登录注册
请使用微信扫一扫
关注公众号完成登录
式中:C1表示储能投资成本;d为储能的年折现率;L为储能的使用寿命年限;Cp和Ce分别为储能单位功率和单位容量的投资成本;PESS和EESS分别表示储能的额定功率和额定容量。
2)储能的运行成本。
式中:C2表示储能的运行成本;Ccha和Cdis分别表示储能的充电费用系数和放电收益系数;Pcha,t和Pdis,t分别为储能在第tt个时段内的充、放电功率。
1.2 储能系统的充放电控制策略
对于蓄电池,其需要满足的约束条件有容量约束、工作状态约束、充放电功率约束、充放电次数约束,具体形式同文献[15]。
2 含风电和考虑储能的互联电力系统分散式调度模型
2.1 基于SADMM的分散优化原理
含风电的互联电力系统示意图见图1。送端区域记为A,受端区域记为B,两区域之间通过一条直流联络线连接,假设直流联络线功率从A流向B。
图1 互联电力系统示意图
Fig. 1 Schematic diagram of DC interconnected power system
图2 基于SADMM的优化示意图
Fig. 2 Optimized schematic diagram based on SADMM
互联电力系统的优化示意图如图2所示。以两区域互联为例,需要满足的耦合约束为
采用标准的ADMM进行分散求解时,每次迭代时的求解过程如下[14]:
式中:k表示迭代次数;F1和F2分别为第k迭代时A、B两区域的目标函数;λ为引入的拉格朗日乘子向量;β为大于零的常数。
从ADMM的迭代过程可以看到,其原理为串行迭代方式。即利用前面区域的优化值进入到后面的区域进行优化求解,当所有区域都完成优化之后,由上级协调器完成拉格朗日乘子的更新,并将其下发到分散的区域。显然,这种方法迭代速度比较慢,不利于大规模的计算。下面为从ADMM到SADMM的转换过程。
以式(4)的第1个式子为例,后面两项可表示为
取两个区域每一次优化结果的平均值,令
2.2 风电出力的鲁棒优化表示形式
式中:ΓS为考虑空间集群效应后,对每个调度时段tt来说所有风电场出力预测总体偏差量的上限;ΓT为考虑时间平滑效应后,对特定的风电场jj来说所有时段出力预测总体偏差量的上限。
当ΓS和ΓT取整数时,由于式(11)表示的集合是多面体,在不确定性最坏的场景下,风电场出力必定会发生在多面体的极点上[16],因此,只需要考虑与式(11)等价的多面体的极点集。但此时描述风电出力的极点集保守度偏高,为了降低问题求解的保守度,可在极点集中引入调节参数,使得最坏场景下的风电出力也不会达到边界上。综上,考虑保守度可调的风电出力的集合表示形式如下:
2.3 单个区域的经济调度模型
1)目标函数。
以区域A为例,待优化的目标函数包括火电机组发电成本、弃风惩罚成本、储能的投资成本和运行成本、直流联络线功率偏差惩罚成本。其中,加入直流联络线功率偏差惩罚成本是为了使两个区域优化得到的直流联络线功率更加接近,从而达到优化整个互联系统的目的。具体的表示形式如下:
此外,互联系统之间的直流联络线功率也可以作为优化的资源,直流联络线出力需要满足的约束条件同文献[18]。
3 模型求解
4 算例分析
考虑储能参与的互联电力系统分散式调度模型的求解本质是一个较为复杂的混合整数二次规划问题。本文在MATLAB2016平台上采用Yalmip编程,选择的求解器是Gurobi 7.5,测试环境的CPU为AMD A8处理器,8GB内存。
4.1 算例描述
采用2个修改的新英格兰39节点系统互联对所建立的模型进行验证,其结构见附录图A1。互联区域内共包含4个风电机组和20个火电机组,火电机组的相关数据及负荷需求见文献[19],区域B内火电机组的煤耗系数取为区域A的2倍,负荷取为区域A的1.3倍,联络线传输上限为1000MW,调度周期内直流联络线出力的最大调整次数为6次,每个时段内的最大调整量和最小调整量分别为300 MW和40 MW,调度周期内计划外送总电量为12.2 GW˙h;允许的传输偏差为1%,直流联络线功率的初始值为,收敛系数ε=10-5,弃风惩罚费用系数为100 USD/MW,ΓS=4,ΓT=12,鲁棒保守度因子μ=0.5,区域A内配置储能系统,充电费用系数和放电收益系数均为80USD/MW,充电效率为0.85,放电效率为0.9,蓄电池在调度周期内的最大充电次数和最大放电次数均为8次,其余的储能相关参数见表1,区域A内单个风电机组的出力预测值及出力上下界如图3所示。
