要来源于SEI层受热分解[式(8)],SEI层与水[式(9)]、HF [式(10)]反应以及200~280 ℃高温条件下电解液分解反应[式(11)~(13)、Li2CO3与HF在高温下反应[式(14)],电解液与O2的反应[式(15)~(18)]。
![]() | (8) |
![]() | (9) |
![]() | (10) |
![]() | (11) |
![]() | (12) |
![]() | (13) |
![]() | (14) |
![]() | (15) |
![]() | (16) |
![]() | (17) |
![]() | (18) |
CO生成机理:CO主要来源于碳氢化合物的不完全燃烧[式(19)~(22)],一部分来源于CO2在负极与锂的反应[式(23)],电解液溶剂与锂离子反应[式(24)]。而高SOC在负极有更多活性锂,所以100%SOC条件下CO含量最多。
![]() | (19) |
![]() | (20) |
![]() | (21) |
![]() | (22) |
![]() | (23) |
![]() | (24) |
有机碳氢化合物气体生成机理:C2H4、CH4、C2H6等有机气体是在电解液还原为碳酸锂、电解液分解反应(200~225 ℃)和正极与电解液放热反应(150~330 ℃)过程中产生的[式(25)~(30)]。
![]() | (25) |
![]() | (26) |
![]() | (27) |
![]() | (28) |
![]() | (29) |
![]() | (30) |
2.2.2 气体爆炸极限
电池热失控过程中产生的大量易燃易爆气体成分,与空气混合时极易形成爆炸性气体混合物,一旦遭遇电火花,将引发爆炸,对储能系统构成重大安全威胁。鉴于电池热失控产生的气体具有高度危险性,本研究采用Le-Chatelier公式计算了电池热失控过程中产气的爆炸上限(upper explosive limit,UEL)与爆炸下限(lower explosive limit,LEL),如式(31)所示。考虑到实验测量的气体成分中包含多种可燃气体和一种惰性气体(CO2),我们采取了Xu等的一种特别的计算方法:将CO2与一种可燃气体(本实验中为H2)视为一组,重组为一种新的可燃气体。重组气体在混合气中的体积分数为惰性气体与可燃气体的体积分数之和。
不同SOC条件下电池产气的爆炸极限计算结果如图11(a)所示。具体而言,40%、60%、80%、100%SOC条件下,爆炸范围分别位于10.60%~60.03%、7.12%~59.34%、5.41%~50.44%、5.40%~57.71%,均显著大于普通烃类气体的爆炸范围,这表明电池产气的燃爆风险远高于烃类气体,因此在存在氧化剂和点火条件下,LIB电池产生的气体极易发生燃烧甚至爆炸,造成极大危险。值得注意的是,随着SOC的上升,电池的爆炸上限呈现出先下降后上升的趋势,这与Zhang等研究的电池气体爆炸上限趋势一致。另外,由图11(b)可以发现,爆炸上限与电池生成的碳氢化合物含量趋势相反,这表明虽然电池产生的烃类气体含量低,但依然对爆炸上限影响较大,这主要是因为烃类气体的爆炸上限远远低于H2和CO导致。
![]() | (31) |
式中,Lmix为混合气体的爆炸极限,Vn为可燃气体的体积分数,Ln可燃气体的爆炸极限。
2.3 误差分析
为了确保实验结果的可靠性,本研究对每个实验都进行了重复实验。各试验组这些关键参数的平均值和标准差如图12(a)~(c)所示,可以看出,所测参数热失控最高温度Tmax标准差均小于10%,热失控释放的能量QTR的标准差均小于15%,计算得到的破坏半径R的标准差均小于5%,证明了实验的可靠性。此外,如图12(d)所示,各气体成分含量标准差维持在较低水平,说明电池热失控产生的气体也得到了很好的重复。
3 结论
本研究针对100 Ah大容量LFP软包电池在不同SOC下的热失控特性进行了深入探究,通过综合分析电池的过热机制、电压特征、产热特性、残骸特征、气体成分和爆炸极限,得出了以下主要结论。
