登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
3)断路器与系统协调配合。
目前直流断路器研究主要集中于断路器设备自身技术研究上,直流断路器的功能需求也来自于假定的直流系统。实际上,从系统设计的角度,综合考虑系统与直流断路器协调配合设计,不仅有利于直流断路器的研制,同时也有利于提高系统整体运行技术经济性。
直流系统中短路电流发展快,一方面对断路器分断速度和分断能力提出了要求,另一方面对换流阀也造成了极大冲击,发生离换流站出口距离较近的短路故障,换流阀将几乎瞬时闭锁退出运行。因此,可以考虑在不显著影响系统暂态调节性能的前提下,在直流线路中配置限流电抗器或者限流装置,既能提高系统运行的可靠性,也能降低断路器的设计难度。
参照交流系统,断路器动作应以选择性分断命令为基础,因此直流系统中快速故障选线技术的突破对于直流断路器在系统中的应用性能至关重要。直流断路器是作为一个开关装置,等待系统分断命令而动作,还是能够依靠自身信号检测而选择性动作,需要结合系统方案、故障定位技术以及系统与断路器协同控制策略等因素综合设计。
4)直流断路器试验技术。
直流断路器作为新型电力装备,目前国际上尚无相关的试验标准,其等效分断试验、绝缘试验和现场分断试验方法都有待深入研究,以建立直流断路器试验等效评价体系与试验考核标准,检验所设计直流断路器是否满足实际应用的能力。
①等效分断试验。交流断路器分断过程中电流过零后再产生暂态过电压,分断过程中断路器能量损耗较小,分断试验中可通过大电流源和高电压源进行合成试验来等效实际的分断应力。而直流断路器分断过程中先建立起暂态分断过电压并维持数毫秒直到电流过零,存在高电压与大电流叠加过程,并在断路器的避雷器中消耗大量热量[27-28]。等效试验中,如果对断路器消耗的热量进行直接等效,需要采用非常庞大的高压电容器组或者发电机才能提供。对于转移支路由多个阀段串联构成的混合式直流断路器,由于每个阀段由避雷器限制电压,彼此间相互独立,可对单个阀段开展等效分断试验,降低试验容量要求。然而未采用模块化设计的机械式断路器无法通过该方法来降低分断容量。
可见,直流断路器等效分断试验对试验方法和试验容量提出了苛刻的要求。如何设计经济有效的试验方案需要继续研究。
②操作冲击试验。在进行等效分断试验前,断路器需要进行操作冲击试验,单独考核断路器的绝缘性能。然而,基于 IGBT 的混合式直流断路器为便于器件或模块均压,并降低分断过程中的过冲,在器件或模块中都并联着容值较大的电容。由于常规的操作冲击装置容量有限,很难将冲击波形施加到断路器上。针对不同的断路器设备,如何测试设备的绝缘性能需要进行研究。
③现场分断试验。现场进行的直流线路故障电流分断试验是对直流断路器分断能力的最终考核。由于采用半桥 MMC 拓扑的柔性直流输电系统在发生直流线路短路故障时,电流上升快、峰值高,且不能通过闭锁换流阀阻断电流,如果直流断路器分断失败,将对换流阀及直流断路器本身都将造成很大冲击。此外,由于国内外尚未针对柔性直流输电系统开展过人工短路试验,目前的保护策略主要基于理论计算和仿真分析,并未得到实践验证。直流断路器的现场分断试验方法及后备保护措施仍需要开展研究和实践。
4 高压直流断路器的工程应用
2016 年 12 月 29 日,采用全桥模块级联的混合式直流断路器在舟山五端柔性直流输电工程中完成 168h 试运行后,正式投入商业运行,标志着高压直流断路器首次实现了工程应用。
舟山±200kV 5 端柔性直流输电工程自 2014 年投入运行以来,增强了舟山电网对风电的接纳能力,提高了各岛屿的供电可靠性。但也存在着直流故障无法快速清除,换流站无法单站投退等技术问题,单个换流站的故障会导致整个 5端柔直系统的停运。
2016 年在舟定站正负极平波电抗器出口处各加装了一台直流断路器,现场设备如图 17 所示,设备额定电压 200kV,分断时间 3ms,分断电流15kA。现场开展了带电合闸、单站投入、电流分断等调试试验项目,并完成了 168h 带电运行试验。加装直流断路器后,实现了舟定站的带电单站投退和直流侧故障快速隔离功能,提高柔直系统的供电可靠性和灵活性。
