登录注册
请使用微信扫一扫
关注公众号完成登录
式(12)中,δQi表示第i个分布式电源的无功功率控制信号;kPQ表示无功功率比例积分控制器中的比例项系数;kIQ表示无功功率比例积分控制器中的积分项系数;δVi表示第i个分布式电源的平均电压恢复控制信号;kPV表示平均电压比例积分控制器中的比例项系数;kIV表示平均电压比例积分控制器中的积分项系数。
当微网电压集中控制器与各分布式电源间存在通讯延时时,电压控制量为:
Δui=ΔδQi(t-τi)+ΔδVi(t-τi)=KQiΔyinvQi(t-τi)+KViΔyinvV(t-τi) 式(13),
式(13)中,τi为第i个分布式电源本地控制器与微网二次电压集中控制器间的通讯时延,单位:秒;KQi表示第i个分布式电源的无功功率控制器,KQi=[kPQikIQi];KVi表示第i个分布式电源的电压控制器,KVi=[kPVi kIVi]。
结合式(11)~式(13),得到n个分布式电源的闭环小信号模型为:
式(14)中, 为第i个分布式电源的延时状态矩阵,
Bui为第i个分布式电源对二次电压小信号控制量的输入矩阵,CinvQi为第i个分布式电源的无功功率输出矩阵,Cinvc为分布式电源的电流输出矩阵。
步骤20)结合连接网络、负载型阻抗的动态方程,建立微电网小信号模型
公共参考坐标系DQ中第i个分布式电源所连接母线和第j个分布式电源所连接母线之间的连接线路ij的电流小信号动态方程如式(15)所示:
式(15)中, 表示在公共参考坐标系DQ中,第ij条连接线路电流D轴小信号分量的变化率,单位:安/秒;rlineij表示第ij条连接线路的线路电阻,单位:欧姆;Llineij表示第ij条连接线路的线路电感,单位:亨利;ΔilineDij表示在公共参考坐标系DQ中,第ij条连接线路电流的D轴小信号分量,ΔilineQij表示在公共参考坐标系DQ中,第ij条连接线路的电流的Q轴小信号分量,单位:安;ω0表示微网额定角频率,单位:弧度/秒;ΔVbusDi表示在公共参考坐标系DQ中,第i个分布式电源所连接母线的电压在D轴的小信号分量;ΔVbusDj表示在公共参考坐标系DQ中,第j个分布式电源所连接母线的电压在D轴的小信号分量; 表示在公共参考坐标系DQ中,第ij条连接线路电流的Q轴小信号分量的变化率,单位:安/秒;ΔVbusQi表示在公共参考坐标系DQ中,第i个分布式电源所连接母线的电压在Q轴的小信号分量,ΔVbusQj表示在公共参考坐标系DQ中,第j个分布式电源所连接母线的电压在Q轴的小信号分量,单位:伏。
公共参考坐标系DQ中第l根母所连接负载的电流动态方程,如式(16)所示:
式(16)中, 表示在公共参考坐标系DQ中,第l根母线所连接负载的电流在D轴的小信号分量变化率,单位:安/秒;Rloadl表示第l根母线所连接负载的负载电阻,单位:欧姆;Lloadl表示第l根母线所连接负载的负载电感,单位:亨利;ΔiloadDl为在公共参考坐标系DQ中,第l根母线所连接负载的电流在D轴的小信号分量,ΔiloadQl为在公共参考坐标系DQ中,第l根母线所连接负载的电流在Q轴的小信号分量,单位:安; 表示在公共参考坐标系DQ中,第l根母线所连接负载的电流在Q轴的小信号分量变化率,单位:安/秒。
设定连接于第i个分布式电源所连接母线和第j个分布式电源所连接母线之间的连接线路的小信号方程如式(17)所示:
式(17),
式(17)中,Rloadj、Lloadj分别为第j个分布式电源所连接母线上负载的阻值和电感值;ΔioDj、ΔioQj分别为第j个分布式电源输出电流在公共参考坐标系DQ中的D轴小信号分量和Q轴小信号分量。
将式(17)代入式(14)~式(16),可得包含n个分布式电源、s条支路、p个负载的微电网小信号模型为:
