登录注册
请使用微信扫一扫
关注公众号完成登录
式(12)中,δQi表示第i个分布式电源的无功功率控制信号;kPQ表示无功功率比例积分控制器中的比例项系数;kIQ表示无功功率比例积分控制器中的积分项系数;δVi表示第i个分布式电源的平均电压恢复控制信号;kPV表示平均电压比例积分控制器中的比例项系数;kIV表示平均电压比例积分控制器中的积分项系数。
当微网电压集中控制器与各分布式电源间存在通讯延时时,电压控制量为:
Δui=ΔδQi(t-τi)+ΔδVi(t-τi)=KQiΔyinvQi(t-τi)+KViΔyinvV(t-τi) 式(13),
式(13)中,τi为第i个分布式电源本地控制器与微网二次电压集中控制器间的通讯时延,单位:秒;KQi表示第i个分布式电源的无功功率控制器,KQi=[kPQikIQi];KVi表示第i个分布式电源的电压控制器,KVi=[kPVi kIVi]。
结合式(11)~式(13),得到n个分布式电源的闭环小信号模型为:
式(14)中, 为第i个分布式电源的延时状态矩阵,
Bui为第i个分布式电源对二次电压小信号控制量的输入矩阵,CinvQi为第i个分布式电源的无功功率输出矩阵,Cinvc为分布式电源的电流输出矩阵。
步骤20)结合连接网络、负载型阻抗的动态方程,建立微电网小信号模型
公共参考坐标系DQ中第i个分布式电源所连接母线和第j个分布式电源所连接母线之间的连接线路ij的电流小信号动态方程如式(15)所示:
式(15)中, 表示在公共参考坐标系DQ中,第ij条连接线路电流D轴小信号分量的变化率,单位:安/秒;rlineij表示第ij条连接线路的线路电阻,单位:欧姆;Llineij表示第ij条连接线路的线路电感,单位:亨利;ΔilineDij表示在公共参考坐标系DQ中,第ij条连接线路电流的D轴小信号分量,ΔilineQij表示在公共参考坐标系DQ中,第ij条连接线路的电流的Q轴小信号分量,单位:安;ω0表示微网额定角频率,单位:弧度/秒;ΔVbusDi表示在公共参考坐标系DQ中,第i个分布式电源所连接母线的电压在D轴的小信号分量;ΔVbusDj表示在公共参考坐标系DQ中,第j个分布式电源所连接母线的电压在D轴的小信号分量; 表示在公共参考坐标系DQ中,第ij条连接线路电流的Q轴小信号分量的变化率,单位:安/秒;ΔVbusQi表示在公共参考坐标系DQ中,第i个分布式电源所连接母线的电压在Q轴的小信号分量,ΔVbusQj表示在公共参考坐标系DQ中,第j个分布式电源所连接母线的电压在Q轴的小信号分量,单位:伏。
公共参考坐标系DQ中第l根母所连接负载的电流动态方程,如式(16)所示:
式(16)中, 表示在公共参考坐标系DQ中,第l根母线所连接负载的电流在D轴的小信号分量变化率,单位:安/秒;Rloadl表示第l根母线所连接负载的负载电阻,单位:欧姆;Lloadl表示第l根母线所连接负载的负载电感,单位:亨利;ΔiloadDl为在公共参考坐标系DQ中,第l根母线所连接负载的电流在D轴的小信号分量,ΔiloadQl为在公共参考坐标系DQ中,第l根母线所连接负载的电流在Q轴的小信号分量,单位:安;
表示在公共参考坐标系DQ中,第l根母线所连接负载的电流在Q轴的小信号分量变化率,单位:安/秒。
设定连接于第i个分布式电源所连接母线和第j个分布式电源所连接母线之间的连接线路的小信号方程如式(17)所示:
式(17),