此外,国家电网公司规划了张北可再生能源并网柔性直流电网示范工程,如图 18 所示。该工程选择在河北的康保、张北、丰宁建设 3 个±500kV送端柔性直流换流站,在北京建设一个±500kV 受端柔性直流换流站,通过架空输电线路,构建汇集和输送大规模风电、光伏、储能、抽蓄等多种形态能源的 4 端柔性直流电网,计划于 2019 年建成,将成为世界首个±500kV 柔性直流电网[29-31]。该工程中每个换流站将配置 4 台直流断路器,目前已经完成成套设计,要求直流断路器在 3ms 内分断峰值25kA 的故障电流。该工程将对高压直流断路器技术提出新的挑战,也将极大促进直流分断技术的推广应用和直流电网技术的发展。
5 结论
当直流传输线路在直流侧互连起来形成直流电网,将为新能源接入提供更灵活、更可靠的解决方案,但首先需要解决直流故障隔离问题。本文对直流电网的故障隔离技术进行分析和对比,其中应用直流断路器的直流故障隔离技术在保障换流设备安全的同时,有效减少了供电系统的中断,保障了系统供电的持续性,能够满足直流电网的故障隔离需求。
本文分析了机械式以及分别基于晶闸管和IGBT 的混合式直流断路器的技术特点和发展现状,机械式直流断路器在成本上有很大优势,并且通过电流强迫注入的方式提高了分断性能,缩小了与实际工程需求的差距。基于晶闸管的混合式直流断路器成本也较低,分断容量提升空间较大,研究重点是换流原理的优化和结构集成度的提高。基于IGBT 的混合式直流断路器换流原理简单,易于实现,并首先实现了工程应用,但成本仍较高。高压直流断路器技术的发展和推广,需要进一步对断路器支路间换流方式,杂散参数优化技术,断路器与系统协调配合以及断路器试验技术等方面开展研究。
参考文献
[1] 何俊佳,袁召,赵文婷,等.直流断路器技术发展综述[J].南方电网技术,2015,9(2):9-15.He Junjia,Yuan Zhao,Zhao Wenting,et al.Review of DC circuit breaker technology development[J] . Southern Power System Technology,2015,9(2):9-15(in Chinese).
[2] 温家良,吴锐,彭畅,等.直流电网在中国的应用前景分析[J].中国电机工程学报,2012,32(13):7-12.Wen Jialiang,Wu Rui,Peng Chang,et al.Analysis of DC grid prospects in China[J].Proceedings of the CSEE,2012,32(13):7-12(in Chinese).
[3] 许烽,徐政,张哲任,等.基于降损调制技术的全桥 MMC 电容电压无需排序均衡控制[J].电网技术,2013,37(12):3347-3355.Xu Feng, Xu Zheng, Zhang Zheren.et al.Reduced loss modulation based capacitor voltage non-sorting balancing control for full-bridge MMC[J].Power System Technology,2013,37(12):3347-3355(in Chinese).
[4] Marquardt R.Modular multilevel converter topologies with DC-short circuit current limitation[C]//8th International Conference on Power Electronics-ECCE Asia.Jeju,Korea:IEEE,2011:1425-1431.
[5] 薛英林,徐政.C-MMC 直流故障穿越机理及改进拓扑方案[J].中国电机工程学报,2013,33(21):63-70.Xue Yinglin,Xu Zheng.DC fault ride-through mechanism and improved topology scheme of C-MMC[J].Proceedings of the CSEE,2013,33(21):63-70(in Chinese).