(1)热失控过程与预警机制:电池热失控过程可细分为四个阶段:过热温度上升、副反应膨胀产气、隔膜收缩与破裂冒烟、热失控剧烈产热产气。电池电压的轻微下降是电池失效的早期预警信号,SOC越高,从电压下降到热失控的预警时间越短。
(2)SOC与热失控能量关系:SOC越大,电池热失控时的最大温度Tmax呈现线性上升趋势,且热失控瞬间的温升速率和产热率显著增加,100%、80%、60%、40%SOC电池的峰值产热率分别达到140.34 kW、115.44 kW、14.76 kW和3.91 kW。计算结果显示,100%SOC条件下,电池可释放能量高达464.24 kJ,相当于104.63 g TNT的能量,破坏半径达到5.90 m,相比40%SOC条件下的破坏半径提升了近64.3%。
(3)质量损失与内部结构变化:SOC越大,电池的质量损失率越高,电池的变形程度和内部极片间隙也越大,这归因于热失控过程中剧烈产气导致的内部膨胀。随着SOC的增加,内部副反应加剧,正极LFP材料从方块状转变为团聚的不规则球状,负极石墨结构则从层状转变为团聚的球形颗粒。
(4)产气成分与爆炸风险:电池热失控过程中产生的主要气体包括H2、CO、CO2以及少量碳氢化合物。随着SOC的增加,电池产H2量增加,CO2量下降。不同SOC条件下,电池产气的爆炸风险均高于普通烷烃气体,且随着SOC的上升,气体爆炸上限先下降后增加。
第一作者:叶锦昊(2001—),男,硕士研究生,研究方向为电池热失控。
通讯作者:侯军辉,工程师,研究方向为电池热失控。
通讯作者:方晓明,研究员,博士生导师,研究方向为复合相变储热材料等。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
3月26日凌晨2时许,浙江省温州市海经区一厂房5楼车间突发火情。监控画面显示,5楼车间内一个正在充电的锂电池发生爆炸,火光四溅,冒出滚滚浓烟。工厂员工在对面宿舍楼发现车间冒烟立即拨打119报警事故发生后消防喷淋系统及时启动第一时间阻止了火势蔓延消防救援人员到场时现场已无明火据了解现场为锂
近日,日本大型电池企业麦克赛尔株式会社(Maxell)宣布,将解散旗下一家中国子公司——无锡麦克赛尔能源有限公司(下文简称:无锡麦克赛尔)。资料显示,麦克赛尔成立于1961年,1964年成为日立集团成员,以研发和生产高科技数据媒体、视听设备及能源产品著称。无锡麦克赛尔成立于1996年,是麦克赛尔在
3月28日上午,2025年“投资北京”大会在2025中关村论坛年会期间举办。会上,北京星川新能源电池科技有限公司(以下简称“北京星川”)超高倍率锂离子电池项目签约落地北京经开区(北京亦庄)。该项目预计将于明年6月开始量产。北京经开区有关负责人在大会上作推介。“北京星川超高倍率锂离子电池项目总
北极星储能网获悉,3月31日,珠海冠宇发布关于核心技术人员调整的公告,其中显示新增认定赵伟先生、钟季先生为公司核心技术人员。原核心技术人员邹啸天先生因个人原因离职,公司不再认定其为核心技术人员。截至2024年12月31日,公司研发团队共有研发人员3632人,占公司总人数的21.79%。
作者:梁毅韦韬殷广达黄德权单位:桂林航天工业学院汽车工程学院引用:梁毅,韦韬,殷广达,等.亲锂Ag-3D-Cu电极的设计及电化学性质[J].储能科学与技术,2025,14(2):515-524.DOI:10.19799/j.cnki.2095-4239.2024.0758本文亮点:通过在泡沫铜表面化学镀银的方式制备具有亲锂性的Ag-3D-Cu集流体。(1)银粒
船舶电池需求升级。由于缺乏新的强预期引导,投资者的目光也重新聚焦于具备扎实基本面支撑的领域。在此背景下,锂电池行业,特别是其在传统应用场景电动化进程中的价值提升潜力,正重获市场关注。其中,船舶电动化因其巨大的市场渗透空间和对大容量电池的显著需求,正成为新的焦点。船舶电动化被视为锂
北极星储能网获悉,3月27日,道氏技术在互动平台回答投资者提问时表示,传统的液态锂离子电池能量密度通常在200—300Wh/kg左右,固态电池理论上的能量密度可达400—600Wh/kg,甚至更高,能够显著提高传统电池的能量密度。具体电池产品的能量密度,取决于客户的工艺技术路线。
