北极星
      北极星为您找到“阴阳离子”相关结果100

      来源:SGS环境卫生安全EHS服务2020-06-05

      本方法所使用的滤膜为超低本底的石英滤膜,根据源解析技术要求,可进一步分析阴阳离子、重金属和有机物等在颗粒物中的含量。如果有特殊需要还可以使用ptfe等材质的滤膜。

      Nature:量子效率接近100% 光催化全分解水制氢里程碑突破!

      来源:纳米人2020-06-03

      通过对rh离子的还原析出site,以及co离子氧化析出site的确认,发现了该材料的氧化还原site是独立的。露出面的不同,造成了局部的阴阳离子不对称,使得不同面具有不同的费米能级。

      来源:中国科学报2020-05-20

      这种镁基双离子电池的工作机理如下:充电时,电解液中的阴离子在正极材料中与石墨发生插层反应,而在负极端则是将电解液中的镁离子储存在有机小分子材料中;放电时则相反,电极材料中的阴阳离子再次回到电解液中。

      来源:能源学人2020-04-23

      在新型的solvent-in-salt体系中,阴阳离子之间强烈的静电库仑作用使得锂离子脱溶剂化的难度显著增大,脱溶剂化活化能也随之增大。...在传统的稀溶液中,环状溶剂分子相比链状的溶剂分子更容易与阳离子配位,这其中起作用的是溶剂分子中氧原子和阳离子的结合能以及溶剂分子的空间结构。

      来源:生态修复网2020-04-16

      二、内容与目标 研究内容以陆生植物对土壤中多种阴阳离子共存重金属( v、cr、cd)的富集量为指标,对陆生草本植物进行筛选和联合种植模式进行优化研究,探寻在不同组合比例下对土壤重金属的萃取效果。

      来源:高工氢燃料电池2020-02-24

      位于冷却液旁通支路中的离子交换过滤器可将阴阳离子从系统中置换出来从而确保冷却液电导率保持在允许的极限以下。

      中科院物理所研发超高盐浓度电解液提升水系钠<mark>离子</mark>电池性能

      来源:中科院物理研究所2019-12-24

      分子动力学模拟进一步揭示了两种溶液中阴阳离子配位不同:na+离子与otf-中的一个氧原子配位,而tea+离子则与otf-中的两个氧原子配位(图4)。...此外,拉曼光谱和核磁共振谱表明该类新型超高盐浓度电解液中tea+和otf-阴阳离子相互作用很弱,从而使得其即使是在31 m超高盐浓度下也具有相对低的粘度和较高的电导率(图3和图4)。

      来源:《基层建设》2019-11-01

      (四)离子交换离子交换是应用高盐溶液中阴离子阳离子的交换反应来达到阴阳离子置换的目的,从而使高盐废水中的cl等离子置换为oh,出去高盐废水中的盐分。利用离子交换除盐时可能会出现ss堵塞树脂的情况。

      来源:环保工程师2019-09-26

      加入少量阴离子阳离子阴阳离子聚合电解质,如聚丙烯酰胺(pam),作为助凝剂,有利于分散的游离金属磷酸盐絮体混凝和沉淀。5、关于铝盐或铁盐作混凝剂时,投加量的规定。

      来源:《建筑模拟》2019-09-05

      离子类的土壤固化剂在溶于水中之后能够分解出大量的阴离子,使其具有一定的导电性能分散在相关的土壤结构当中,能够使得阴离子与土壤的表面的压力进行以后的结合,在阴阳离子有效的结合之后,能够形成一定的电镀薄膜,

      来源:《基层建设》2019-08-25

      在理论干涸残余物值的计算中,需要求得阴阳离子的和值。在此过程中,1/2hco-3会转化为水蒸气和二氧化碳,因此在计算时应该取1/2hco-3重量值【3】。...主要是指每升水中阴阳离子的总含量或者一半重碳酸根含量与每升水中总固体值之和。在测定水中总固体时,应采用烘干测量残留物质的方法,在此过程中由两种测定方法,温度分别为180℃和105℃。

      来源:水处理新视野2019-08-12

      离子交换膜只允许阴离子通过,不允许阳离子通过;而阳离子交换膜正好相反。在一对阴阳离子交换膜之间充填混合离子交换树脂就形成一个edi单元。阴阳离子交换膜之间由混合离子交换树脂占据的空间被称为淡水室。

      泓济工艺入驻新领域—树脂废水处理

      来源:泓济环保2019-08-09

      离子交换树脂在工业中的应用不一而足,给水处理中,可用于水质软化和脱盐,制取超纯水;废水处理领域,可用于有毒害阴阳离子的去除,回收有价值的化学品;在合成化学及石油化工领域,替代对环境造成严重污染的物质;在食品

      来源:《化工学报》2019-07-30

      若溶液中含有较高浓度的金属离子,还可能在阴极发生金属离子还原,达到回收金属的目的。当微生物燃料电池处理高盐废水时,高浓度的阴阳离子使离子迁移速度加快,因而废水具有良好的导电性

      超级电容器:基本原理、分类及电性能

      来源:中关村储能产业技术联盟2019-07-25

      考虑到电极表面电荷密度,取决于外加电压,双电层电容因电压不同而不同,双电层电容中电化学反应主要发生在电极表面,且通常是阴阳离子的吸附与脱附行为。...3.法拉第反应储存机制这种存储机制主要是基于电极中金属阳离子的氧化还原反应,通常伴随着金属阳离子的氧化还原反应,金属阳离子在电极材料提相中的脱出和嵌入,引起电子在材料中的得失,进而储存能量。

      来源:烟台金正环保2019-07-19

      2.电渗析法浓缩技术电渗析法浓缩技术(ed)的核心为离子交换膜,其在直流电场的作用下对溶液中的阴阳离子具有选择透过性,即阴膜仅允许阴离子透过,阳膜只允许阳离子透过。

      先河环保:持续创新赋能 网格环保化监测与臭氧管控深入布局

      来源:北极星环保网2019-07-15

      近两年环境监测行业之所以呈爆发趋势,主要得益于以下几个因素:首先,环境监测的管理思路发生转变:由环境总量管控转变为质量管控及精细化管控,例如,大气监测领域由常规的城市空气质量六参数监测,增加了有机碳、元素碳、vocs、阴阳离子

      来源:水博网2019-06-28

      工业循环冷却水系统在运行过程中,由于水分蒸发、风吹损失等情况使循环水不断浓缩,其中所含的盐类超标,阴阳离子增加、ph值明显变化,致使水质恶化,而循环水的温度,ph值和营养成分有利于微生物的繁殖,冷却塔上充足的日光照射更是藻类生长的理想地方

      焦化废水特性及其处理工艺综述

      来源:《中外企业家》2019-06-19

      膜分离技术是利用生物膜对阴阳离子的选择性,使得一部分小颗粒的阴阳离子可以通过生物膜,从而达到净化废水的目的。其技术的工艺比较简单,处理废水的效率很高,最主要的是对能耗比较低。

      干货|探究电化学储能机理 该如何应用原位表征技术?

      来源:微算云平台2019-06-14

      原位核磁(nmr)研究也表明,在碳孔道中存在大量的阴阳离子。以离子液体作电解质时,离子浓度更高,当用有机溶剂稀释离子液体时,孔道中的离子被溶剂分子所取代,离子浓度大为降低。

      相关搜索