[6] 向往,林卫星,文劲宇,等.一种能够阻断直流故障电流的新型 子模块拓扑及混合型模块化多电平换流器[J].中国电机工程学报,2014,34(29):5171-5179.Xiang Wang,Lin Weixing,Wen Jinyu,et al.A new topology of sub-modules with DC fault current blocking capability and a new type of hybrid MMC converter[J].Proceedings of the CSEE,2014,34(29):5171-5179(in Chinese).
[7] 汤广福,罗湘,魏晓光.多端直流输电与直流电网技术[J].中国电机工程学报,2013,33(10):8-17.Tang Guangfu,Luo Xiang,Wei Xiaoguang.Multi-terminal HVDC and DC-grid technology[J].Proceedings of the CSEE,2013,33(10):8-17(in Chinese).
[8] Häfner J,Jacobson B.Proactive hybrid HVDC breakers-a keyinnovation for reliable HVDC grids[C]//CIGRE Symposium,Bologna,Italy,2011:264.
[9] Meyer C,Kowal M,De Doncker R W.Circuit breaker concepts for future high-power dc-applications[C]//Fourtieth IAS Annual Meeting Industry Applications Conference.USA:IEEE,2005:860-866.
[10] 温家良,葛俊,潘艳,等.直流电网用电力电子器件发展与展望[J].电网技术,2016,40(3):663-669. Wen Jiangliang,Ge Jun,Pan Yan,et al.Development and expectation of power electronic devices for DC grid[J].Power System Technology,2016,40(3):663-669(in Chinese).
[11] 魏晓光,高冲,罗湘,等.柔性直流输电网用新型高压直流断路器设计方案[J].电力系统自动化,2013,37(15):95-102.Wei Xiaoguang,Gao Chong,Luo Xiang,et al.A novel design of high-voltage DC circuit breaker in HVDC flexible transmission grid [J].Automation of Electric Power Systems,2013,37(15):95-102(in Chinese).
[12] Tang L X,Ooi B T.Locating and isolating DC faults in multi-terminal DC system[J].IEEE Transaction on Power Delivery,2007,22(3):1877-1884.
[13] 阙波,李继红,汪楠楠,等.基于桥臂阻尼的柔性直流故障快速恢复方案[J].电力系统自动化,2016,40(24):85-91.Qu Bo,Li Jihong,Wang Nannan,et al.Arm damping based quickrecovery scheme for flexible HVDC fault[J].Automation of Electric Power Systems,2016,40(24):85-91(in Chinese).
[14] Bachmann B,Mauthe G,Ruoss E,et al.Development of A 500kVairblast HVDC circuit breaker[J]. IEEE Transactions on Power Apparatus and Systems,1985,104(9):2460-2466.
[15] Eriksson T,Backman M,Halén S.A low loss mechanical HVDC breaker for HVDC grid applications[C]//CIGRE Session.Paris:2014:B4-303.
[16] Tahata K,Oukaili S E,Kamei K,et al.HVDC circuit breakers for HVDC grid applications[C]//IET International Conference on AC and DC Power Transmission.IET,2015:1-9.
[17] 周万迪,魏晓光,高冲,等.基于晶闸管的混合型无弧高压直流断路器[J].中国电机工程学报,2014,34(18):2990-2996.Zhou Wandi,Wei Xiaoguang,Gao Chong,et al.Thyristor base dhybrid arc-less high voltage direct current circuit breaker[J] .Proceedings of the CSEE,2014,34(18):2990-2996 (in Chinese).
[18] Van Gelder P, Ferreira J A.Zero volt switching hybrid DC circuit breakers[C]//2000 IEEE Industry Applications Conference .Thirty-Fifth IAS Annual Meeting and World Conference on Industrial Applications of Electrical Energy,Rome,2000:2923-2927.
[19] 彭振东,任志刚,姜楠,等.新型直流固态限流断路器设计与分析[J].中国电机工程学报,2017,37(4):1028-1037.Peng Zhendong,Ren Zhigang,Jiang Nan,et al.Design and analysis for a novel dc solid state current limiting circuit breaker[J].Proceedings of the CSEE,2017,37(4):1028-1037 (in Chinese).