新能源汽车、锂电池的全球化,再次得到了我国高层和全球主流车企的坚定支持。3月23日,中国发展高层论坛2025年年会在钓鱼台国宾馆隆重举行。据了解,作为中国高规格的对外经济交往、中外企业交流合作平台,中国发展高层论坛由国务院发展研究中心主办。今年的年会除中国以外,共有21个国家的86位跨国企
当地时间2025年3月21日,刚果(金)政府发言人帕特里克·姆亚雅(PatrickMuyaya)表示,鉴于2月实施的钴出口禁令已推动钴价反弹超过50%,该国可能会延长为期四个月的出口限制,以进一步稳定市场。刚果(金)是全球最大的钴生产国,其钴产量约占全球供应的78%以上。上月,刚果(金)宣布暂停钴出口四个
随着技术的不断成熟和成本的不断下降,电动船舶将迎来巨大的发展机遇,超千亿元的锂电应用新蓝海正在向行业招手。近期,不断有电动船舶新建、下水的消息。3月15日,国内首艘纯电海上旅游客船“屿见77”在福建下水,该船也是国内首艘入级中国船级社的纯电海上客船。该船采用纯电池动力系统,预计年内投
当地时间4月2日-3日,2025年伦敦太阳能及储能展(SolarStorageLiveLondon2025)在伦敦ExCeL国际展览中心举行。楚能新能源携储能矩阵产品亮相,凭借第四代电池技术迭代与系统级创新,赢得客户一致高度评价。展会上,楚能重点展示了全新一代472Ah电池、longπ314Ah电池、聚能π314Ah电池及CORNEXM6等创新
3月28日,楚能新能源重磅发布第四代储能专用大容量472Ah电池。此次发布的472Ah电池循环寿命可延长至15000次,35℃高温环境下循环不打折,能完美覆盖多种应用场景。在量产进度上,楚能472Ah电池可充分利用现有产能及原材料供应链体系,为大规模快速量产提供了有力支撑,预计4月25日开启全球送样,6月30
北极星储能网获悉,4月2日,万润新能在投资者互动平台上表示,公司2024年度钠电材料已实现百吨级出货,下游市场应用场景包括两轮、三轮等小型电动车型、低速四轮车、增混电池、超低温环境储能等需求。公司现有磷酸铁锂产线可以和钠电材料生产匹配,现有钠电产能能够满足当前市场订单。
2024年中国磷酸铁锂正极材料行业呈现出如下特点:1)加工费和价格触底,2025年初触底回升;2)高性能磷酸铁锂材料出货快速起量;2)在正极材料中占比进一步扩大。1、加工费和价格触底,2025年初价格开始回升。高工产研锂电研究所(GGII)数据显示,2024年磷酸铁锂正极材料价格低于4万元/吨,部分低端产
3月28日上午,2025年“投资北京”大会在2025中关村论坛年会期间举办。会上,北京星川新能源电池科技有限公司(以下简称“北京星川”)超高倍率锂离子电池项目签约落地北京经开区(北京亦庄)。该项目预计将于明年6月开始量产。北京经开区有关负责人在大会上作推介。“北京星川超高倍率锂离子电池项目总
北极星储能网获悉,4月1日,深圳新宙邦科技股份有限公司披露投资者关系活动记录表,回答投资者提问。对于公司电解液市场后续规划,新宙邦回答:公司核心业务之一为电池化学品,主要产品包括:锂离子电池化学品(如电解液、添加剂、新型锂盐、碳酸酯溶剂)、超级电容器化学品、一次锂电池化学品、钠离子
2025年3月31日,在“2025榆林—珠三角地区经济合作交流座谈会”深圳主会场,中钠储能技术有限公司控股子公司-定边中钠新能源有限公司与榆林市政府、产业链合作伙伴正式签署协议,启动总投资9.7亿元的“500MW全钒液流储能电池制造项目。项目规划建设年产500MWh全钒液流电池生产线及年产5000吨PPH储罐配
近期,储能安全与质量问题再度成为行业焦点。随着行业快速发展,低价竞标、假冒伪劣(性能虚标)、虚假宣传、服务乱象等问题接连出现,甚至引发安全事故。这其中行业既存在“无知”的问题——对电池及电化学储能的安全研究不够,防范方法缺失;又存在“知而不行”的问题,有的存侥幸心理,有的是从成本
北极星储能网获悉,4月1日晚间,龙净环保发布《2024年年度股东会提示性公告暨会议资料》,2024年,公司实现营业收入100.19亿元;利润总额9.76亿元,同比增长49.71%;归属于上市公司股东的净利润8.30亿元,较上年同比增长63.15%。经营性现金流21.77亿元,同比增长27.58%。其中新能源业务加速突破,取得
