登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
在目前通用的光纤布线网络中,由于布线使用的光纤的工艺和品质普遍比较稳定,所以由光纤构成的光缆和各类光纤连接器、跳线、尾纤等组件的特性多数是比较稳定的,并且在布线实际使用过程中,他们是相对比较固定的,因此实际可能会影响到光纤网络稳定的多数原因都集中在光纤的连接技术上,下面,我们对目前较为常用的光纤连接技术进行分析和讨论:
1、熔接方式:光纤熔接是目前较多采用的一种连接方式,相对而言,熔接是成功率和连接质量较高的方式,但是同时也应该注意到的是,熔接后的接头是比较容易受损或发生故障的主要因素之一,由于在使用和维护过程中,对设备的维护操作是必须的,因此它的安全性是我们必须考虑的问题。在通常的情况下,熔接可以得到较小的连接损耗,一般在0.2dB以下,但是回波损耗是不容易控制的,同时在光纤熔接过程中,影响熔接质量的外界因素很多,如环境条件(包括温度、风力、灰尘等)、操作的熟练程度(包括光纤端面的制备、电极棒的老化程度)、光纤的匹配性(包括光纤、尾纤类型匹配、光纤厂商匹配)等,如果采用目前国内还使用不多的MTP等多芯带状光纤连接器,带状光纤熔接机则更无法避免熔接过程中出现的个别光纤损耗过大的现实;而且,经验告诉我们,熔接的真实损耗值必须通过测试才能得出,在光纤芯数较多的情况下,很容易损伤已经完成的,在测试阶段,如果测试结果不理想或不达标,要重新将其挑选出再进行返工;在网络已经使用后,如果发生网络机柜或终端需要移动位置时,必须中断光纤链路,在新的位置上重新熔接等等;所有以上种种可能的出现,都让我们在熔接时付出很多的劳动和加倍小心光纤的安全。
2、冷接或现场磨接光纤连接器的方式:凡是从事过工厂制造和生产光纤产品的同仁对此应十分了解,现场研磨与工厂生产制造是两种无法比拟的完全不同的方式,工厂采用的是专用研磨机器的由粗到精的五道研磨工艺,现场是无法调整压力、无法保持一致的手工研磨。也许在以往传统的低速网络中,即使出现插损和回损超标、连接不稳定等情况,可能对于网络应用来说是可以接受的,因为光纤有足够的富裕量消化这些因素带来的影响,但是,在现今性能越来越高的网络中,很多指标和参数都是极为敏感的,因为链路达不到设计要求或费时费力,让设计者或施工者伤透脑筋,发生损耗超出网络设计的要求、测试无法通过等的事情时有发生。从而,造成工期延误、更改设计或重新规划等后果。针对上述设计、施工的实际情况,为了解决光纤连接中可能遇到的问题,让设计、施工、维护和使用更加可靠和稳定、系统的变更更加易于操作,德国罗森伯格公司研发了的预连接技术--PreCONNECT,根据现场实际需要可以选择两端预先端接连接器的PE或LSZH的室内或室外光缆,预连接光缆采用专用分支部件,将光缆中的裸光纤在输出端变为可以抗拉、抗压的φ3.0或φ2.0光缆,它最大限度的消除光纤网络设计、施工和使用中,各种不定因素可能对光纤链路造成的损伤或安全影响,充分保证系统安全、满足设计要求的目的。
预连接光缆及安装施工流程图与传统光纤终端的几种方式相比,预连接技术采用光纤直通方式,即光纤无连接点。依据客户的要求,由工厂订制产品,并进行标准程序的研磨加工,所有的技术指标遵守IEC、TIA及相关的标准,在这一点上,技术指标远远超越现场磨接的连接器,同时,光缆结构也不同于目前国内普遍采用的室内软光缆,为保证光缆在拥有足够的机械性能,它的结构是2芯到144芯的中心束管式或多束管层绞式室内或室外光缆,充油结构也保证了光缆的环境和阻水特性,在光缆输出部分,没有熔接或其他机械连接方式,消除因为存在接点可能导致的不良后果,用户拿到的是测试指标规定的、无任何可能附加因素的光缆产品,使网络的设计或施工变的更加易于控制。