[20] 李承昱,李帅,赵成勇,等.适用于直流电网的限流混合式直流断路器[EB/OL].[2017-01-01].http://kns.cnki.net/kcms/detail/11.2107.TM.20170703.1430.005.html.DOI:10.13334/j.0258-8013.pcsee.162642.
[21] Grieshaber W,Violleau L.Development and test of a 120 kV directcurrent circuit breaker[C]//CIGRE Session.Paris:CIGRE,2014:B4-301.
[22] 曹冬明,方太勋,谢晔源,等.一种直流电流关断装置及其控制方法:201610245174.3[P].2016-04-19.
[23] Majumder R,Auddy S,Berggren B, et al.An alternative method to build DC switchyard with hybrid dc breaker for DC grid[J].IEEETransactions on Power Delivery,2017,32(2):713-722.
[24] 刘高任,许烽,徐政,等.适用于直流电网的组合式高压直流断路器[J].电网技术,2016,40(1):70-77.Liu Gaoren,Xu Feng,Xu Zheng,et al.An assembled HVDC breakerfor HVDC grid[J].Power System Technology,2016,40(1):70-77(in Chinese).
[25] 康成,吴军辉,钟建英,等.一种含限流限压功能的混合式直流断路器方案[J].中国电机工程学报,2017,37(4):1037-1045.Kang Cheng,Wu Junhui,Zhong Jianying,et al.A scheme for current and voltage limiting hybrid DC circuit breaker[J].Proceedings of the CSEE,2017,37(4):1037-1045(in Chinese).
[26] 林畅,王晓晨,司为国,等.高压直流断路器限流优化控制方法及仿真[J].电网技术,2017,41(1):14-21.Lin Chang,Wang Xiaochen,Si Weiguo,et al.Optimal current limiting control method of HVDC circuit breaker and its simulation[J].Power System Technology,2017,41(1):14-21(in Chinese).
[27] Belda N A,Smeets R P P.Test circuits for HVDC circuit breakers[J].IEEE Transaction on Power Delivery,2017,32(1):285-293.
[28] 丁骁,汤广福,韩民晓,等.混合式高压直流断路器型式试验及其等效性评价[EB/OL].[2017-08-23].http://kns.cnki.net/kcms/detail/11.2410.TM.20170823.1738.007.html.DOI:10.13335/j.1000-3673.pst.2017.1293.
[29] 孙栩,曹士冬,卜广全,等.架空线柔性直流电网构建方案[J].电网技术,2016,40(3):678-682.Sun Xu,Cao Shidong,Bu Guangquan, et al.Construction scheme ofoverhead line flexible HVDC grid[J].Power System Technology,2016,40(3):678-682(in Chinese).
[30] 张祖安,黎小林,陈名,等.应用于南澳多端柔性直流工程中的高压直流断路器关键技术参数研究[J].电网技术,2017,41(8):2417-2422.
Zhang Zuan,Li Xiaolin,Chen Ming,et al.Research on criticaltechnical parameters of HVDC circuit breakers applied in Nan’aomulti-terminal VSC-HVDC project[J].Power System Technology,2017,41(8):2417-2422(in Chinese).
[31] 孙栩,陈绍君,黄霆,等.±500 kV 架空线柔性直流电网操作过电压研究[J].电网技术,2017,41(5):1498-1502.Sun Xu,Chen Shaojun,Huang Ting,et al.Switching overvoltageresearch of ±500kV flexible HVDC grid with overhead line[J].PowerSystem Technology,2017,41(5):1498-1502(in Chinese).
