北极星

搜索历史清空

  • 水处理
您的位置:电力输配电输变电工程技术正文

伪双极LCC-VSC型混合高压直流输电系统向无源网络供电的研究

2015-11-11 09:41来源:电力系统保护与控制关键词:直流输电输电系统换流器收藏点赞

投稿

我要投稿

项目背景

随着高压直流(HVDC)输电技术越来越成熟,越来越多的远距离大功率输电、海底电缆送电、两个交流系统之间的非同步联网等方面开始采用HVDC输电技术。然而传统电网换相高压直流输电(Line-Commutated-Converter High Voltage Direct Current, LCC-HVDC)由于晶闸管换流过程的本质又有其固有的缺陷,比如换流时需要消耗大量无功功率,换流器会产生大量谐波,向弱交流系统供电时可能发生换相失败,无法向弱交流系统或无源网络供电等。

随着电力电子器件和控制技术的发展,出现了新型的全控型半导体器件-绝缘栅双极晶体管(Insulated Gate Bipolar Transistor, IGBT)。20世纪90年代以后,以全控型器件为基础的电压源换流器高压直流输电(Voltage Source Converter based High Voltage Direct Current, VSC-HVDC)得到了快速发展。VSC-HVDC突出了全控型电力电子器件、电压源换流器和脉冲调制三大技术特点,解决了传统LCC-VSC的诸多固有瓶颈,比如VSC-HVDC可以实现有功功率和无功功率的独立控制,而无需无功补偿;可以无需电网短路电流的支撑换相,从而用于对无源交流系统供电;可以两站独立控制和运行,无需站间通信。然而与传统LCC-VSC相比,VSC-HVDC的系统开关损耗较大、工程造价高。

混合型高压直流输电(hybrid-HVDC)即一端采用LCC,另一端采用VSC的输电结构,可以合理结合LCC-HVDC和VSC-HVDC的优点。传统的LCC-HVDC输送容量大、电压等级高,而目前在建VSC-HVDC工程的最高输送容量和最高电压等级也分别达到了2×1000 MW和±345 kV,虽然二者的容量和电压等级还有一定差距,但是考虑到VSC-HVDC的发展现状和前景,结合LCC-HVDC和VSC-HVDC的混合直流输电将具有工程应用前景,因此该课题将具有重要的研究价值。

本文采用整流侧两个6脉动LCC串联、逆变侧是三相二电平的VSC的混合高压直流输电(Hybrid High Voltage Direct Current, H-HVDC)系统。这样就能实现向无源交流网络供电这一目的,解决了传统的LCC的缺陷,同时降低全部采用VSC的成本。在PSCAD/EMTDC上构建了仿真模型,控制方式采用整流侧定直流电压控制,逆变侧定交流电压-直流电流。对该模型的启动特性、稳态特性与暂态特性、单极闭锁进行了研究。仿真结果表明,该H-HVDC系统能够实现向无源网络供电,且具有较高的稳定性,为混合直流的进一步发展提供了理论基础。

伪双极LCC-VSC混合高压直流输电系统

基本结构

本文搭建的模型的送端采用LCC,由换流变压器、滤波器、两个6脉动换流桥、平波电抗器等组成,其中S1和Z1为等值送端交流系统的电源和等值系统的阻抗。而受端换流器则采用VSC,由换流桥、换流电抗器、直流电容器和交流滤波器组成。Rd、Ld分别为直流线路等效电阻、电感。K1、K2、 K3、K4是与直流电容并联的旁路开关,R1、R2、L1、L2是抑制过电流的器件。当直流输电线路发生故障或某一6脉动LCC发生闭锁时,闭合相关的旁路开关,此系统可转换为单极直流输电系统。该H-HVDC的拓扑结构图如图1所示。

图1 LCC-VSC拓扑结构图

原标题:伪双极LCC-VSC型混合高压直流输电系统向无源网络供电的研究
投稿与新闻线索:陈女士 微信/手机:13693626116 邮箱:chenchen#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

直流输电查看更多>输电系统查看更多>换流器查看更多>