式(17)中,Rloadj、Lloadj分别为第j个分布式电源所连接母线上负载的阻值和电感值;ΔioDj、ΔioQj分别为第j个分布式电源输出电流在公共参考坐标系DQ中的D轴小信号分量和Q轴小信号分量。
将式(17)代入式(14)~式(16),可得包含n个分布式电源、s条支路、p个负载的微电网小信号模型为:
式(18)中,x为微电网小信号状态变量,x=[ΔxinvΔilineDQΔiloadDQ]T ,ΔilineDQ为公共参考坐标系DQ中分布式电源所连接母线间的连接线路的电流的小信号状态变量,ΔiloadDQ为公共参考坐标系DQ中母线所连接负载的电流的小信号状态变量; 为微电网小信号状态变量的变化率;A为微电网状态矩阵;Adi为第i个分布式电源的延时状态矩阵;τi为第i个分布式电源的延时。
步骤30)获取微电网闭环小信号模型含有超越项的特征方程
在各分布式电源的延时一致时,式(18)的特征方程为式(19):
CEτ(s,τ)=det(sI-A-Ade-τs) 式(19),
式(19)中,s为时域复平面参数;τ为各分布式电源的一致时延时间,τ1=τ2=...=τn,单位:秒;det(˙)表示矩阵行列式;I表示单位矩阵;Ad表示分布式电源的延时状态矩阵,
为超越项。
步骤40)对系统特征方法的超越项进行临界特征根轨迹跟踪以计算系统稳定裕度
对式(19),当系统特征根都在复平面左半平面时,系统稳定;当存在特征根在复平面右半平面时,系统不稳定;当特征根在复平面左半平面或者虚轴上时,系统临界稳定。由于系统特征根随着时延时间τ连续变化,因此要确定系统稳定裕度τd,即,τ<τd时系统稳定,τ>τd时系统不稳定,需要确定系统可能存在的纯虚特征根和对应的延时裕度。
定义ξ=τω,代入式(19),则,
CEξ(s,ξ)=det(sI-A-Ade-iξ) 式(20),
其中,ξ为时延时间辅助变量,ω为虚特征根幅值;这里i为虚数单位,i2=-1。
ξ在[0,2π]的周期内进行变化,获取式(20)的相应特征根。如果对应于某个ξ存在纯虚特征根,则临界延时时间为:
τc=ξc/abs(ωc) 式(21),
式中,ξc为使系统存在纯虚特征根的延时时间辅助变量,abs(ωc)表示对应的纯虚特征根的幅值,τc为临界延时时间。
当ξ在[0,2π]周期内变化时,系统可能存在多个临界延时时间,即τc1,τc2...τcL,延时裕度取最小值τd:
τd=min(τc1 τc2 … τcL) 式(22),
在上述实施例中,所述的公共参考坐标系DQ是指第1个分布式电源的dq参考坐标系,其余分布式电源、支路电流、负载电流的状态变量通过坐标变换转换到公共参考坐标系DQ中。在步骤10)中无功功率比例积分控制器和电压比例积分控制器中,由于比例项系数比较小,实际中可以分别简化为无功功率积分控制器和电压积分控制器。在步骤20)中,负载为阻抗型负载。
本实施例通过引入信号通讯延时时间的微电网闭环小信号模型,建立含有超越项的系统特征方程,从而实现基于临界特征根跟踪的微电网延时裕度计算方法。针对常规的忽略通讯时延对系统动态性能影响的微网二次控制方法,本实施例充分考虑了电力电子接口型微电网惯性小从而导致通讯延时对系统稳定性不可忽视的实际情况,计算出系统维持稳定的最大延时时间。本实施例的延时裕度计算方法,通过对不同控制器参数与延时裕度间关系的分析,指导控制器设计,从而提升了系统稳定性和动态性能。