作者简介:
魏晓光(1976),男,博士,教授级高级工程师,研究方向为直流输电工程技术和直流电网
杨兵建(1984),男,通信作者,硕士,研究方向为直流电网及其关键设备
汤广福(1966),男,博士,教授级高级工程师,研究方向为直流输电技术
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
北极星输配电网整理了6月2日~6月6日的一周电网项目动态。浙江甘肃至浙江±800千伏特高压直流输电线路工程浙江段5月30日,甘肃至浙江±800千伏特高压直流输电线路工程浙江段首基铁塔组立完成,标志着该工程全面进入杆塔组立阶段。据悉,浙江段线路长约219.16千米,涉及新建铁塔456基,途经浙江省杭州市
2025年1月20日,特朗普正式就任美国第47任总统。上任后特朗普政府大幅调整拜登政府的气候及能源政策,不仅对美国自身能源、环境、经济、社会等诸多层面造成冲击,而且在国际范围产生广泛影响。本文系统梳理本届特朗普政府自上任以来的能源政策动向及全球影响,分析我国应如何有效对冲特朗普政府能源政
5月30日,浙江宁波500千伏河姆变电站第4台主变压器投运,标志着该站变压器增容扩建工程完成。至此,该站变压器总容量达325万千伏安,成为宁波规模最大的500千伏变电站,支撑地区迎峰度夏电力保供,并为后续±800千伏甘肃—浙江特高压直流输电工程落地提供条件。位于余姚市的500千伏河姆变电站是浙江东
国家电网有限公司2025年华中、川渝区域第一次联合采购一二次融合成套柱上断路器协议库存招标采购项目推荐的中标候选人公示(招标编号:SG25N2)
5月30日,南方能源监管局关于公开征求对《广东省提升新能源和新型并网主体涉网安全能力实施方案(征求意见稿)》意见的通知,通知指出,科学界定涉网安全管理范围。应纳入涉网安全管理范围的并网主体包括海上风电、陆上风电、集中式光伏、分布式光伏、分散式风电等新能源,以及新型储能、虚拟电厂等新
2025年5月2日,田湾核电站6号机组处于完全卸料工况,主变、500kV超高压断路器处于冷备用状态,2列220kV辅助外电源为机组供电。23:04,220kV辅助外电源中的一路电源发生接地故障,该线路主保护动作跳闸后自动重合闸。跳闸触发6号机组A列应急柴油发电机自动启动。由于辅助外电源重合闸后继续带载,应急
近日,我国首个“风光火储一体化”大型综合能源基地外送工程——陇东-山东±800千伏特高压直流工程(以下简称“陇山工程”)正式投运,该工程首次应用基于全国产芯片的特高压直流控制保护等设备。国家级专项攻关成果从实验室正式走向工程现场,成功实现示范应用。特高压直流规模化建设关键技术突破迫在
5月26日,四川攀枝花10千伏园委线发生短路故障,配电自动化终端在100毫秒内完成线路故障研判,并通过智能断路器迅速将故障隔离,保障非故障区域正常供电。为了提高配网供电能力,攀枝花供电公司从2024年起推进配电自动化终端安装与应用,全面提升配网自愈能力,目前已实现配电自动化终端城区全覆盖。配
5月8日,我国首个“风光火储一体化”大型综合能源基地的外送工程——±800千伏陇东—山东特高压直流工程投产,将西北富余电力跨区输送至华北地区。西北电网是我国新能源发电装机占比最高、电力外送规模最大的区域电网。陇东—山东特高压工程为西北与华北地区能源资源优化配置增添“大动脉”,助力区域
思源电气股份有限公司(下文简称“思源电气”)成立于1993年12月,是国内知名的专业从事电力技术研发、设备制造、工程服务的上市公司,荣膺上海市创新型企业和重点高新技术企业、国家重点火炬计划企业、中国能源装备十佳民企等荣誉称号。目前,公司拥有八家全资及控股子公司,产品线覆盖输配电一次及二次设备
ABB加速器中国周推动创新协作,AI驱动全栈方案破局,多领域助力低碳转型典范ABB开放许可管形母线专利,主导管形母线团标的制定和实施,推动技术的开放与共享,满足可持续发展目标下对更绿色产品的需求ABB作为电气问题解决专家,提供从发电端到用电端的创新技术和解决方案,帮助客户应对未来能源领域的
