登录注册
请使用微信扫一扫
关注公众号完成登录
图1 软包装300F锂离子电容器样品
图2 高富锂LNO材料的XRD图
2 结果与讨论
2.1 LNO材料性能表征与测试
图3 高富锂LNO材料的SEM照片
图4 LNO材料的首次充放电曲线
2.2 不同LNO添加量的影响
为探讨不同LNO添加量对锂离子电容器电化学性能的影响情况。在相同负极电极条件下,改变正极活性材料中LNO的添加量,进而研究锂离子电容器用最佳LNO添加量。期间,保持正负电极的涂层厚度、电解液种类及注液量不变。
区别于传统锂离子电容器的预嵌锂方式,本研究中采用不可逆容量高的锂金属氧化物LNO作为负极预嵌锂过程所需锂源。从锂离子电容器样品的首次化成曲线(即为负极材料的首次嵌锂过程,图5)可知,对比无LNO添加量的LIC样品,在3.0~4.2 V为该类型锂离子电容器的主要预嵌锂电位区间,电压变化过程较为缓慢,说明此时主要进行的负极材料内部的SEI膜形成过程,与金属氧化物LNO半电池充放电曲线过程中容量主要集中在3.6~4.2 V过程相一致。该锂离子电容器的预嵌锂过程示意图如图6所示,单体首次充电过程中,正极材料内部的高富锂LNO材料内部的锂离子经过电解液迁移至负极材料内部,促使负极材料表面形成稳定的SEI膜,从而避免了传统LIC制备过程“活泼金属锂片”的使用,最终降低了锂离子电容器工程化制备过程的生产难度与生产成本。
图6 高富锂LNO型锂离子电容器预嵌锂过程示意图
同时,从不同LNO添加量的化成曲线可知,在相同负极材料条件下,添加量在25%时,锂离子电容器具有相同的化成曲线。但当LNO添加量达到30%时,样品的化成曲线在1.5~3.5 V之间出现了“上移”,而3.5~4.2 V之间却出现了“下移”,其原因可能是正极电极中提供的锂源过量,进而使得负极材料嵌锂量过量。
对比不同LNO添加量的样品充放电曲线可知(图7),当LNO添加量大于等于15%时,LIC样品的放电曲线呈线性状态,但无LNO添加时样品则出现较大的电压降(约为0.09 V)。由不同LNO添加量材料的倍率特征曲线可知[图7(b)]:LNO材料的加入不仅使锂离子电容器具有线性特征放电曲线,同时表现出300 F以上的容量(电流为1 A)。当正极无LNO时,尽管该电容器表现出良好的倍率特性(10 A时容量保持率为86.7%),但该电容器仅仅具有150 F左右的容量(电流为1 A)。随着LNO含量的逐渐增加,锂离子电容器样品的容量逐渐增大,当添加量达到20%时,样品在1 A时具有约400 F的放电容量,同时在10 A条件下仍然具有75%的容量保持率。当LNO添加量小于20%时,样品的放电容量仅为300 F,而当LNO添加量大于25%时,样品容量也降至295 F。其原因在于,当LNO添加量小于20%时,由于负极材料内部预嵌锂过程所需锂源不足,进而导致电解液中锂源得以消耗,最终引起样品容量的下降。当LNO添加量大于25%时,相对而言,正极电极中活性炭材料的含量显著降低(正极活性炭含量的多少直接决定锂离子电容器样品的放电容量),最终同样促使电容器容量下降。
图7 不同LNO添加量锂离子电容器样品的电化学性能测试。(a)充放电曲线;(b)倍率性能;(c)内阻值;(d)循环寿命;(e)LIC-20%不同电流下的充放电曲线
此外,从不同LNO添加量样品内阻变化值可知[图7(c)],过低或过高LNO材料的添加都会增大样品在不同电流密度下的直流内阻,其原因在于过低LNO添加时负极电极表面无法形成稳定的SEI膜,使得后续充放电过程存在不同程度的不可逆氧化还原反应,引起样品内阻值的增大;另一方面,当LNO添加过量时,由于金属氧化物的电子导电率远低于活性炭,残留在正极电极内部的LNO将参与后续的充放电反应过程,最终导致电容器内阻的增大。综上可知,LNO添加量在15%~25%之间时样品具有较为稳定的内阻值(约为0.06 Ω)。