本发明实施例中的微电网控制系统框图如2所示,该控制框图主要包括两层:第一层为各分布式电源的本地控制器,由功率计算、下垂控制和电压电流双环组成;第二层为二次电压控制层,实现无功功率均分和平均电压恢复。二次电压集中控制器采集各分布式电源输出电压、输出无功功率,计算出各二次电压控制量后,将控制指令下发至各分布式电源的本地控制器中。在控制指令下发过程中,通讯时延存在于二次电压集中控制器与各分布式电源本地控制器间,该时延对系统动态性能产生影响。
下面例举一个实施例。
仿真系统如图3所示,微电网由2个分布式电源,2条连接线路和3个负载组成,负载1连接于母线1,负载2连接于母线2,负载3连接于母线3。系统中负载采用阻抗型负载。假设分布式电源1,分布式电源2容量比为1:1,则设计相应的频率下垂系数、电压下垂系数使各分布式电源期望输出有功功率、无功功率比值为1:1。研究在不同控制器参数下的微电网理论延时裕度,并基于MATLAB/Simulink平台搭建微电网仿真模型对理论延时裕度进行仿真验证。
图4为在控制器参数kIQ=0.02,kIV=20下,与系统稳定性相关的临界特征根轨迹跟踪示意图。通讯延时辅助变量ξ在[0,2π]变化,2对共轭特征根与系统稳定性密切相关,记录下4个经过复平面虚轴的临界特征根A(jωc1) ,A'(-jωc1) ,B(jωc2)and B'(-jωc2)及相应的ξ,根据式(21)和式(22)计算出延时裕度τd=0.0588s。
图5是本发明实施例中,在控制器参数0.005≤kIQ≤0.06,5≤kIV≤60下,基于临界特征根跟踪计算的微电网延时裕度与控制器参数的关系。由图可知,随着无功功率控制器积分系数kIQ或电压控制器积分系数kIV的增加,系统延时裕度减少,也就是系统鲁棒稳定性降低。因此当不同组合控制器参数达到相似的动态性能时,延时裕度将作为附加的鲁棒稳定性指标,指导控制器参数设计,提供系统稳定性及动态性能。
图6为微电网采用本发明实施例在某一组控制器参数kIQ=0.02,kIV=20下,3种不同通讯延时对系统动态性能的影响中的分散式控制方法的仿真结果。开始运行时,各分布式电源运行于下垂控制模式,0.5s时二次电压控制投入。仿真结果如图6所示,图6(a)为微电网中分布式电源平均电压曲线图,横坐标表示时间,单位:秒,纵坐标表示平均电压,单位:伏。瓦。如图6(a)所示,最初在下垂控制作用下,分布式电源平均电压存在稳态偏差,0.5s后在二次控制作用下,电压幅值提升。由图6(a)可知:系统不存在通讯延时时,平均电压较平滑得到达额定值,当延时时间为53ms时,电压曲线经过衰减振荡恢复,当延时时间为61ms时,曲线增幅振荡,系统不稳定。图6(b)为分布式电源1无功功率输出曲线图,单位:秒,纵坐标表示无功功率,单位:乏。由图6(b)可知,最初在下垂作用下无功功率均分效果并不理想(少于分布式电源1期望无功功率输出值),0.5s后在二次控制作用下,无功功率输出增加。由图6(b)可知,系统不存在通讯延时时,无功功率较平滑得到达期望值,当延时时间为53ms时,功率曲线经过衰减振荡达到控制目标,当延时时间为61ms时,曲线增幅振荡,系统不稳定。在二次控制作用下,微电网无功功率均分的效果得到显著改善。图6(c)为分布式电源2无功功率输出曲线图,单位:秒,纵坐标表示无功功率,单位:乏。由图6(c)可知,最初在下垂作用下无功功率均分效果并不理想(高于分布式电源2期望无功功率输出值),0.5s后在二次控制作用下,无功功率输出减少。由图6(c)可知,系统不存在通讯延时时,无功功率较平滑得到达期望值,当延时时间为53ms时,功率曲线经过衰减振荡达到控制目标,当延时时间为61ms时,曲线增幅振荡,系统不稳定。由图6可知,在此控制器参数下的系统延时裕度介于53ms和61ms间,与理论计算值一致。