另外,由于预连接采用特殊的光缆分支组件,采用插拔式结构可以将光缆牢固固定在专用机架上,保证50kg的拉力配线箱不变形,同时,矩形的卡接口可以防止光缆使用过程中的应力释放,使两端连接器之间的光纤链路始终处于游离、松弛状态,避免因为光缆外皮受到挤压、拉伸或扭转而影响光纤的性能,最大限度保证光纤网络和业主投资的安全性。从上述的结构特性我们可以看出,预安装所用的光纤连接器类型是可变的,主要依据设计和客户的需求而定,如果采用前面提到的多芯MTP连接器则更具优势,完全消除了多芯光纤连接中的种种不利因素的影响,让用户达到理想的应用效果。
对于广大工程人员来说,接下来的内容就是与工程实际紧密联系的,"预连接光缆的安装过程怎样进行?"在产品研发的同时,我们为此专门设计了安装保护管,它的作用是:首先保证光缆在管道或桥架中安放时能承受的足够的强度,同时密封的结构保证在安装过程中的防尘、防水性能,因此它的安装可以像过去施工一样,不会对光纤、光缆造成任何损伤,防水、保护等级分别达到IP50和IP67级。最后,预连接方式的优势还体现在网络的改善和升级上,正如前面所述,网络的应用日新月异必然会造成网络的变更、修正等,但是由于过去采用的连接方式的特点,很多情况下客户会因为工程过于复杂而作罢,最后可能会使机房的扩容后结构不合理,使用和维护变的复杂和烦琐,而预连接光缆的插拔使用方式的特点则很好的解决了这个问题,假如发生网络终端移动或路径更改,那么客户只需选择合适的时间将预连接光缆从机架上拔出,再将光缆分支器重新卡接固定在新位置的机架上就可以了,全部过程仅需数十分钟。
结合上述的分析,我们总结出预连接光缆应用方面的几个特点:
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
根据市场研究机构大观研究(GrandViewResearch)的新报告,到2025年,全球光纤连接器市场预计达59亿美元(约合人民币401.3亿元)。光纤领域将在预测期内迎来重大增长。光纤连接器具有巨大潜力来成为医疗、铁路、国防航空、油气领域广泛应用的一部分。这一技术一直在持续研发中,并旨在为大众市场开发低成本
多芯光纤(MCF)在通信领域、光纤激光器和医用内窥镜等领域开始越来越受到关注。基于多芯光纤的光学成像技术,它利用纤维束(每个纤维像一个离散的像素形成最终的像素图像),以一种微创的方式用于人体内部的研究。最近,基于多芯光纤的大功率激光放大器和下一代无透镜成像技术用于人体内的癌症诊断的
近日,北京邮电大学信息光子学与光通信研究院执行院长、信息光子学与光通信国家重点实验室常务副主任纪越峰教授表示,未来光纤通信发展在技术与应用层面上将体现在三个提升和一个降低,分别为容量提升、智能提升和融合提升,以及成本降低。其中,容量提升是指通过提高速率(如100G、400G、1T或者更高)
1光纤技术发展的特点1.1网络的发展对光纤提出新的要求下一代网络(NGN)引发了许多的观点和争论。有的专家预言,不管下一代网络如何发展,一定将要达到三个世界,即服务层面上的IP世界、传送层面上的光的世界和接入层面上的无线世界。下一代传送网要求更高的速率、更大的容量,这非光纤网莫属,但高速骨
近日,由烽火通信科技股份有限公司承担的武汉东湖新技术开发区重大科技创新项目光纤传感用特种光纤关键技术研发及产业化顺利通过专家组验收,验收专家组给予了该项目优秀评价,为项目验收评估的最高等级。这标志着烽火通信细径保偏光纤研制取得重大突破。据了解,该项目是武汉东湖新技术开发区在设立重
