北极星

搜索历史清空

  • 水处理
您的位置:电力电力新闻技术正文

基于超级电容器蓄电装置的研制

2016-06-17 08:33来源:中国新能源网关键词:超级电容器储能蓄电装置收藏点赞

投稿

我要投稿

超级电容模块单元之间的电压均衡电路原理:超级电容器C1与C2串联的后的总电压通过R1与R2串联和R3与R4串联分压后,R3与R4串联分得的电压分别送入运算放大器A5的同相输入端和运算放大器A6的反相输入端,超级电容器C3与C4串联的后的总电压通过R5与R6串联和R7与R8串联分压后,R7与R8串联分得的电压分别送入运算放大器A6的同相输入端和运算放大器A5的反相输入端,当R3与R4串联的分压值大于R7与R8串联分压值时运算放大器A5输出高电位,N沟道增强型MOS管T5导通,其漏极电流随A5的输出电压升高而增大。这样使得充电电流经过增强型MOS管T5流向C3与C4,减缓或阻止了C1与C2电容电压的继续升高。

运算放大器A3、A4同MOS管T3、T4及有关电阻构成的超级电容模块单元电均衡电路原理:超级电容器C3的电压通过R5与R6串联分压后,R6分得的电压分别送入运算放大器A3的同相输入端和运算放大器A4的反相输入端,超级电容器C4的电压通过R7与R8串联分压后,R8分得的电压分别送入运算放大器A4的同相输入端和运算放大器A3的反相输入端,当R8的分压值大于R6的分压值时运算放大器A4输出高电位,N沟道增强型MOS管T4导通,其漏极电流随A4的输出电压升高而增大。这样使得充电电流经过增强型MOS管T4漏源极流向C3,减缓或阻止了电容C4电压的继续升高。反之,当R8的分压值小于R6的分压值时运算放大器A3输出高电位,MOS管T3导通,其漏极电流随A3的输出电压升高而增大。这样使得充电电流经过增强型MOS管T3漏源极流向C4,减缓或阻止了电容C3电压的继续升高。运算放大器A1、A2同增强型MOS管T1、T2与有关电阻构成的超级电容模块单元电压均衡电路原理同上。

选取适当参数,对超级电容模块进行实验研究,额定电压均为2.7V,采用恒流转恒压的充电方法,恒流充电电流为50A,恒流充电到2.5V时转恒压充电。其实验研究结果显示均压效果良好,在整个充电时间内电容的最大电压偏差约为0.1V,均衡速度较快,可有效避免单体超级电容过压情况发生,提高了电容组件的储能水平。

2.2超级电容蓄电装置的电压均衡方案

用封装成的10个超级电容模块和单片机及有关电路构成基于超级电容器的蓄电装置[2-3]。10个超级电容模块间的在线电压均衡采用飞渡电容法均衡,蓄电装置选定的均衡电容器的容量为单体电容模块容量的3/4,其电压等级与单体电容模块相同。将均衡电容器在串联电容模块中电压最高的电容模块和电压最低的电容模块之间进行并联切换,从而使电压高的电容模块的电压下降,电压低的电容模块的电压上升,达到电压均衡的目的。

飞渡电容法在线电压均衡控制程序流程如图2所示,g和d分别为蓄电装置中当前电压最高的单体电容模块C(g)和电压最低的单体电容模块C(d)的序号,u(g)为C(g)的电压,u(d)为C(d)的电压,u(p)为二者的均值;C(j)代表均衡电容器,u(j)为其电压;Ton为C(j)与C(g)或C(d)并联接通的时间,τ为接通时的充放电时间常数;Toff为C(j)与C(g)或C(d)接通后再断开的时间,Tx为断开时间门限。

原标题:基于超级电容器蓄电装置的研制
投稿与新闻线索:陈女士 微信/手机:13693626116 邮箱:chenchen#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

超级电容器查看更多>储能查看更多>蓄电装置查看更多>