北极星输配电网整理了6月2日~6月6日的一周电网项目动态。浙江甘肃至浙江±800千伏特高压直流输电线路工程浙江段5月30日,甘肃至浙江±800千伏特高压直流输电线路工程浙江段首基铁塔组立完成,标志着该工程全面进入杆塔组立阶段。据悉,浙江段线路长约219.16千米,涉及新建铁塔456基,途经浙江省杭州市
6月5日凌晨1点45分,阳西沙扒海域,三峡青洲七项目迎来首轮“丰收”,随着巨大的风机叶片在高空在与机舱实现精准对接,项目首台风机顺利完成吊装,为后续机组并网发电奠定坚实基础。此次吊装的风机单机容量为13.6兆瓦,采用四桩导管架风机基础,轮毂中心高度约150米,约等于50层大楼的高度,叶轮直径25
近日,广州市规划和自然资源局花都区分局(以下简称“花都区分局”)牵头组织编制的《广州市花都区小迳±800千伏换流站地块(CG1202规划管理单元)控制性详细规划调整》规划成果获广州市人民政府批复同意实施,标志着列入《“十四五”电力发展规划》的国家重点能源项目藏东南至粤港澳大湾区±800千伏特
6月4日,国家能源局印发关于组织开展新型电力系统建设第一批试点工作的通知。《通知》提出,聚焦新型电力系统有关前沿方向,依托典型项目开展单一方向试点,依托典型城市开展多方向综合试点,探索新型电力系统建设新技术、新模式,推动新型电力系统建设取得突破。坚持重点突破,先期围绕构网型技术、系
近日,国家能源局发布了关于组织开展新型电力系统建设第一批试点工作的通知。通知明确提出,要聚焦新型电力系统有关前沿方向,依托典型项目开展单一方向试点,依托典型城市开展多方向综合试点,探索新型电力系统建设新技术、新模式,推动新型电力系统建设取得突破。坚持重点突破,先期围绕构网型技术、
6月4日,国家能源局印发关于组织开展新型电力系统建设第一批试点工作的通知。通知提出,聚焦新型电力系统有关前沿方向,依托典型项目开展单一方向试点,依托典型城市开展多方向综合试点,探索新型电力系统建设新技术、新模式,推动新型电力系统建设取得突破。坚持重点突破,先期围绕构网型技术、系统友
近期,山东、广东、内蒙古相继发布省级“136号文”配套细则,旨在通过市场化机制推动新能源可持续、高质量发展。但相较陆上风电起步略晚、且已经在上一轮的国补退出中快速降本的海上风电产业,在造价、成本分摊、供应链韧性、消纳能力及国际竞争力等多方面存在发展难题,亟待优化。电价不确定下,地方
5月28日,水电水利规划设计总院举办年度报告发布会。会上发布了《中国可再生能源发展报告2024年度》《抽水蓄能产业发展报告2024年度》《中国可再生能源工程造价管理报告2024年度》《中国可再生能源发电工程建设质量管理报告2024年度》。其中,《中国可再生能源工程造价管理报告2024年度》为专业的技术
如何让百公里外的巨量风能跨过波涛汹涌的大海,可靠高效地接入电网?国家电网有限公司历经十余年研发了“海上电力高速公路”——海上风电柔性直流并网技术与装备,为大规模海上风电并网提供坚实保障。近年来,积极应对气候变化、加快推进能源转型已成为全球共识。我国海上风电资源丰富,预计到2030年,
在新型电力系统建设加速推进与成本监审的新形势下,重大工程投资管控面临着前所未有的挑战。如何实现投资效益最大化,如何在确保项目管理规范性的前提下,精准高效地控制工程投资,成为电力行业亟待解决的关键问题。南方电网公司积极探索重大工程投资管控的新思路、新方法、新举措,不断推进管理模式创
5月22日下午,新疆自治区主席艾尔肯·吐尼亚孜主持召开自治区政府常务会议。其中提到,要加快疆内骨干电网建设,开展南北疆特高压柔性直流输电通道研究,加快实施疆电外送。会议要求,要高质量推动数字新疆建设,强化总体谋划、统筹协调,全面推进我区数字化发展,全方位赋能经济社会转型升级。要以基