式(18)中,x为微电网小信号状态变量,x=[ΔxinvΔilineDQΔiloadDQ]T ,ΔilineDQ为公共参考坐标系DQ中分布式电源所连接母线间的连接线路的电流的小信号状态变量,ΔiloadDQ为公共参考坐标系DQ中母线所连接负载的电流的小信号状态变量; 为微电网小信号状态变量的变化率;A为微电网状态矩阵;Adi为第i个分布式电源的延时状态矩阵;τi为第i个分布式电源的延时。
步骤30)获取微电网闭环小信号模型含有超越项的特征方程
在各分布式电源的延时一致时,式(18)的特征方程为式(19):
CEτ(s,τ)=det(sI-A-Ade-τs) 式(19),
式(19)中,s为时域复平面参数;τ为各分布式电源的一致时延时间,τ1=τ2=...=τn,单位:秒;det(˙)表示矩阵行列式;I表示单位矩阵;Ad表示分布式电源的延时状态矩阵,
为超越项。
步骤40)对系统特征方法的超越项进行临界特征根轨迹跟踪以计算系统稳定裕度
对式(19),当系统特征根都在复平面左半平面时,系统稳定;当存在特征根在复平面右半平面时,系统不稳定;当特征根在复平面左半平面或者虚轴上时,系统临界稳定。由于系统特征根随着时延时间τ连续变化,因此要确定系统稳定裕度τd,即,τ<τd时系统稳定,τ>τd时系统不稳定,需要确定系统可能存在的纯虚特征根和对应的延时裕度。
定义ξ=τω,代入式(19),则,
CEξ(s,ξ)=det(sI-A-Ade-iξ) 式(20),
其中,ξ为时延时间辅助变量,ω为虚特征根幅值;这里i为虚数单位,i2=-1。
ξ在[0,2π]的周期内进行变化,获取式(20)的相应特征根。如果对应于某个ξ存在纯虚特征根,则临界延时时间为:
τc=ξc/abs(ωc) 式(21),
式中,ξc为使系统存在纯虚特征根的延时时间辅助变量,abs(ωc)表示对应的纯虚特征根的幅值,τc为临界延时时间。
当ξ在[0,2π]周期内变化时,系统可能存在多个临界延时时间,即τc1,τc2...τcL,延时裕度取最小值τd:
τd=min(τc1 τc2 … τcL) 式(22),
在上述实施例中,所述的公共参考坐标系DQ是指第1个分布式电源的dq参考坐标系,其余分布式电源、支路电流、负载电流的状态变量通过坐标变换转换到公共参考坐标系DQ中。在步骤10)中无功功率比例积分控制器和电压比例积分控制器中,由于比例项系数比较小,实际中可以分别简化为无功功率积分控制器和电压积分控制器。在步骤20)中,负载为阻抗型负载。
本实施例通过引入信号通讯延时时间的微电网闭环小信号模型,建立含有超越项的系统特征方程,从而实现基于临界特征根跟踪的微电网延时裕度计算方法。针对常规的忽略通讯时延对系统动态性能影响的微网二次控制方法,本实施例充分考虑了电力电子接口型微电网惯性小从而导致通讯延时对系统稳定性不可忽视的实际情况,计算出系统维持稳定的最大延时时间。本实施例的延时裕度计算方法,通过对不同控制器参数与延时裕度间关系的分析,指导控制器设计,从而提升了系统稳定性和动态性能。
本发明实施例中的微电网控制系统框图如2所示,该控制框图主要包括两层:第一层为各分布式电源的本地控制器,由功率计算、下垂控制和电压电流双环组成;第二层为二次电压控制层,实现无功功率均分和平均电压恢复。二次电压集中控制器采集各分布式电源输出电压、输出无功功率,计算出各二次电压控制量后,将控制指令下发至各分布式电源的本地控制器中。在控制指令下发过程中,通讯时延存在于二次电压集中控制器与各分布式电源本地控制器间,该时延对系统动态性能产生影响。
下面例举一个实施例。
仿真系统如图3所示,微电网由2个分布式电源,2条连接线路和3个负载组成,负载1连接于母线1,负载2连接于母线2,负载3连接于母线3。系统中负载采用阻抗型负载。假设分布式电源1,分布式电源2容量比为1:1,则设计相应的频率下垂系数、电压下垂系数使各分布式电源期望输出有功功率、无功功率比值为1:1。研究在不同控制器参数下的微电网理论延时裕度,并基于MATLAB/Simulink平台搭建微电网仿真模型对理论延时裕度进行仿真验证。