1、比互联网还早100年的海底通信让我们将时间回拨到上世纪50年代,那时候,不同计算机用户和通信网络之间进行常规通信的需求开始萌发,这也促使了分散网络、排队论和数据包交换等研究相继出现;随后,ARPAnet(阿帕网)于60年代问世,并于1973年扩展成为互联网;之后一年,ARPA的罗伯特卡恩和斯坦福的温登
近期,在刚刚落下帷幕的2014年度中国通信学会科学技术奖评选活动中,烽火通信超强抗弯光纤关键技术、制造工艺及成套装备项目,凭借其深厚的技术积累和领先的技术优势,从众多高水平的研究成果中脱颖而出,荣获中国通信学会科学技术一等奖。在此之前,该项目已经获得总装备部军队科技进步一等奖、湖北省
2015年11月4日至7日,上海新国际博览中心将隆重开展2015中国(上海)国际光纤通讯展览会,由上海中壹展览有限公司、上海国际展览广告有限公司承办。本届展会云集国内外众多实力强大的光纤通讯技术、设备及相关产品供应商。本届展会组织方凭借多年丰富的展会经验将开展强大的组织宣传工作,吸引来自国内外
随着光纤逐渐深入信息时代的各个行业,特种光纤的市场正在迅速打开。特种光纤技术具有技术要求高、工艺难度大、与终端用户需求结合紧密的特点,西方企业投入重金研制,并实行技术封锁,部分国家还实行禁运。特种光纤目前有以下几种:1、偏振保持单模光纤。偏振光是光波、电磁波、电场振动方向不与传播方向一致的光。线偏振光指光波电场的指向限于某一平面内,只沿一个方向振动的偏振光。2、单偏振光纤。通过专门设计与制造工艺,使光纤中构成基模的两个线偏振模之一为导模,可低损耗传输。另一个模截止或产生严重泄漏而衰减,使这种光纤的输出光始终只有一种单一的偏振模式的光纤。3、红外光纤。传
2014年9月2日在深圳举行的中国国际光电博览会高峰论坛上,众多业内顶级专家就国内光通信技术最新发展情况和未来演进趋势做了精彩的演讲。从论坛专家的分享中可以了解到,我国光通信30年的发展历程:技术从无到有、应用从弱到强,取得了许多令世人瞩目的成绩。另一方面,专家也提到我国目前是光通信的应用大国,但是在众多的前沿科技方面与国际先进水平尚有差距。武汉邮电科学院原副院长兼总工程师毛谦武汉邮电科学院原副院长兼总工程师毛谦表示,光通信技术的发展很快,在通信领域目前没有任何一种技术有替代光技术的趋势。我国在光通信应用方面走在了世界的前列,但是前沿技术研究方面尚有差
近年来,科技发展的速度不断加快,综合布线通信行业也正在蓬勃发展,掺铒光纤放大器(EDFA)、分布喇曼光纤放大器(DRFA)、半导体放大器(SOA)、光时分复用(OTDM)技术以及密集波分复用(DWDM)技术得到了广泛的应用。光纤通信技术不断向着传输速率更高、容量更大的方向发展着。目前,先进的光纤制造技术更是发展快速,如今不但能维持更稳定、更可靠的信息传输以及足够的富余度,还能满足光纤通信对高宽带速率的需求,并能减少非线性损伤。光纤通信技术如果按照如今的步伐不断前进,那么预计将会往全波光纤、多模光纤、光子晶体光纤、聚合物光纤等这几类分支方向发展。全波光纤
3月5日,海南电网有限责任公司2025年第一批主网设备材料类物资框架公开招标项目招标公告,标的物资为光纤复合架空地线(OPGW)及管道光缆,标包金额3573.432万元。海南电网有限责任公司2025年第一批主网设备材料类物资框架公开招标项目招标公告(项目编号:CG0700022002009296)1.招标条件本招标项目海