表1 储能系统的相关参数
Tab. 1 Related parameters of energy storage system
图3 单个风电机组出力的预测值及出力上下界
Fig. 3 Prediction value and the upper and lower bounds of the output of a single wind turbine
4.2 结果分析
1)风电相关出力情况分析。
风电预测值、考虑预测误差之后的风电实际出力及电网调度风功率如图4所示。
由图4可知,在t=5至t=24这20个时段内,风电的实际出力等于电网实际调度的风功率,即在这20个时段内,风电出力被电网全额消纳,验证了所提模型在促进风电消纳问题上的有效性。而在t=1至t=4这4个时段内,风电的实际出力大于电网实际调度的风功率,从而产生了弃风,这是由于在风电出力的高峰期,送端和受端电网内的负荷水平都很低,即使考虑储能的参与和风电的跨区域消纳也无法全额消纳高比例的风电。
图4 风电预测值、实际出力及电网调度风功率
Fig. 4 Wind power fore, the actual output and grid scheduling wind power
2)储能系统的充放电功率及荷电状态。
储能系统的充放电功率如图5所示,功率为负值表示储能系统充电,功率为正值表示储能系统放电,储能系统的荷电状态如图6所示。由图5和图6可知,由于风电的反调峰特性,在负荷低谷时期风电的出力相对较多,此时一部分风电将通过储能系统储存起来,因此在负荷低谷时段储能系统一直处于充电状态,荷电状态也在一直增加。在负荷高峰时段则恰恰相反,风电出力较少,储能系统一直处于放电状态,故荷电状态在不断减少。而在t=7、t=8、t=20以及t=21这4个时段内,区域A内的备用容量较为充足,储能系统处于既不充电也不放电的状态,因此荷电状态保持不变。
图5 储能系统的充放电功率
Fig. 5 Charge and disge power of energy storage system
图6 储能系统的荷电状态
Fig. 6 State of ge of energy storage system
3)储能系统的容量对互联系统弃风率和总成本的影响。
改变储能系统容量,得到互联系统的弃风率及总成本的变化情况,如图7所示。从图7可见,互联系统的弃风率随着储能系统容量的增加而单调下降,而总成本的变化趋势为先是随着储能系统容量的增加而减少,当储能系统容量达到600 MW˙h以后,由于互联系统用来应对风电出力不确定性的备用容量已经相当充足,再增加储能系统的容量则会使得互联系统运行的经济性降低,而且弃风率降低地也并不明显。因此,在应对风电出力的不确定性的同时要降低互联电力系统的总成本就需要合理的配置储能系统的容量。
图7 储能系统的容量对互联系统弃风率和总成本的影响
Fig. 7 The influence of capacity of energy storage system on wind power abandoned ratio and total cost of interconnected system
4)有无储能作用下的直流联络线功率对比。
通过对模型求解得到有无储能作用下的直流联络线功率对比如图8所示。
图8 有无储能作用下的直流联络线功率对比
Fig. 8 Comparisons for DC tie line power with or without energy storage
从图8可以看到,与无储能作用时的情况相比,当考虑储能系统的参与后,在t =1至t =6和t =22至t =24这9个时段内,互联系统间的直流联络线输送功率降低。在t=9至t =19这11个时段内,互联系统间的直流联络线输送功率增加。这说明在送端电网内配置一定容量的储能系统既可以提升风电在夜间的消纳水平,又可以缓解受端电网在负荷高峰期内的调峰压力。
5)鲁棒保守度因子对互联系统弃风率的影响。