6月5日,阳光电源PowerTitan3.0智储平台全球首发,首台真机在合肥总部智能工厂震撼下线!同时发布了PowerTitan3.0Flex、Class、Plus三大版本,重新定义第三代大容量电芯,并通过全链智能技术再进阶,带来储能全场景全周期“全域”智能体验!Plus版单柜容量12.5MWh,全球最大!能量密度超500kWh/#x33A1;
2025年5月30日,国家发展改革委、国家能源局联合印发《关于有序推动绿电直连发展有关事项的通知》(发改能源〔2025〕650号)。这是我国首份绿电直连政策法规,旨在探索创新新能源生产和消费融合发展模式,促进新能源就近就地消纳,更好满足企业绿色用能需求。在国际碳贸易壁垒下,绿电直连政策是我国应
化工行业正站在效率革命与绿色转型的十字路口,零碳园区建设成本高如何破局?AI驱动工艺优化如何实现高效落地?大型装备“卡脖子”难题如何攻克?废水处理成本高企如何破局?传热效率瓶颈如何突破?工艺微缩化如何实现产业化落地?国内市场需求匹配难资源分散,海外市场机遇如何精准捕捉?出海拓展市场
北极星售电网获悉,5月30日,南方能源监管局发布关于公开征求对《广东省提升新能源和新型并网主体涉网安全能力实施方案(征求意见稿)》意见的通知。文件明确,科学界定涉网安全管理范围。应纳入涉网安全管理范围的并网主体包括海上风电、陆上风电、集中式光伏、分布式光伏、分散式风电等新能源,以及
在“双碳”目标的指引下逐步建设新型电力系统,推动能源结构转型,减少温室气体排放,是能源电力行业的重要议题。北京城市副中心以“引绿+赋数+提效+汇碳”为路径推动配电网转型升级;江苏实现基于基准站聚合感知的分布式光伏可观可测;福建莆田湄洲岛奔向“零碳”智慧生活……全国首座“零碳岛”——
北极星氢能网获悉,5月29日,河北省发展和改革委员会发布关于组织申报国家重点研发计划“氢能技术”“储能与智能电网技术”重点专项2025年度公开项目的通知。申报课题包括水电解槽与燃料电池多场智能仿真技术(基础研究类,青年科学家项目)、交通氢燃料供-用体系全流程能碳仿真与评价技术(基础研究类
南网报讯《国资报告》近日报道,国务院国资委积极部署“AI+”专项行动,推动中央企业在人工智能领域实现更好发展、发挥更大作用。据报道,南方电网公司首席人工智能官李鹏在第十一期“现代新国企”研讨会上分享了南方电网公司落地人工智能应用的举措与经验。李鹏介绍,传统电网技术存在算不了、算不准
5月26日,上海市科学技术委员会发布关于组织申报国家重点研发计划“氢能技术”“储能与智能电网技术”重点专项2025年度项目的通知。根据国家能源局关于发布的国家重点研发计划“氢能技术”“储能与智能电网技术”重点专项2025年度项目申报指南中提到,申报单位根据指南支持方向的研究内容以项目形式组
北极星储能网获悉,5月22日,国家技术管理信息系统公共服务平台发布国家能源局关于发布国家重点研发计划“氢能技术”“储能与智能电网技术”重点专项2025年度项目申报指南的通知。原文如下:国家能源局关于发布国家重点研发计划“氢能技术”“储能与智能电网技术”重点专项2025年度项目申报指南的通知
对于现代能源体系来说,传统电力系统好比一条条宽阔的“主动脉”,能源单向流动,稳定却稍显笨重。一旦遇到极端天气、设备故障,可能会“牵一发而动全身”,引发大面积停电事故。同时,随着新能源快速发展,大量风光分布式新能源涌入电网,从而导致传统电网“消化不良”,这就促使微电网应运而生,它是
能源是经济社会发展的重要物质基础和动力源泉,攸关国计民生和国家安全。党的十八大以来,习近平总书记围绕保障国家能源安全先后发表了一系列重要讲话、作出一系列重要指示批示,提出并不断发展“四个革命、一个合作”能源安全新战略,为深入推动能源革命、加快建设能源强国提供了根本遵循和行动指南。
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!