图4为在控制器参数kIQ=0.02,kIV=20下,与系统稳定性相关的临界特征根轨迹跟踪示意图。通讯延时辅助变量ξ在[0,2π]变化,2对共轭特征根与系统稳定性密切相关,记录下4个经过复平面虚轴的临界特征根A(jωc1) ,A'(-jωc1) ,B(jωc2)and B'(-jωc2)及相应的ξ,根据式(21)和式(22)计算出延时裕度τd=0.0588s。
图5是本发明实施例中,在控制器参数0.005≤kIQ≤0.06,5≤kIV≤60下,基于临界特征根跟踪计算的微电网延时裕度与控制器参数的关系。由图可知,随着无功功率控制器积分系数kIQ或电压控制器积分系数kIV的增加,系统延时裕度减少,也就是系统鲁棒稳定性降低。因此当不同组合控制器参数达到相似的动态性能时,延时裕度将作为附加的鲁棒稳定性指标,指导控制器参数设计,提供系统稳定性及动态性能。
图6为微电网采用本发明实施例在某一组控制器参数kIQ=0.02,kIV=20下,3种不同通讯延时对系统动态性能的影响中的分散式控制方法的仿真结果。开始运行时,各分布式电源运行于下垂控制模式,0.5s时二次电压控制投入。仿真结果如图6所示,图6(a)为微电网中分布式电源平均电压曲线图,横坐标表示时间,单位:秒,纵坐标表示平均电压,单位:伏。瓦。如图6(a)所示,最初在下垂控制作用下,分布式电源平均电压存在稳态偏差,0.5s后在二次控制作用下,电压幅值提升。由图6(a)可知:系统不存在通讯延时时,平均电压较平滑得到达额定值,当延时时间为53ms时,电压曲线经过衰减振荡恢复,当延时时间为61ms时,曲线增幅振荡,系统不稳定。图6(b)为分布式电源1无功功率输出曲线图,单位:秒,纵坐标表示无功功率,单位:乏。由图6(b)可知,最初在下垂作用下无功功率均分效果并不理想(少于分布式电源1期望无功功率输出值),0.5s后在二次控制作用下,无功功率输出增加。由图6(b)可知,系统不存在通讯延时时,无功功率较平滑得到达期望值,当延时时间为53ms时,功率曲线经过衰减振荡达到控制目标,当延时时间为61ms时,曲线增幅振荡,系统不稳定。在二次控制作用下,微电网无功功率均分的效果得到显著改善。图6(c)为分布式电源2无功功率输出曲线图,单位:秒,纵坐标表示无功功率,单位:乏。由图6(c)可知,最初在下垂作用下无功功率均分效果并不理想(高于分布式电源2期望无功功率输出值),0.5s后在二次控制作用下,无功功率输出减少。由图6(c)可知,系统不存在通讯延时时,无功功率较平滑得到达期望值,当延时时间为53ms时,功率曲线经过衰减振荡达到控制目标,当延时时间为61ms时,曲线增幅振荡,系统不稳定。由图6可知,在此控制器参数下的系统延时裕度介于53ms和61ms间,与理论计算值一致。
图7为微电网采用本发明实施例在某一组控制器参数kIQ=0.04,kIV=40下,3种不同通讯延时对系统动态性能的影响中的分散式控制方法的仿真结果。开始运行时,各分布式电源运行于下垂控制模式,0.5s时二次电压控制投入。仿真结果如图7所示,图7(a)为微电网中分布式电源平均电压曲线图,横坐标表示时间,单位:秒,纵坐标表示平均电压,单位:伏。瓦。如图7(a)所示,最初在下垂控制作用下,分布式电源平均电压存在稳态偏差,0.5s后在二次控制作用下,电压幅值提升。由图7(a)可知:系统不存在通讯延时时,平均电压较平滑得到达额定值,当延时时间为25ms时,电压曲线经过衰减振荡恢复,当延时时间为33ms时,曲线增幅振荡,系统不稳定。图7(b)为分布式电源1无功功率输出曲线图,单位:秒,纵坐标表示无功功率,单位:乏。由图7(b)可知,最初在下垂作用下无功功率均分效果并不理想(少于分布式电源1期望无功功率输出值),0.5s后在二次控制作用下,无功功率输出增加。由图6(b)可知,系统不存在通讯延时时,无功功率较平滑得到达期望值,当延时时间为25ms时,功率曲线经过衰减振荡达到控制目标,当延时时间为33ms时,曲线增幅振荡,系统不稳定。在二次控制作用下,微电网无功功率均分的效果得到显著改善。图7(c)为分布式电源2无功功率输出曲线图,单位:秒,纵坐标表示无功功率,单位:乏。由图7(c)可知,最初在下垂作用下无功功率均分效果并不理想(高于分布式电源2期望无功功率输出值),0.5s后在二次控制作用下,无功功率输出减少。由图7(c)可知,系统不存在通讯延时时,无功功率较平滑得到达期望值,当延时时间为25ms时,功率曲线经过衰减振荡达到控制目标,当延时时间为33ms时,曲线增幅振荡,系统不稳定。由图6可知,在此控制器参数下的系统延时裕度介于25ms和33ms间,与理论计算值一致。