在储能系统的容量设定为600 MW˙h的前提下,得到鲁棒保守度调节因子对互联系统弃风率的影响如图9所示。
图9 鲁棒保守度调节因子对互联系统弃风率的影响 Fig. 9 Influence of robust conservatism adjustment factor on wind power abandoned ratio of interconnected system
从图9可以看到,互联系统的弃风率随着μμ的增加而单调增加。这是由于μμ越大,风电的实际出力与风电预测值之间的偏差越大,即风电出力的不确定性越强,给电网的运行环境造成的影响越大,当储能系统的应对能力有限时,会导致互联系统的弃风率越来越高。当μμ=0时,意味着不考虑预测误差,此时互联系统的弃风率最低;当μμ=1时,风电的实际出力与风电预测值之间的偏差达到最大,此时互联系统的运行环境最差,弃风率最高。
6)集中式调度与分散式调度的对比。
分别选取由2个、3个及4个修改的新英格兰39节点互联系统作为算例,计算结果对比如表2所示。再选取某实际两区域互联系统作为算例,基础数据见文献[20],计算结果对比如表3所示。
表2 采用2区域、3区域和4区域系统的计算结果对比
Tab. 2 Comparison of the results of 2, 3, and 4 regional systems
表3 采用实际系统的计算结果对比
Tab. 3 Comparison of the calculation results of the actual system
从表2可以看到,选取修改的2区域、3区域和4区域系统作为算例,采用两种调度方法得到的弃风率均相同,且互联系统的总发电成本也基本一致,这体现了本文采用的SADMM算法在解决含风电并网的互联电力系统优化调度问题时的有效性。当互联区域数少于4个时,采用分散式调度的计算时间要多于集中式调度的计算时间,这是由于采用分散式调度求解模型时比采用集中式调度需要的迭代次数更多,而且并行计算的方式会占据计算机必要的数据通信资源,因此求解过程更为耗时;而当互联区域数达到4个以后,采用分散式调度比采用集中式调度的计算时间短,这是由于并行计算时,各区域的计算速度不受总区域数的影响,集中式调度的计算时间则会随着区域数的增大而迅速增加。因此,当系统规模达到一定程度后,采用并行计算的分散式调度相对于集中调度更具有优势。
从表3可以看到,选取实际系统作为算例,采用两种调度方法得到的弃风率也相同,互联系统的总成本误差仅为0.2%,体现了本文所提方法在解决实际电力系统优化调度问题时的有效性。
5 结论
针对高比例风电难以完全就地消纳的问题,本文提出了一种考虑储能参与的含高比例风电互联电力系统分散式调度模型,通过对模型求解,得到的主要结论如下:
1)考虑储能系统的参与可以提升风电的消纳水平。在风电难以完全就地消纳的情况下,将风电进行跨区域外送也是提升风电消纳能力的一种有效方式。
2)在求解大规模多区域互联系统时,分散式调度的计算时间比集中式调度更具有优势。
3)本文所提的分散式调度方法既能满足各区域电网独立运行的需要,又可以实现互联系统经济性优化的目的。
考虑需求侧响应对互联电力系统内风电消纳能力的影响,是下一步的研究方向。
附录
图A1 2个修改的新英格兰39节点系统互联结构图
Fig. A1 Interconnected structure diagram of the 2 modified new England 39 node systems
参考文献
[1] 牛东晓,李建锋,魏林君,等.跨区电网中风电消纳影响因素分析及综合评估方法研究[J].电网技术,2016,40(4):1087-1093. Niu Dongxiao,Li Jianfeng,WeiLinjun,et al.Study on technical factors analysis and overall evaluation method regarding wind power integration in trans-provincial power grid[J].Power System Technology,2016,40(4):1087-1093(in Chinese).