图7为微电网采用本发明实施例在某一组控制器参数kIQ=0.04,kIV=40下,3种不同通讯延时对系统动态性能的影响中的分散式控制方法的仿真结果。开始运行时,各分布式电源运行于下垂控制模式,0.5s时二次电压控制投入。仿真结果如图7所示,图7(a)为微电网中分布式电源平均电压曲线图,横坐标表示时间,单位:秒,纵坐标表示平均电压,单位:伏。瓦。如图7(a)所示,最初在下垂控制作用下,分布式电源平均电压存在稳态偏差,0.5s后在二次控制作用下,电压幅值提升。由图7(a)可知:系统不存在通讯延时时,平均电压较平滑得到达额定值,当延时时间为25ms时,电压曲线经过衰减振荡恢复,当延时时间为33ms时,曲线增幅振荡,系统不稳定。图7(b)为分布式电源1无功功率输出曲线图,单位:秒,纵坐标表示无功功率,单位:乏。由图7(b)可知,最初在下垂作用下无功功率均分效果并不理想(少于分布式电源1期望无功功率输出值),0.5s后在二次控制作用下,无功功率输出增加。由图6(b)可知,系统不存在通讯延时时,无功功率较平滑得到达期望值,当延时时间为25ms时,功率曲线经过衰减振荡达到控制目标,当延时时间为33ms时,曲线增幅振荡,系统不稳定。在二次控制作用下,微电网无功功率均分的效果得到显著改善。图7(c)为分布式电源2无功功率输出曲线图,单位:秒,纵坐标表示无功功率,单位:乏。由图7(c)可知,最初在下垂作用下无功功率均分效果并不理想(高于分布式电源2期望无功功率输出值),0.5s后在二次控制作用下,无功功率输出减少。由图7(c)可知,系统不存在通讯延时时,无功功率较平滑得到达期望值,当延时时间为25ms时,功率曲线经过衰减振荡达到控制目标,当延时时间为33ms时,曲线增幅振荡,系统不稳定。由图6可知,在此控制器参数下的系统延时裕度介于25ms和33ms间,与理论计算值一致。
本发明实施例的方法是基于临界特征根跟踪的微电网延时裕度计算方法,基于输出反馈建立含有通讯时延的微电网闭环小信号模型,分析使系统稳定的最大延时时间,即延时裕度。针对常规的忽略通讯时延对系统动态性能影响的微网二次控制方法,本实施例充分考虑了通讯延时对系统稳定性的影响,此外通过研究不同控制器参数与延时裕度间关系,指导控制器设计,从而提升了微电网的鲁棒稳定性和动态性能。
相关阅读:
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
新型电力系统加快构建下,源网荷储一体化、微电网、虚拟电厂等多样化应用场景不断涌现,持续对能源管理数字化、智能化调控能力提出全新挑战。此时,作为新质生产力的重要引擎,基于数字化、智能化的技术创新也就成为能源电力产业高质量发展的关键变量,以核心引擎的角色推动能源经济绿色转型加速。能源
北极星售电网获悉,6月6日,河北省发展和改革委员会发布关于促进能源领域民营经济发展若干细化举措的通知。文件提出,支持民营企业积极投资智能微电网。深化分布式智能电网规划建设、运行控制、运营模式等与大电网责权划分的研究探索,支持民营企业投资建设分布式智能电网,与电网企业创新形成合作共赢
6月5日,宁夏银川市人民政府办公室关于印发《银川高新区高质量发展实施方案(2025—2027年)》的通知。文件指出,积极招引动力电池、风机叶片、光伏组件等“新三样”及算力服务器等拆解回收利用项目,鼓励发展“互联网+回收”模式,强化全链条数字化监管,推进循环经济产业与合规化、标准化服务体系深