本发明实施例的方法是基于临界特征根跟踪的微电网延时裕度计算方法,基于输出反馈建立含有通讯时延的微电网闭环小信号模型,分析使系统稳定的最大延时时间,即延时裕度。针对常规的忽略通讯时延对系统动态性能影响的微网二次控制方法,本实施例充分考虑了通讯延时对系统稳定性的影响,此外通过研究不同控制器参数与延时裕度间关系,指导控制器设计,从而提升了微电网的鲁棒稳定性和动态性能。
相关阅读:
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
北极星售电网获悉,2025年河南省政府工作报告全文发布,其中提到,2024年,河南可再生能源发电量超1000亿度、装机占比突破50%。2025年重点工作:加快三门峡盆地油气资源接续基地建设。建成信阳五岳、开工济源逢石河抽水蓄能电站,实施源网荷储一体化项目800个。深入推进“双百”工程,实施省重点项目10
1月25日,2025年青海省政府工作报告发布。其中提到,2024年,青海省成为全国首个绿色算电协同试点省,国家电网青海电力公司建成全国首个清洁能源和绿色算力调度中心,中国移动、国家电投联建的全球首个“自发自储自用自保”绿色微电网万卡算力中心示范项目启动。同时,发布全国首个金融领域企业电碳账
1月22日,能建时代新能源与海南省发展控股有限公司(以下简称“海南控股”)旗下的海南临空产业发展集团有限公司(以下简称“海南临空”)、海南海控能源股份有限公司(以下简称“海控能源”)三方合作签约仪式在海口举行。OnJanuary22nd,thesigningceremonyoftripartitecooperationbetweenCEECATLandH
作为兴汉文明发祥地,中部崛起最前线,河南见证了中华民族的兴衰更替与历史演进。近日,天合储能助力打造的河南企业级微电网智慧场站成功落地。天合储能为项目供应了全系自研的产品组合,至尊N型700W+系列组件及Potentia蓝海工商业储能柜,赋能用户效益最大化,助力新型电力体系变革。项目位于河南民权
北极星输配电网获悉,1月22日,四川省政协委员、川开电气有限公司董事长李军在接受记者采访时表示,近年来,川渝地区也在努力将自然优势转化为产业优势,积极探索智能输配电、微电网、充电网、虚拟电厂,包括光伏、风、电、氢能、抽水蓄能、固态电池以及新能源汽车等能源新兴领域的产业提升和发展。他
1月21日,广东电网有限责任公司2024年微电网集群互联共济及主配微协同关键技术研究和设备研制等3个科技项目招标。预计采购金额共计2857.38万元。标的1-微电网集群互联共济及主配微协同关键技术研究和设备研制课题1:微电网集群互联共济及主配微协同关键技术研究:1)自治型微电网关键技术研究;2)微电
储能创造价值,市场牵引发展。历经2023年来行业疯狂“内卷”和价格血拼,我国储能产业逐渐从“卷价格”、“卷产能”,开始走向“卷技术”、“卷价值”的新型竞争轨道。低端劣质产能的市场出清加速,头部与二三线企业的行业分化加剧,电力市场改革推动的储能市场化盈利机制亦正在形成,云计算、AI人工智
1月16日,珠海高新区发布2025年工作报告。其中提到2024年,新能源与智能电网产业规模达到145.9亿元,谋划建设人工智能产业集聚区,引育产业链企业超130家,落地垂直大模型项目近30个。报告指出,力争2025年新能源与智能电网、软信业产业规模突破200亿元。同时,打造全域数字域先行区,大力开展“人工智