2月26日获悉,国网新疆电力有限公司在覆冰及大风灾害频发区域的28条线路应用光缆灾害监测系统,实现光缆覆冰、大风舞动等风险的实时监测与精准预警。系统应用后,光缆故障定位精度提升至米级,隐患平均处置时长缩短30%。新疆地域辽阔,输电线路穿越高山、戈壁等复杂地形,大风等灾害频发,光缆易因高频
近日,国网重庆信通公司调控中心值班人员对500千伏张竹一线、500千伏张竹二线等覆冰光缆相关通信设备开展特殊巡视。受强降温及强冷空气影响,重庆境内500千伏张竹一线、500千伏张竹二线等线路光缆已陆续出现覆冰情况,为确保今年能有效应对电力通信系统低温雨雪冰冻灾害,确保大电网安全稳定运行,国网
12月9日22时40分,随着卫星电话里传来的一声“测试通过”,四川二郎山山脉上的最后一基塔4L081最后一芯光纤完成熔接,川渝特高压交流工程光纤复合架空地线(OPGW)光缆全线贯通,世界首个高海拔特高压通信工程进入最后冲刺阶段。川渝特高压交流工程线路途经重覆冰区、高寒区及无人区,最高海拔4750米,
随着碳达峰、碳中和进程加快推进,新能源开发集中式与分布式并举,电能替代的广度和深度不断拓展,电力负荷不断增长,要求新型电力系统建设的不断深入,电力系统正逐步迈向“双高”、“双新”,并致力于保民生的目标,在用电安全和停电时长上有更高的要求。电力输电线路的安全性和稳定性要求逐步提高,
截至10月8日,重庆市北供电公司已完成供区内162千米长沟道光缆位置的精准定位与信息采录,并导入通信光缆自动成图系统,生成光缆走向地图,以支撑光缆施工、运维和故障抢修。通信光缆自动成图系统由国网重庆市电力公司研发,8月底上线运行,为西南地区首个将通信光缆位置信息与地理信息相结合的系统。
最近,盐城供电信通分公司组织工作人员前往双草变、盐都变、佳湖变以及光缆开断工作现场,积极配合施工单位,顺利完成220千伏都红4623线24芯OPGW光缆开断及其与新放72芯OPGW光缆熔接工作。随着光纤数字通信的快速发展,光纤传输具有容量大、抗干扰能力强等突出优点,现在已得到了各行各业信息通信行业
6月12日,广西电网公司2024年省级物资集中采购调度类框架招标,标包金额共计3.67亿,本次框架招标采购的物资类别为调度类,主要标的为35kV及以下备自投装置、220kV及以下低周低压过负荷减载装置、220kV及以下小电源解列装置、二次系统防雷、110kV线路保护屏(电缆跳闸、光缆跳闸三端光差)、全介质自承
5月27日,湖北孝感供电公司数字化部员工成功调通了110千伏杨家田变电站经110千伏嘉月变电站至110千伏三元宫变电站的光纤通道信号,标志着湖北省首条10千伏复合相线光缆通信系统挂网运行,该公司“相线复合光缆(OPPC)缆端光电分离关键技术”项目相关成果落地应用。据介绍,OPPC缆端光电分离关键技术构
5月27日,随着湖北孝感供电公司数字化部通信运维技术人员调测并正常开通110千伏杨家田变电站经110千伏嘉月变电站至110千伏三元宫变电站光纤通道信号,湖北首条10千伏复合相线光缆通信系统投入挂网运行。这也标志着孝感供电公司首创的《相线复合光缆(OPPC)缆端光电分离关键技术》新技术成果应用落地。
5月7日,国网天津经研院规划评审中心专业人员完成了天津地市公司光缆网、传输网及配电通信网总体设计报告的编制工作。报告从路由资源、设备资源、带宽资源及光缆设备运行情况多维度分析了地市骨干光缆网和光传输网存在问题,预测2025年末通信网带宽,提出建设原则、明确未来两年发展目标,规划2024和20
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!