此外,图7(d)中,过低或过高的LNO添加量均会对锂离子电容器循环寿命产生重要的影响,添加量过低时(LIC-0%),样品在前4000次循环过程中衰减较快,而当添加过量时(LIC-30%),样品在循环后期出现了“跳水式”衰减。前者主要是由于不稳定的SEI膜引起,后者则是循环充放电过程富余的锂源沉积在负极电极表面[图8(b)],导致正负极微短路,最终引起样品容量的急速衰减。当LNO添加量在15%~25%之间时,在3A条件下,样品具有91%左右的容量保持率。当LNO添加量为20%时,样品在不同电流条件下具有良好的线性充放电曲线[图7(e)],同时还具有15.5 W˙h/kg的能量密度和11.3 kW/kg的功率密度,展现出优异的电化学性能。
结 论
高富锂金属氧化物Li2NiO2材料首次放电过程具有高达398 mA˙h/g的不可逆容量。将其与活性炭按照不同复合比率制成锂离子电容器用复合正极电极后,样品充放电曲线呈线性关系,展示出优异的电化学特性。对比不同金属氧化物Li2NiO2材料的电化学性能可知:添加有15%~20%LNO的复合正极电极在10 A电流下仍具有75%以上容量保持率,且循环10000次后(电流为3A,电压区间为2.2~3.8V)仍具有91%左右的容量保持率。此外,当LNO添加量为20%时,样品在1 A条件下具有400 F的容量,并具有15.5 W˙h/kg的能量密度和11.3 kW/kg的功率密度,展现出良好的电化学性能,是一种工程化制备工艺简单,性能优异的新型锂离子电容器。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
作者:周洪1,2(),俞海龙3,王丽平4,黄学杰3()单位:1.中国科学院武汉文献情报中心;2.中国科学院大学经济与管理学院信息资源管理系;3.中国科学院物理研究所;4.电子科技大学材料与能源学院引用:周洪,俞海龙,王丽平,等.基于BERTopic主题模型的锂电池前沿监测及主题分析研究[J].储能科学与技术,2025,14(
北极星储能网获悉,3月12日,恩捷股份披露投资者关系活动记录表,公布公司半固态隔膜、固态电解质未来研发方向、固态电池应用前景等情况。对于公司半固态隔膜情况,恩捷股份表示与北京卫蓝新能源科技股份有限公司、溧阳天目先导电池材料科技有限公司合资成立江苏三合电池材料科技有限公司,恩捷持有51%
中国具身智能机器人产业正处于技术与商业化落地的临界点。在政策密集支持、资本持续涌入、技术迭代加速等多重利好驱动下,具身智能机器人领域正从实验室研发迈向规模化量产新阶段。进入2025年,由于宇树科技在春晚的“出圈”,具身智能机器人领域成为市场投融资的热点,科技巨头纷纷布局、初创公司不断
行业过去几年投资的负极材料项目,正加速进入产能释放期。近日,有报道称,山西凯达新材料科技有限责任公司(简称“山西凯达”)年产20万吨锂电池负极材料前驱体及余热低碳节能综合利用项目一期土建工程,目前已完成90%,部分设备已进场,预计7月份将投入运行。据了解,该项目占地67.2亩,总建筑面积3
行业概况锂电材料指为锂电池的生产过程中所需的各种原材料,能够决定电池的性能、安全性、寿命和成本。目前锂电池由正极、负极、电解质、电解质盐、胶粘剂、隔膜、正极引线、负极引线、中心端子、绝缘材料、安全阀、正温度系数端子(PTC端子)、负极集流体、正极集流体、导电剂、电池壳等构成,锂电材
北极星储能网获悉,3月11日,中国汽车动力电池产业创新联盟发布2025年2月国内动力电池数据,2月动力电池装车量34.9GWh,环比下降10.1%,同比增长94.1%。其中三元电池装车量6.4GWh,占总装车量18.5%,环比下降24.6%,同比下降7.2%;磷酸铁锂电池装车量28.4GWh,占总装车量81.5%,环比下降6.0%,同比增长
北极星储能网获悉,保时捷全球于2025年3月1日正式收购德国瓦尔塔股份公司集团旗下的V4Drive股份有限公司,并更名为V4Smart。双方将整合各自在圆柱形锂离子电池领域的专业技术,推动V4Smart品牌高性能电池的生产。V4Smart电池是高性能混合动力系统T-Hybrid的关键部件。保时捷设备制造有限公司已开始大力
北极星储能网获悉,3月11日,甘肃省金昌市政府与杭州鹏成新能源有限公司(简称:鹏成新能源)合作框架协议签约仪式在市行政中心举行,双方将在新能源电池领域开展深度合作。此次签约的蓄谷新能源产业园项目将建设年产1GWh锂电池集成系统、1GWh锂离子电芯、2万吨全硅负极材料和1万吨锂电池回收再生的新