北极星储能网获悉,4月1日晚间,比亚迪公布2025年3月产销快报,3月公司新能源汽车销量为37.74万辆,同比增长24.76%;本年累计销量为100.08万辆,同比增长59.81%。2025年3月海外销售新能源汽车合计72723辆。2025年3月,比亚迪新能源汽车动力电池及储能电池装机总量约为20.347GWh,2025年累计装机总量约
在储能电站的发展进程中,安全问题始终是高悬头顶的达摩克利斯之剑,是整个行业不可回避的核心要点。而在这关键领域,一家拥有国资背景的机构——华夏金租,正以其独特的优势和坚定的决心,为储能安全保驾护航。当前,随着电力市场改革推进,市场化给予储能越来越多的交易机会,工商业储能作为一种具备
近期,储能安全与质量问题再度成为行业焦点。随着行业快速发展,低价竞标、假冒伪劣(性能虚标)、虚假宣传、服务乱象等问题接连出现,甚至引发安全事故。这其中行业既存在“无知”的问题——对电池及电化学储能的安全研究不够,防范方法缺失;又存在“知而不行”的问题,有的存侥幸心理,有的是从成本
北极星储能网讯:3月31日,浙江温州市发改委、温州市住建委、以及温州市消防救援支队联合印发《温州市用户侧电化学储能电站消防技术导则》(试行)、《温州市微型预制舱式电化学储能电站消防技术导则》(试行)。这也是全国首部地市级用户侧储能消防技术导则。据温州市发改委负责人称,作为全国用户侧储能
文丨北极星储能网北极星储能网讯:3月28日,新风光1GWh储能直流侧、1GWh储能电芯以及储能工业空调、储能消防系统、储能水冷系统等框采开标,共计33家企业入围中标候选人!详细名单见下文。其中储能直流侧系统方面,10家企业入围一标段1GWh,整体报价范围为0.3685~0.4296元/Wh,平均报价为0.3931元/Wh。
在莫斯兰丁储能系统发生火灾之后,加利福尼亚州政府以及地方政府迅速采取行动,通过提议新法案或通过立法以加强对电池储能系统运营管控。2025年1月16日下午,在加利福尼亚州蒙特利县运营的莫斯兰丁储能系统发生火灾,导致当地1200至1500名居民紧急疏散。蒙特雷县政府在此次火灾次日举行的新闻发布会表
2025开局DeepSeek大火,这个被誉为“国运级的科技革命”席卷各大行业。如果当下赶不上人工智能AI的顺风车,也许储能也难撑到下一个春天。电力市场深化改革,储能迎新挑战在AI技术席卷全球的浪潮下,储能行业迎来了前所未有的机遇与挑战。随着电力市场的深化改革,以及浙江、江苏、四川多地“绿电直供”
储能电站主要有直流侧集装箱,交流侧PCS及变压器等设备,布置间距是指在储能系统中,直流侧电池集装箱相互之间,电池箱和PCS升压箱之间,水平和垂直间隔距离。安全间距需要考虑多个因素,包括电池类型、电池容量、电池数量、充放电速率、环境温度等。这个安全间距的确定需要根据具体的电池类型来确定,
作者:张文婧肖伟伊亚辉钱利勤单位:长江大学机械工程学院引用:张文婧,肖伟,伊亚辉,等.锂离子电池安全改性策略研究进展[J].储能科学与技术,2025,14(1):104-123.DOI:10.19799/j.cnki.2095-4239.2024.0579本文亮点:1.根据锂离子电池热失控机制,总结了在电池部件集流体上最具有创新性的改进方法:将集
文丨北京城市管理委员会北极星储能网讯:3月12日,北京市地方标准《电力储能系统建设运行规范》公开征求意见,该文件于2021年首次发布,本次为第一次修订。本文件由北京市城市管理委员会提出并归口,由北京市城市管理委员会组织实施。规定了电力储能系统的设计、施工、验收、运行维护及退役和应急处置
北极星储能网讯:3月10日,由应急管理部天津消防研究所等单位承担的推荐性行业标准《电化学储能系统火灾抑制试验方法》公开征求意见。本标准适用于额定容量不小于100kWh的预制舱式磷酸铁锂电池储能系统火灾抑制试验方法。额定容量小于100kWh的电池储能系统可参照执行。本标准不适用于三元体系的锂离子
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!