北极星储能网获悉,6月6日,阳泉市能源局印发《阳泉市能源领域碳达峰实施方案》,提到,鼓励大数据中心、电动汽车充(换)电站、虚拟电厂运营商以及储能运营商作为市场主体参与用户侧储能项目建设。积极构建多层次智能电力系统调度体系,提高电网调度智能化水平。到2025年,全市实现快速灵活的需求侧响
6月6日,北极星太阳能光伏网发布一周要闻回顾(2025年6月2日-6月6日)。政策篇国家能源局:分布式光伏等,豁免电力业务许可证6月3日,国家能源局关于进一步深化电力业务资质许可管理更好服务新型电力系统建设的实施意见发布。文件提到,优化资质许可管理制度。支持电力领域新模式、新业态创新发展,除
为贯彻落实党中央、国务院关于加快绿色低碳发展和构建新型电力系统的决策部署,国家发展改革委、国家能源局近日发布《关于有序推动绿电直连发展有关事项的通知》,培育绿色制造国际竞争优势,提升新能源就近消纳能力。当前,我国绿电直连仍处于探索阶段,江苏等省份已经开始针对电池企业展开实践,全国
北极星售电网获悉,近日,江苏省无锡市发改委公示无锡市培育建设零碳园区名单,合计15个。此前,无锡市发改委发布无锡市零碳园区建设三年行动方案(2025—2027年),提出以打造零碳园区为主要任务,推进零碳工厂、源网荷储一体化项目、虚拟电厂、零碳服务机构4大配套行动,2025年遴选15家基础较好、意愿
6月5日,国新办举行新闻发布会,介绍“深化提升‘获得电力’服务水平全面打造现代化用电营商环境”有关情况。有记者提问“当前供电服务还存在一些薄弱的区域和环节,比如农村偏远地区、孤岛等供电末梢,这些都是供电服务的堵点难点所在。请问,电网企业将采取哪些措施解决这类问题?”,中国南方电网有
6月5日,国新办举行新闻发布会,介绍“深化提升‘获得电力’服务水平全面打造现代化用电营商环境”有关情况。国家能源局副局长宋宏坤在回答记者提问时表示,近年来,中国可再生能源总体保持了高速度发展、高比例利用、高质量消纳的良好态势,为保障电力供应、促进能源转型发挥了重要作用。截至今年4月
北极星售电网获悉,6月5日,江苏省能源委员会第二次会议暨迎峰度夏能源电力保供会议召开。会上江苏省长、省能源委员会主任许昆林主持会议并强调,当前即将进入迎峰度夏关键时期,要精心组织做好能源电力保供工作,提前做足煤炭物料储备,积极组织顶峰发电用气资源,各类机组做到应发尽发、稳发满发,扩
近日,江苏苏州沃磁公司通过“一站式”碳中和普惠服务中心,购买了信义光伏(苏州)有限公司智能微电网项目的1000吨碳减排量。这是苏州“碳普惠”体系建立以来的首笔微电网用户交易。位于张家港的信义光伏微电网项目于今年3月初投运,其41兆瓦分布式光伏年发电量超1.8亿千瓦时,相当于减少二氧化碳排放
北极星储能网获悉,5月16日,四方股份在投资者互动平台上表示,储能方面,公司坚以“产品全栈自研、系统全域支撑”为目标,持续加大研发投入,推动构网型控制技术、高压级联储能技术、高安全储能集成等先进技术的研究及工程应用。“大容量高压级联储能技术研究及应用”和“高安全锂电储能系统集成关键
白洋淀素有“华北明珠”的美誉。近年来,河北雄安新区落实白洋淀生态环境治理和保护规划要求,加快打造蓝绿交织、清新明亮、水城共融的生态城市。国网河北省电力有限公司结合省内资源禀赋,建设县、乡、村三级微电网示范工程。该公司在雄安新区建成白洋淀35千伏1万千瓦级(乡级)示范工程,打造主动支