[2] 姚力,黄镔,王秀丽,等.考虑风火联合外送的互联系统随机生产模拟[J].电网技术,2015,39(5):1219-1225. Yao Li,Huang Bin,Wang Xiuli,et al.Probabilistic production simulation of interconnected system by considering the joint delivery of wind power and thermal power generation[J].Power System Technology,2015,39(5):1219-1225(in Chinese).
[3] 肖创英,汪宁渤,丁坤,等.甘肃酒泉风电功率调节方式的研究[J].中国电机工程学报,2010,30(10):1-7. Xiao Chuangying,Wang Ningbo,Ding Kun,et al.System power regulation scheme for Jiuquan wind power base[J].Proceedings of the CSEE,2010,30(10):1-7(in Chinese).
[4] Yingvivatanapong C,Wei J L,Liu E.Mufti-area power generation dispatch in competitive markets[J].IEEE Transactions on Power Systems,2008,23(1):4373-4383.
[5] 江全元,龚裕仲,储能技术辅助风电并网控制的应用综述[J].电网技术,2015,39(12):3360-3368. Jiang Quanyuan,Gong Yuzhong.Review of wind power integration control with energy storage technology[J].Power System Technology,2015,39(12):3360-3368(in Chinese).
[6] 徐国栋,程浩忠,马则良,等.考虑电网调峰能力限制的风储联合系统概率综合效益评价方法[J].电网技术,2015,39(10):2731-2738. Xu Guodong,ChengHaozhong,Ma Zeliang,et al.A method to evaluate probabilistic comprehensive benefits of joint wind power and storage system considering constraints of peak load regulation capacity[J].Power System Technology,2015,39(10):2731-2738(in Chinese).
[7] 严干贵,刘嘉,崔杨,等.利用储能提高风电调度入网规模的经济性评价[J].中国电机工程学报,2013,33(22):45-52. Yan Gangui,Liu Jia,Cui Yang,et al.Economic evaluation of improving the wind power scheduling scale by energy storage system[J].Proceedings of the CSEE,2013,33(22):45-52(in Chinese).
[8] 吴雄,王秀丽,李骏,等.风电储能混合系统的联合调度模型及求解[J].中国电机工程学报,2013,33(13):10-17. Wu Xiong,Wang Xiuli,Li Jun,et al.A joint operation model and solution for hybrid wind energy storage systems[J].Proceedings of the CSEE,2013,33(13):10-17(in Chinese).
[9] 王秀丽,李骏,黄镔,等.促进风电消纳的区省两级电力系统调度模型[J].电网技术,2015,39(7):1833-1838. Wang Xiuli,Li Jun,Huang Bin,et al.A two-stage optimal dispatching model for provincial and regional power grids connected with wind farms to promote accommodation of wind power[J].Power System Technology,2015,39(7):1833-1838(in Chinese).
[10] 赵文猛,刘明波,周保荣,等.含风电接入多区域电力系统的分散式随机动态经济调度方法[J].中国电机工程学报,2017,37(24):7087-7098. Zhao Wenmeng,Liu Mingbo,Zhou Baorong,et al.Decentralized stochastic dynamic economic dispatch for multi-area power systems with wind power integrated[J].Proceedings of the CSEE,2017,37(24):7087-7098(in Chinese).
[11] 王斌,夏叶,夏清,等.直流跨区互联电网发输电计划模型与方法[J].电力系统自动化,2016,40(3):8-13.Wang Bin,Xia Ye,Xia Qing,et al.Model and methods of generation and transmission scheduling of inter-regional power grid via HVDC tie-line[J].Automation of Electric Power Systems,2016,40(3):8-13(in Chinese).
[12] Zheng W Y,Wu W C,Zhang B M,et al.A fully distributed reactive power optimization and control method for active distribution networks[J].IEEE Transactions on Smart Grid,2016,7(2):1021-1033.