北极星储能网获悉,近日,福建漳州市发改委宣布位于福建诏安工业园区内的超大圆柱钠离子储能电池中试基地项目正式开工建设,该项目是民营企业诏安金钠新能源科技有限公司在新材料和储能领域的一次重大突破。据了解,该项目总投资1.8亿元,占地面积达37,256.1平方米,总建筑面积47,168平方米,规划建设
北极星储能网获悉,3月4日,浙江省人民政府下达2025年浙江省国民经济和社会发展计划。其中提到,确保台州清陶锂电池等项目建成投运。培育壮大新兴产业,“一业一策”支持生物医药、高端装备、新能源汽车、新材料等产业发展,提升智能物联、集成电路、高端软件、智能光伏等产业集群建设水平,力争战略性
北极星储能网获悉,3月4日,安徽省淮南市生态环境局发布“安徽玖仕新能源科技有限公司新能源锂电池回收及综合利用项目”的环境影响评价第一次公示,标志着该项目正式进入环保审查阶段。该项目的建设单位为安徽玖仕新能源科技有限公司,将租用淮南经济技术开发区智慧显示产业园二号厂房,改造面积约1500
据外媒报道,美国能源部橡树岭国家实验室(theDepartmentofEnergysOakRidgeNationalLaboratory,ORNL)领导的一个团队研发了一种新型集成式方式,以跟踪超薄材料中传输能量的离子,这种做法可以释放离子存储的能量,以实现充电速度更快、使用更持久的设备。多年来,科学家们一直在研究一种称为MXenes的
2012年之后,有一种材料开始得到重视,那就是MXene材料。这是一类具有二维层状结构的金属碳化物和金属氮化物材料,其外形类似于片片相叠的薯片。这种材料可以广泛用于能源和光学等领域,也是储能科学家们感兴趣的一个新兴领域。(来源:微信公众号“微锂电”ID:V-lidian作者:蔡雅倩)MXene材料的化学
前言:研究表明温度对储能器件的性能有重要影响,温度过高造成电解液分解,性能衰退,寿命缩短,温度过高甚至会烧毁器件。另外在实际使用中,多以串并联多个单体的形式组成较大的电池包,内部因较差的散热性能造成热量迅速积累,导致温度迅速升高,引发安全问题。因此研究锂离子电容器的热特性对其未来
【研究背景】当今社会,新能源需求的快速增长促进了能源存储和转换器件快速发展。实现由风能、太阳能、热能、机械能等向便携式电子和传感设备储能转换,被认为是实现自供电系统非常有潜力的途径之一。“摩擦生电”一词大家并不陌生,但是通常以贬义存在。王中林院士及其团队发明的纳米发电机(TENG),
根据最新外媒报道,一组来自圣路易斯华盛顿大学的研究人员发明了一种新型的能量储存装置,它可以承受40多次锤子敲击。与一般的锂离子电池不同,这种超级能量储存装置还是不可燃的。锤子敲击40次后,LED依然亮着在日常生活中,经常会发生手机或笔记本等设备意外跌落摔在地上的事情,这种常见的情况有时
锂离子电容器作为一种新型的储能器件,具有功率密度高、静电容量高和循环寿命比较长的优点,有望在新能源汽车、太阳能、风能等领域得到广泛的应用。其工作原理与锂离子电池、超级电容器有所不同。1、锂离子电池的工作原理锂离子电池是继镉镍、氢镍电池后发展最快的二次电池。锂离子电池的正负极活性物
石墨烯作为21世纪发现的物理、化学性能最为优异的材料,在能量存储、半导体制备、生物医药等领域的应用被寄于厚望。目前的研究热点是石墨烯在能量存储和转换领域的应用,如锂离子电池、超级电容器等。石墨烯在锂离子电池中的应用锂离子电池由索尼公司第一次商业化应用,具有电池容量大、能量密度高、自
近日,中国科学院大连化学物理研究所研究员吴忠帅二维材料与能源器件研究组团队与中科院院士包信和团队及清华大学深圳研究生院副教授贺艳兵合作,开发出一种具有高能量密度、良好柔性、优异高温稳定性及高度集成化的全固态平面锂离子微型电容器。相关研究成果发表在《能源和环境科学》(EnergyEnviron.S
双电层超级电容器是一种新兴而重要的储能器件,具有功率密度大,本征安全,循环寿命长,全生命周期储电量巨大等优点。目前商用双电层电容采用有机电解液,工作电压在2.5至3V之间,使用温度为-40~65℃。相对而言,超级电容的低温性能,比锂离子电池的低温性能出色许多。而提升电解液的工作电压窗口,是