近日,英国太阳能停车场公司3tiEnergyHubs推出了Papilio3系统,一款专为电动汽车短时停车需求而设计的、标准化的可移动式光储充一体化充电站。根据3ti的介绍,该系统采用可回收利用的集装箱,配备42块光伏板和12个充电桩,包含7kW至22kW的规格,年发电量可达18MWh,并且具备良好的并网能力,用户可以按
10月8日,20千伏智能微电网在独龙江乡建成。云南电网公司怒江供电局独龙江供电所员工李光辉手提工具包,走进“纹面”奶奶肯国芳的家,他一边换着灯泡,一边听今年已经92岁的肯国芳唠家常,从生活的琐碎日常,到最近的身体状况……拧紧灯泡,按下开关,一下子,屋子亮堂起来。自2022年独龙江乡35千伏联网
北极星储能网获悉,7月31日,湖南常德经开区百兆瓦级多电源融合技术实验验证平台招商公告发布。公告显示,验证平台包括基于无缝投切的微电网子系统、基于无缝投切和多储能介质的储能子系统、移动应急保电子系统、验证监测系统、电网模拟系统、模拟负荷系统、燃机发电系统以及平台总控系统等,可为多电
2024年1月10日,江苏无锡供电公司锡山供电服务中心员工完成谈村微电网系统调试,标志着无锡谈村新农村智能微电网正式投运。近年来,无锡市以谈村为试点村,启动原址整村翻建工程。无锡供电公司以此为契机,打造全要素新农村智能微电网示范工程,推动农村用能绿色节能转型。该项目建设了2套配网柔性互联
王成山中国工程院院士,天津大学国家储能产教融合创新平台主任。长期从事配电系统与微电网技术研究,在配电系统结构优化、微电网控制系统与装备等领域取得了系统性创新成果,技术获得广泛应用。成果获国家技术发明二等奖1项、国家科技进步二等奖3项;获何梁何利科学与技术进步奖、全国首届创新争先奖。
王成山中国工程院院士,天津大学国家储能产教融合创新平台主任。长期从事配电系统与微电网技术研究,在配电系统结构优化、微电网控制系统与装备等领域取得了系统性创新成果,技术获得广泛应用。成果获国家技术发明二等奖1项、国家科技进步二等奖3项;获何梁何利科学与技术进步奖、全国首届创新争先奖。
近日,江西省首个“水光储”一体化智能微电网工程投运。据了解,这项“水光储”一体化智能微电网工程由国网遂川县供电公司投资建设,为水电、光伏发电、储能互补的10千伏智能微电网工程,由村内青龙坑一级、二级电站和洞下电站3座小水电站(装机容量1870千瓦)及光伏发电系统(装机10千瓦)、储能系统
在“双碳”背景下,海装对综合能源整体的规划,主要分三个方面,能源供给侧、能源大脑、能源消费侧。智慧能大脑是以综合能源且同管理平台为主,依托这个平台,对园区的发电以及碳资产进行管理,从能源的生产到能源的供给进行管理,储能充放电的管理。在消费侧以微电网控制系统为核心,来解决工业用户以及建筑的用能情况。智慧用能以及源网荷储一体化,解决用人情况。
8月5日,在三峡大学的校园内,纯电动车穿行其中,学校师生扫码就能给电动自行车充电。刚建成的集中充电棚等设施受到师生们的欢迎。7月底,三峡大学综合能源示范校园建设项目签约,这是湖北首个高校全场景绿色低碳综合能源项目。
“储能市场化”这一美好愿景,终于将照进现实、加速落地。但就当下而言,其实大多数储能企业并没有做好应对市场化的准备,政策的迅猛推进将倒逼储能技术快速迭代,尤其将压力传导给电池管理系统BMS。在此过程中,以协能科技为首的BMS企业,有望成为储能变革新时代的探路先锋!多次“首”创!“三代”BM