[13] Šulc P,Backhaus S,Chertkov M.Optimal distributed control of reactive power via the alternating direction method of multipliers[J].IEEE Transactions on Energy Conversion,2014,29(4):968-977.
[14] 欧阳聪,刘明波,林舜江,等.采用同步型交替方向乘子法的微电网分散式动态经济调度算法[J].电工技术学报,2017,32(5):134-142. Ouyang Cong,Liu Mingbo,Lin Shunjiang,et al.Decentralized dynamic economic dispatch algorithm of microgrids using synonous alternating direction method of multipliers[J].Transactions of China Electrotechnical Society,2017,32(5):134-142(in Chinese).
[15] 黄杨,胡伟,陈立.基于两阶段优化的风储联合发电系统日前发电计划模式[J].电力系统自动化,2015,39(24):8-15. Huang Yang,Hu Wei,Chen Li.Day-ahead generation scheduling plan modes for large-scale wind-storage combined power generation system based on two-stage optimization[J].Automation of Electric Power Systems,2015,39(24):8-15(in Chinese).
[16] 魏韡,刘锋,梅生伟.电力系统鲁棒经济调度(一)理论基础[J].电力系统自动化,2013,37(17):37-43.Wei Wei,Liu Feng,Mei Shengwei.Robust and economical scheduling methodology for power systems:part one theoretical foundations[J].Automation of Electric Power Systems,2013,37(17):37-43(in Chinese).
[17] 栗然,党磊,董哲,等.分时电价与风储联合调度协调优化的主从博弈模型[J].电网技术,2015,39(11):3247-3253. Li Ran,Dang Lei,Dong Zhe,et al.Coordinated optimization of time-of-use price and dispatching model combining wind power and energy storage under guidance of master-slave game[J].Power System Technology,2015,39(11):3247-3253(in Chinese).
[18] 周明,翟俊义,任建文,等.含风电并网的直流互联电网分散协调调度方法[J].电网技术,2017,41(5):1428-1434. Zhou Ming,Zhai Junyi,Ren Jianwen,et al.A decentralized coordinated dispatch approach for interconnected power grid with wind power via HVDC tie-line[J].Power System Technology,2017,41(5):1428-1434(in Chinese).
[19] Nguyen T,Pai M A.Dynamic security-constrained rescheduling of power systems using trajectory sensitivities[J].IEEE Transactions on Power Systems,2003,18(2):848-854.
[20] 钟海旺,夏清,丁茂生,等.以直流联络线运行方式优化提升新能源消纳能力的新模式[J].电力系统自动化,2015,39(3):36-42. Zhong Haiwang,Xia Qing,Ding Maosheng,et al.A new mode of HVDC tie-line operation optimization for maximizing renewable energy accommodation[J].Automation of Electric Power Systems,2015,39(3):36-42(in Chinese).