北极星售电网获悉,1月21日,宁夏自治区发展改革委关于印发《2025年自治区本级重点项目投资计划》的通知。重点项目包括,苏银产业园源网荷储一体化项目、国能(宁夏)新能源科技有限公司源网荷储一体化项目、宁夏宝丰能源集团股份有限公司光伏制氢源网荷储一体化项目等。原文如下:自治区发展改革委关
“哪里有项目?”这可能是储能圈最常见到的开场白。尤其随着工商业用户侧储能爆火,一众企业追风而来。简单的盈利模式、简化的解决方案,让用户侧储能应用市场愈加拥挤。优质客户成了稀缺资源、项目不好找,也是大多数工商业储能从业者面临的难点。因此,找对场景、找对市场,以技术优势高度匹配客户需
北极星售电网获悉,1月20日,国家发展改革委等部门印发《绿色技术推广目录(2024年版)》的通知。其中包括,柔性直流微电网直流接入技术。主要技术参数为与传统电源相比较,高频开关式直流电源体积减小20%;与分布式光伏交流并网模式相比,电能转化效率可提升4%以上。案例1:国家电投集团云南国际电力
近日,江西省首个“水光储”一体化智能微电网工程投运。据了解,这项“水光储”一体化智能微电网工程由国网遂川县供电公司投资建设,为水电、光伏发电、储能互补的10千伏智能微电网工程,由村内青龙坑一级、二级电站和洞下电站3座小水电站(装机容量1870千瓦)及光伏发电系统(装机10千瓦)、储能系统
10千伏共成线中压微电网,是南方电网公司第一个“源网荷储”中压特色微电网工程。日前,该工程顺利投产。工程将有效提高太平镇的用电质量,使当地水电清洁能源得到“友好”消纳,助力广东“双碳”目标实现。
摘要:本发明适用于电网规划技术领域,提供了一种多单元多母线直流微电网架构及分区分层智能控制系统,所述架构包括:第一大电网单元、第二大电网单元、混合储能单元、风储供电单元、光储供电单元、断路器单元、公共双直流母线单元和本地直流微电网单元,上述各个单元通过各自对应的两个刀闸分别与第一
北极星储能网获悉,哈尔滨工业大学正在进行微电网硬件平台及实时控制系统进行采购,1.采购条件本项目已通过主管部门审批,采购人为哈尔滨工业大学,项目已具备采购条件,现对该项目进行快速采购。2.项目概况2.1采购单位:电气工程及自动化学院2.2项目名称:微电网硬件平台及实时控制系统2.3项目编号:H
国际市场研究机构MarketsandMarkets日前发布的微电网控制系统市场报告称,2018年全球微电网控制系统市场规模大约为20亿美元,预计到2023年将增至36亿美元,期间年复合增率达到13.01%。增加对电网的投资,对现有电网的整修以及全球范围内可再生能源的日益普及是推动微电网控制系统市场发展的驱动力。同
2018年7月24日,科技部高技术中心组织专家在天津对国电南瑞科技股份有限公司承担的863计划先进能源技术领域光伏微电网核心设备与控制系统研制及示范应用课题进行了现场验收。课题承担及参与单位领导、项目首席专家、课题负责人和骨干成员、验收专家组以及高技术中心相关负责人等参加了此次验收会议。课
2018年7月24日,科技部高技术中心组织专家在天津对国电南瑞科技股份有限公司承担的863计划先进能源技术领域光伏微电网核心设备与控制系统研制及示范应用课题进行了现场验收。课题承担及参与单位领导、项目首席专家、课题负责人和骨干成员、验收专家组以及高技术中心相关负责人等参加了此次验收会议。课
2018年7月24日,科技部高技术中心组织专家在天津对国电南瑞科技股份有限公司承担的863计划先进能源技术领域光伏微电网核心设备与控制系统研制及示范应用课题进行了现场验收。课题承担及参与单位领导、项目首席专家、课题负责人和骨干成员、验收专家组以及高技术中心相关负责人等参加了此次验收会议。课
摘要:本发明涉及一种并网型光储和发电机组的微网控制系统,属于发电系统技术领域。本发明包括配电网和微电网,所述配电网和微电网之间连接有快速切换开关,光伏发电组通过光伏逆变器与交流母线连接,蓄电池通过储能控制器与交流母线连接,交流负载直接与交流母线连接,直流负载通过AC/DC转换器与交流