北京正在加快建设国际绿色经济标杆城市,而城市副中心通州将成为重要承载地和示范区。近日,市发展改革委、城市副中心管委会、通州区政府联合印发《北京城市副中心促进绿色经济发展实施方案》。方案提出,全力推动绿色经济发展,通过打造国际绿色经济标杆城市、建设国家绿色发展示范区等措施,着力培育
记者今天从北京市发改委了解到,北京城市副中心力争到2027年,绿色创新能力、绿色企业数量、绿色产业产值不断提高。绿色技术创新能力进一步增强,有效绿色技术发明专利数量年均增长20%左右,建成北京市国际绿色技术概念验证中心。绿色产业特色化、规模化加快发展,绿色企业数量超过300家,建成1个绿色
思源电气股份有限公司(下文简称“思源电气”)成立于1993年12月,是国内知名的专业从事电力技术研发、设备制造、工程服务的上市公司,荣膺上海市创新型企业和重点高新技术企业、国家重点火炬计划企业、中国能源装备十佳民企等荣誉称号。目前,公司拥有八家全资及控股子公司,产品线覆盖输配电一次及二次设备
北极星输配电网获悉,5月27日,许昌市投资集团有限公司(以下简称许昌投资集团)正筹划组建中原新型智慧电力装备产业集团(以下简称中原电力装备集团),已与部分产业链企业初步接洽。当日,许昌投资集团在其官网公开向电力装备制造企业、科研院所、金融机构及产业链上下游企业发出邀请。许昌投资集团
在中泰建交50周年之际,泰国副总理兼能源部部长皮拉潘·萨里拉塔维巴一行28日莅临天合光能常州总部参观访问,深入了解天合光能的发展历程及创新成果。总理府副秘书春初·孔乌东先生,总理府秘书处借调人员兼泰国国家电力局局长吉拉奈·翁萨阿中将,INNOPOWER公司首席执行官阿提·坦提沃拉翁先生等参加
全球新能源产业进入高速增长期,但政策不确定性、技术迭代加速、国际竞争加剧等因素导致法律风险频发。近年来,全球新能源产业呈现爆发式增长态势。然而,行业高速发展背后暗藏多重法律风险。(作者:莫泰京北京市盈科律师事务所律师)新能源行业法律风险白皮书——合规挑战与应对策略目录一、行业趋势
北极星电力网获悉,近日,许昌投资集团官网发布邀请函,面向许昌公开邀请电力装备制造行业龙头、专精特新企业及科研机构、合作产业链上下游企业,共同组建“中原新型智慧电力装备产业集团”。合作方式为一是股权合作:通过增资扩股、资产注入等方式成立混合所有制产业集团;二是战略联盟:签订长期供货
贵州省黔北高原的层峦叠嶂间,白色风机如巨人般迎风矗立,将清洁电能输送至千家万户。在这幅壮美画卷中,总能看到新能源分公司黔北运维中心主任黄宜健穿梭于设备间的坚毅身影。今年4月,他带领团队成功完成太阳坪风电场02、07号风机主轴更换吊装任务,以精湛技艺、严谨作风和无私奉献,书写了新时代劳
在"双碳"战略引领下,我国核电年发电量突破4400亿千瓦时,相当于减排二氧化碳3.8亿吨。中国核电工程有限公司北京核工程研究设计院工程经济所自主研发的全国首个"核电碳账户管理系统"正式亮相,开创性破解核电碳资产价值量化难题,为核电注入绿色金融价值。核电碳资产价值的实现将重塑核电经济评价体系
记者从中国广核集团(以下简称中广核)获悉,5月27日,中广核烟台招远400兆瓦海上光伏项目全容量并网发电。作为中广核贯彻新发展理念、践行“双碳”战略的创新实践,该项目成功应用自主研发的双面双玻海上光伏组件等一系列创新产品,并形成可复制的海上光伏项目施工成套工艺体系,对我国海上光伏规模化
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!