关注一下,获取最全储能资料包,请回复:资料
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
内蒙古华电氢能科技有限公司实施的工业天然气掺烧绿氢示范项目天然气掺烧绿氢排放物降低20%以上!这一突破性成果不仅有效助力自治区绿氢“制储输用”全产业链发展,同时也为包头市零碳能源转型注入强劲动能。在华电氢能工业天然气掺烧绿氢示范项目现场,各类设备有条不紊地运转着,制氢站集控室内,工
最近《人民日报》通过专访任正非对外释放了重要信号。其中也讲到了,AI竞争的背后,是要有充足的电力、发达的信息网络,而中国有这样的优势。可以说,AI的尽头是算力,算力的尽头是电力,这已成为科技行业的共识。本期「电网深谈」邀请了阿里云能源行业首席架构师黄振、浙江省电力负荷管理中心孙钢、浙
为进一步贯彻落实《氢能产业发展中长期规划》要求,引导行业健康有序发展,国家能源局组织行业相关机构和专家编制了《中国氢能发展报告(2025)》(以下简称《报告》)。4月28日,国家能源局能源节约和科技装备司副司长徐继林在解读《报告》时称,发展氢能产业对加快规划建设新型能源体系,实现碳达峰
北极星氢能网获悉,6月20日,象山县人民政府发布了《关于印发象山县低空经济“百岛千航”实施方案(2025—2030年)的通知》。《通知》提出:主要目标产业发展初具规模。培育壮大一批具有市场竞争力的低空经济企业,着力构建以生产重载长航时低空运载器为主体,以低空安全监测、数据通信及动态感知一体
今年6月25日是全国低碳日,主题是“碳路先锋、绿动未来”。近年来,江苏积极践行绿色低碳理念,有效发挥城市、园区、企业等不同主体的主动性和创造性,探索行之有效的经验做法,形成了一批可操作可复制可推广的发展模式和典型经验。现推出江苏绿色低碳发展创新实践企业篇:南京钢铁股份有限公司南钢积
北极星氢能网获悉,6月18日,龙海区人民政府与厦门大学嘉庚创新实验室就“海上未来能源科学中心——厦漳海岛绿氢科研示范工程”进行签约,双方将打造可再生能源与氢能全方位综合利用解决方案和示范场景,共同开展关键技术攻关、高层次复合型人才培养和产业应用示范推广工作。据悉,该项目选址落地龙海
6月27日,云南勐腊县2025年第一批集中式光伏发电项目投资主体优选中选结果公布,中标人为华能澜沧江水电股份有限公司。本项目划分为3个标段,项目规模合计340MW,项目建成时限均为8个月,项目投资人负责项目的开发、并网投产的全部资金筹措,项目建设过程中的招投标管理、项目建设管理、项目并网、运营
6月25日,宁德时代与浙江省海港投资运营集团有限公司(以下简称“浙江省海港集团”)在宁德签署战略合作协议。双方将聚焦低碳港区与园区建设、船舶电动化、港口机械设备电动化和重卡充换电、仓储物流、电池回收等方面,共同探索并实践港口物流领域的“产业新能源化”发展路径,助力港口智慧绿色转型。
在祖国北疆,内蒙古乌兰察布广袤的大地上,成片的光伏板如蓝色海洋泛起涟漪。不远处,一排近百米高的风电机组擎天而立,勾勒出一幅壮美的绿色画卷。四个月前,蒙西电力现货市场转入正式运行。作为全国首个实现新能源全电量入市的现货市场,蒙西地区以“发用双侧全电量参与”“日前预出清+实时市场”等
为推动国家能源规划、政策和项目落实,按照国家能源局规划监管工作要求,湖南能源监管办建立健全湖南“十四五”能源规划重点项目建设进度监测机制,分月开展监测分析,督促协调重点项目按规划推进落实。现将2025年6月监测情况简要通报如下:截至2025年5月底,纳入监测机制的能源建设项目计划投资共3395
近期,多座储能电站获最新进展,北极星储能网特将2025年6月23日-2025年6月27日期间发布的储能项目动态整理如下:国内首座大型锂钠混合储能站黑启动试验成功近日,南方电网公司在位于文山壮族苗族自治州的国内首座大型锂钠混合储能站——丘北县宝池储能站圆满完成国内规模最大、电压等级最高的构网型储