电动汽车(EV)在相当长的一段时间内一直备受关注,这在很大程度上归功于特斯拉等公司将这些环保汽车推向公众视线的努力。然而,就电动汽车技术在过去几年所取得的所有进展而言,传统的汽油动力车还是比电动汽车拥有更大的优势。ldquo;里程焦虑rdquo;仍然是许多潜在电动汽车车主普遍担心的问题,特别是进
行业过去几年投资的负极材料项目,正加速进入产能释放期。近日,有报道称,山西凯达新材料科技有限责任公司(简称“山西凯达”)年产20万吨锂电池负极材料前驱体及余热低碳节能综合利用项目一期土建工程,目前已完成90%,部分设备已进场,预计7月份将投入运行。据了解,该项目占地67.2亩,总建筑面积3
硅碳负极最近越来越火,曾经借势高镍三元,现在又搭上了固态电池。贝瑞特、璞泰来等负极大厂也纷纷押宝其中。然而,硅碳负极相关材料是否真能带领锂电负极企业走出盈利困境?目前市场显然期待过高。01技术突破,市场期待过于迫切2024年以来,硅碳负极技术取得了突飞猛进的发展。其中,2月12日,贝特瑞
2025年初,干法电极技术领域传来两则最新动态,均指向这项被视为下一代电池制造关键的技术正在加速走向商业化。1月初,广东国立科技控股有限公司宣布,计划投资约30亿元人民币,分三期建设干法电极固态电池产业项目。尽管相关技术路线、应用场景等具体信息尚未明确,但该规划产能代表着国内干法电极量
储能创造价值,市场牵引发展。历经2023年来行业疯狂“内卷”和价格血拼,我国储能产业逐渐从“卷价格”、“卷产能”,开始走向“卷技术”、“卷价值”的新型竞争轨道。低端劣质产能的市场出清加速,头部与二三线企业的行业分化加剧,电力市场改革推动的储能市场化盈利机制亦正在形成,云计算、AI人工智
北极星售电网获悉,近日,内蒙古乌兰察布市人民政府发布2025年政府工作报告,其中提到,2024年,乌兰察布绿电入京9.3亿度,绿算进京超2万P。能源和战略资源基地建设成效显著,新能源产业增加值增长35%,项目建设速度和并网容量居全区前列,全国首个“源网荷储”示范项目顺利并网。“源网荷储”技术试验
当地时间2月3日,美国总统特朗普签署行政命令,暂停对墨西哥、加拿大商品加征关税,将其实施时间推迟到2025年3月4日。就在两天前,特朗普刚刚签署行政令,对中国进口商品加征10%关税,对进口自墨西哥、加拿大两国的商品加征25%的关税。据悉,特朗普2月3日曾与加拿大总理特鲁多、墨西哥总统辛鲍姆通话,
近日,研究机构EVTank联合伊维经济研究院共同发布了《中国锂离子电池负极材料行业发展白皮书(2025年)》。白皮书数据显示,2024年全球负极材料出货量达到220.6万吨,同比增长21.3%,其中中国负极材料出货量达到211.5万吨,全球占比进一步提升至95.9%。EVTank表示,由于天然石墨出口管制,部分海外客户
北极星储能网获悉,近日一则报道引起讨论,北京大学材料科学与工程学院庞全全团队开发了一种新型玻璃相硫化物固态电解质材料,并采用该材料研制出具有优异快充性能和超长循环寿命的全固态锂硫电池,该项研究成果已于1月16日发表在国际学术期刊《自然》,固态电池又迎来一轮热度。据统计,2025年以来,
北极星储能网获悉,杉杉股份1月17日在投资者互动平台表示,公司已开发针对固态电池用的石墨产品和硅碳产品,并已在客户处进行多轮测试;公司固态电解质复合型负极材料正在开发当中;公司正在自主建立固态电池负极材料评测体系,加速固态电池专用新型负极材料研发。
北极星电池网获悉,1月16日,中科电气发布2024年度业绩预告,预计2024年实现净利润盈利28780万元-32534万元,较去年的4171万元同比增长590%-680%。据悉,中科电气主营产品为锂离子电池负极材料,应用于动力类、储能类、消费类锂离子电池等领域,并与宁德时代、比亚迪、中创新航、亿纬锂能、瑞浦兰钧、
北极星储能网获悉,1月14日,贝特瑞发布公告,公司董事长贺雪琴夫妇因涉嫌违法违规内幕交易“龙蟠科技”,收到中国证券监督管理委员会的行政处罚决定书。公告显示,涉嫌违法违规的事实为:因贺雪琴内幕交易“龙蟠科技”及贺雪琴、罗某某共同内幕交易“龙蟠科技”的行为违反了《证券法》第五十条、第五
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!