摘要:本发明涉及微电网技术领域,更具体地说,涉及一种微电网及其控制系统和控制方法。本申请公开了一种微电网及其控制系统和控制方法,该微电网包括集中式供电系统和多个子微网系统;集中式供电系统采用中压和/或高压能源对外供电,中压能源和高压能源均为分布式能源;子微网系统包括低压能源和负荷,
1月20日,国能(泉州)热电有限公司自主发明专利《给煤机堵煤检测系统及方法》获得国家知识产权局的专利申请受理。《给煤机堵煤检测系统及方法》聚焦该公司二期给煤机堵煤开关经常误动或拒动,保护可靠性低的技术难题,对原有挡板接触式机械堵煤开关存在的问题进行深入的分析,创新思路,通过采用非接
北极星储能网获悉,1月9日,帕瓦股份在投资者互动平台上回答固态电池材料进展、给一些电池厂商送样测试的问题。帕瓦股份表示,公司深耕新能源电池材料领域,高度重视固态电池的迭代趋势,充分发挥产学研紧密结合的优势,对固态电池及相关正极材料、电解质及添加剂材料等进行了布局,在该些方向上已累计
近日,国家知识产权局公布第二十五届中国专利奖评审结果公示,易事特首席技术官于玮博士项目团队申报的发明专利“微电网系统及其控制方法”,经过严格的初评、复评和终评环节从中脱颖而出,荣获中国专利优秀奖,不仅展示了在技术研发和创新方面的卓越实力,更是对集团在推动新能源及微电网行业技术进步
近日,江西公司峡江公司的“基于多源信息融合的水电机组健康状态评价方法及系统”获得国家技术发明专利授权。该专利技术是基于智慧水电平台研发创造的,通过平台数据采集模块获取机组状态多源信息,根据国家电投集团《小型水电站设备基于专家评估的不定期检修管理导则》,对多源信息进行智能分析,确定
12月17日,电力运营君创科技自主研发并申报的《火电厂机组AGC性能在线评价方法及系统》发明专利获国家知识产权局正式授权并颁发证书。《火电机组AGC性能在线评价方法及系统》由AGC运行参数采集模块、运行参数不同工况时序划分模块、运行性能指标计算模块以及性能在线评价模块组成,通过构建基于机器学
近日,四川公司“一种引水式电站水库水位测量装置、水位计算方法及系统”“一种手摇式升降梯”“转子测圆架及其使用方法”“一种基于物元可拓理论的蚀变辉绿岩隧洞塌方风险评价方法及系统”“一种水电站用捞渣设备”“一种三维重建过程中空洞填充的方法”等6项发明专利获国家知识产权局授权。
近日,黑龙江分公司“一种分析汽轮机负荷控制调节门状态异常的方法”“一种生物质循环流化床锅炉的给料控制方法及系统”“一种生物质循环流化床锅炉燃烧波动监测方法”“一种生物质循环流化床锅炉的腐蚀监测方法”等4项发明专利获国家知识产权局授权。
近日,江西公司电力工程公司《一种适用于捞渣机的张紧装置》发明专利获得国家知识产权局授权。该发明针对火电机组锅炉掺烧经济煤种导致掉焦量增多导致捞渣机张紧装置在受到掉焦冲击力过大时会出现的链条脱轨、卡链等问题进行了优化改进,将原张紧装置改为液压张紧、螺杆及弹簧的形式,使捞渣机在张紧装
近日,达拉特电厂“具有楔形油膜带滞留沟槽的氢冷发电机双流环密封瓦”“一种汽轮机进气调节系统”“一种汽轮机轴系外部定位装置”“吸尘动力装置及吸尘系统”“一种中速磨煤机甩沙操作控制方法和系统”等5项发明专利获国家知识产权局授权。
近日,内蒙古公司霍林河坑口发电公司自主研发的极寒地区深度调峰下空冷岛防冻及背压自动控制方法,通过国家知识产权局审查,被授予发明专利权。该控制方法基于条件判断对单台风机进行控制其是否运转,只有当位于同一列的全部风机均停运的情况下,才依据条件判断是否需要停止对该列管束停止进蒸汽,进而
日前,全国工商联召开2024全国民营企业科技创新与标准创新大会,活动现场发布了《2024研发投入前1000家民营企业创新状况报告》、“2024中国民营企业研发投入500家榜单”和“2024中国民营企业发明专利500家榜单”。高能环境凭借优良的科研基因、领先的技术优势与雄厚的创新实力,荣登“2024民营企业发明
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!