为进一步贯彻落实《氢能产业发展中长期规划》要求,引导行业健康有序发展,国家能源局组织行业相关机构和专家编制了《中国氢能发展报告(2025)》(以下简称《报告》)。4月28日,国家能源局能源节约和科技装备司副司长徐继林在解读《报告》时称,发展氢能产业对加快规划建设新型能源体系,实现碳达峰
近期,多座储能电站获最新进展,北极星储能网特将2025年6月23日-2025年6月27日期间发布的储能项目动态整理如下:国内首座大型锂钠混合储能站黑启动试验成功近日,南方电网公司在位于文山壮族苗族自治州的国内首座大型锂钠混合储能站——丘北县宝池储能站圆满完成国内规模最大、电压等级最高的构网型储
北极星储能网获悉,6月27日,国缆检测发布投资者关系管理信息,主要介绍公司业务及未来发展方向。公司表示,作为公司拓展业务领域跨出线缆检测的方向之一,公司新培育电化学储能检测业务,目前主要围绕液流电池的材料、电堆、电池系统等进行能力建设,未来根据市场需求和公司业务实际等情况,探索向储
6月26日,中国能建首席专家,数科集团党委书记、董事长,工程研究院党委书记、院长万明忠与国网吉林省电力公司党委书记、董事长周敬东进行座谈,双方围绕新型电力系统、压缩空气储能绿色电站、数字化等方面展开深入交流,并达成广泛共识。万明忠代表数科集团,对国网吉林省电力公司长期以来给予的支持
在去中心化能源的发展趋势里,阳台光储正成为一个新的机会点。当大家还在关注大型储能电站和传统家用储能时,阳台光储凭借“即插即用”的设计、模块化扩展能力以及电商直销模式,迅速打开了公寓住户这一巨大市场。它不只是一个“小型电厂”或“大号充电宝”,而是在政策放宽、高电价压力和消费电子思路
随着电力市场化改革纵深推进,山东2025年分时电价政策(尖峰、高峰、平段、低谷、深谷五段式)完成关键性调整#x2014;冬季储能“两充两放”运行策略正式落地,工商业储能的经济性显著提升。然而,不同购电模式下储能的收益逻辑和风险差异显著。下面,电工时代从代理购电与零售购电两种模式切入,分析山
北极星储能网获悉,2025年6月13日,中国证监会国际司发布关于双登集团境外发行上市及境内未上市股份“全流通”备案通知书(国合函[2025]1001号),通过了在香港联交所上市备案申请。双登集团,成立于2011年,是一家专注于大数据与通信领域的储能电池及储能系统综合解决方案提供商,在全球通信及数据中
根据深交所发行上市审核信息,麦田能源股份有限公司(麦田能源)创业板IPO已获受理。据了解,麦田能源是逆变器及储能系统制造商,主要业务是户用储能及光伏并网逆变器。财务数据显示,2022年—2024年公司实现营业收入分别为24.86亿元、29.00亿元、33.92亿元,实现净利润分别为1.99亿元、1.49亿元、2.67
北极星储能网讯:近日,中能建储能科技(武汉)有限公司5MWh液冷储能系统产品顺利通过CE、CB和UL9540A认证,取得TV莱茵国际权威认证证书。德国TV莱茵大中华区电力电子产品服务总经理董斌、中储科技储能装备研究院副院长左彬等双方代表出席颁证仪式。此次获证的5MWh集装箱式液冷储能系统,在技术和性能
北极星储能网获悉,储能技术成本持续下降,导致印度储能开发商之间的竞争也更加激烈。近日,印度拉贾斯坦邦总规模2GWh的两笔储能集采开标,此次预计总投资为200亿卢比。这两笔开标报价接连创造了印度储能报价历史新低,低于印度此前所有大规模储能招标的价格。印度拉贾斯坦邦电力监管委员会(RERC)已
6月25日17时45分,随着最后一组涉网性能测试数据在监控大屏上稳定跳动、精准达标,由东方设计服务公司总设计、总承包的四川华电三江新区100兆瓦/200兆瓦时电化学储能电站项目正式完成全站所有试验项目的测试验收,成为四川省内首个通过全部涉网试验并具备商业投运条件的独立储能电站。此次试验覆盖储能
北极星储能网讯:近日,中能建储能科技(武汉)有限公司5MWh液冷储能系统产品顺利通过CE、CB和UL9540A认证,取得TV莱茵国际权威认证证书。德国TV莱茵大中华区电力电子产品服务总经理董斌、中储科技储能装备研究院副院长左彬等双方代表出席颁证仪式。此次获证的5MWh集装箱式液冷储能系统,在技术和性能
为贯彻落实国家发展改革委、国家能源局《关于深化新能源上网电价市场化改革促进新能源高质量发展的通知》(发改价格〔2025〕136号)文件精神,加快构建新型电力系统,充分发挥市场在资源配置中的决定性作用,推动新能源高质量发展,制定《深化蒙西电网新能源上网电价市场化改革实施方案》(内发改价费
面向加快建设新型能源体系、新型电力系统的国家重大战略需求,可深度调峰的灵活性煤电起到了促进电网接纳高比例新能源,同时保障电力系统安全、经济、低碳运行的关键作用。国务院《2030年前碳达峰行动方案》明确,推动煤电向基础保障性和系统调节性电源并重转型。煤电灵活性改造工作的不断推进,为加快
近日,新疆、蒙西、蒙东地区纷纷正式下发136号文承接方案。对于三份方案的具体规则,北极星进行了梳理,不同之处主要有以下几方面:一、交易机制新疆1、新能源项目报量报价参与交易2、分布式光伏项目可不报量不报价参与市场、接受市场形成的价格3、参与跨省跨区交易的新能源电量,上网电价和交易机制按
当河西走廊的风电群与陇东光伏基地形成“风光矩阵”,当甘南水电与储能电站构建起柔性调节网络,甘肃这个新能源装机占比超64%的西部省份,正通过电力现货市场的创新实践,绘制出“绿电西发东送、市场驱动消纳”的能源转型新图景。自2024年9月正式运行以来,甘肃电力现货市场以新能源场站报量报价、用户
北极星储能网讯:6月25日,新疆发改委发布《自治区贯彻落实深化新能源上网电价市场化改革实施方案(试行)》解读文件。提出,对2025年6月1日以前投产的存量项目,区分补贴项目和平价项目。其中,补贴项目机制电价0.25元/千瓦时、机制电量比例为其上网电量的30%;平价项目机制电价0.262元/千瓦时、机制
日前,新疆自治区发展改革委印发《自治区贯彻落实深化新能源上网电价市场化改革实施方案(试行)》(新发改能价〔2025〕350号,以下简称《方案》)。根据公告,新疆对2025年6月1日以前投产的存量项目,区分补贴项目和平价项目。其中,补贴项目机制电价0.25元/千瓦时、机制电量比例为其上网电量的30%;
北极星售电网获悉,6月24日,新疆维吾尔自治区发展和改革委员会发布关于印发《自治区贯彻落实深化上网电价市场化改革实施方案(试行)》的通知。文件明确,新能源项目(风电、太阳能发电,下同)上网电量全部进入电力市场,上网电价通过市场交易形成。新能源项目报量报价参与交易,分布式光伏项目可不
北极星售电网获悉,近日,内蒙古自治区发展和改革委员会、能源局发布《深化蒙西电网新能源上网电价市场化改革实施方案》。方案提到,完善现货市场交易规则。完善现货市场交易规则,推动新能源公平参与实时市场。现货市场申报价格上限为1.5元/千瓦时;考虑新能源在电力市场外可获得的其他收益等因素,申
随着内蒙古地区新能源装机容量的持续高速增长,截至2025年4月底,风光装机规模占比达到49.34%,新能源在电力市场交易中的地位日益凸显。然而,新能源固有的波动性、间歇性与预测不确定性,使其在参与市场化交易时面临挑战。从供需匹配的天然矛盾,到现货价格的剧烈波动,再到日益严格的考核机制与不断
从不足百兆瓦到1太瓦,经过数十年的发展,我国光伏发电已从单一能源、补充能源向主力能源进阶。担当“大脑”职能的光伏逆变器,也实现了由“独木桥”向“立交桥”的跨越式进化,从单纯的电能转换设备,蜕变为集高效发电、智能运维、电网支撑等多重功能于一体的能源中枢。在这一过程中,离不开逆变器龙
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!