登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
炭材料科学家、中国科学院院士、发展中国家科学院院长成会明在4月9日由工业和信息化部与深圳市人民政府共同主办,《AutoR智驾》参与策划并将承办的本年度规格最高、参会企业最广的锂电行业大会——2018年中国锂电行业企业家峰会上发布了《石墨烯的制备机器在储能中的可能应用》报告。
石墨烯是一个原子层厚的炭材料,碳原子以六方密堆积的方式堆积成蜂窝状结构。石墨烯是其他材料的基本构造单元,包括曾经得过诺贝尔化学奖的富勒烯,包括研究非常活跃的碳纳米管,当然还有三维的石墨。
由于锂电物理学家预测,单纯的石墨烯在能量上是不稳定的,所以我们做炭材料研究的一直认为石墨烯不可能单独存在。
但是幸运的是,2004年俄罗斯的科学家,他们发现用非常简单的方法,也就是我们家用的,或者实验室用的粘胶带的方法,由于石墨烯的层状结构,就这样粘和撕就可以得到独立存在的单纯的石墨烯。
并且他们发现石墨烯具有非常独特的物理特性,包括是一个零质量的狄拉克费米子,包括室内和分数量子霍尔效应等等非常独特的物理现象,因为Andre教授的学生获得了诺贝尔物理学奖。
对于我们做材料的时候,我们对稳定质量的狄拉克费米子不太感兴趣,我们感兴趣的是这些技术,石墨烯囊括了我国已知的所有材料,从热学性能到电学性能,包括光学性能非常之好,后来实验也证实了这样的现象,包括本真的电子迁移率是10万至20万以上,因此石墨烯被期望在很多领域可能获得应用,包括电子器件、光电子器件、传感器、复合材料、透明导电、柔性OLED,包括我们今天感兴趣的储能电池。
当然,如果要将石墨烯在这些领域的应用,一个最重要的是我们需要得到高质量的石墨烯,不仅大量,而且还要成本低廉。总体来说,目前获得石墨烯的方法大致可以分为这五类,前两类机械剥离和外延生长可以获得高质量的石墨烯,但产量非常低。最后一类化学合成,在实验室里合成成石墨烯,方法也是成本较高,获得的量比较小。所以我们比较感兴趣的是化学剥离和化学气相沉积,这样相对成本比较低。化学剥离是从上到下,CVD是从下到上,目前我们做材料,包括从应用主要是采用这两种方法,我就简单给大家做一个介绍。
化学剥离方法总体来说就是想办法弱化石墨烯层与层之间的相互作用。我们知道石墨烯是层状材料,层与层之间的作用不会特别强,如果我们进一步弱化就可以剥离出来,包括液相剥离、雾相剥离,氧化横向剥离、还原,还有膨胀剥离等几种方法。
做得最多的是氧化方法和还原方法,氧化方法如果追根溯源是很早的方法,100多年,主要利用高酸高碱进行氧化,最后还要进行还原,我们就氧化石墨烯进行相应的研究。
优点是有非常多,问题是官能团,碳和氧的结合比较难,要把氧去掉非常难,杂质难以去除。如果从大规模制备来说,我们还要考虑的是氧化石墨烯现有的制备方法还有爆炸的危险,污染比较严重。用50份的浓硫酸需要100份的水,这样才有可能得到比较好的石墨烯,成本比较高,反应周期很长。所以我们最早,十多年前开始做这个方法,我们后来没有把它进一步放大,主要是基于这样的原因,但我们一直在想办法有没有更绿色的制备方法呢?我们最近发现采用电解水氧化的方法可以大批量的氧化石墨烯。
大概的效率应该是现有的氧化方法的100倍以上。主要是电解水,利用电解水氧化,可以得到层数基本在1-2层的石墨烯。从化学组成来看跟传统的方法比几乎没有实质性的差别,无论是含氧氮物和分散性等等。更重要的是这种方法可以控制氧化程度,碳氧比从2到8,这样可以根据不同的需求来获得所需要的氧化石墨烯,当然还可以还原成石墨烯,这个方法我们也申请了国内外的专利,已经在深圳开始产业化。
刚刚提到氧化石墨烯最大的问题是还原比较难,因此也可以采用其他的方法来得到不需要还原的石墨烯,现在用得最多的方法是插层、膨胀、剥离的方法,保留了石墨烯的本身结构,效率很高。但这个方法也有问题,很难得到单层或者多层,基本都是无层的石墨烯。我们这个方法是5、6年前开发的,已经在四川德阳产业化,建立了一条生产线。虽然生产线比较小,说老实话目前也卖不出去,如果在座的企业家如果需要销石墨烯,我们可以为你们提供。石墨烯可以做其他的结构,浙江大学的教授做成石墨烯纤维,做成石墨烯薄膜,做成三维的多米结构,从而加以利用。
我们刚刚介绍的是从上到下的方法,为了得到更高质量的、大面积的石墨烯,我们采用了从下到上的方法,就是CVD的方法。
我们2011年开发了常压CVD,在薄膜上生产石墨烯。我们必须要把石墨烯从金属基底上剥离下来,我们一般称之为转移,从金属基底上转移到其他方法,就是酸碱把金属融掉,这样成本很高,当然像贵金属这样很难被酸融掉的金属,这个方法就不太实用。我们应用电解水简单的原理,用点化学鼓泡进行无损转移,这个方法比较好,对金属没有损伤,所以金属可以多次使用,效率比较高,没有污染,产生氢和氧。
大家可以看到视频,这个方法20-30秒以内,我们就可以把石墨烯剥离下来了,效率非常之高。当然单层石墨烯是很脆弱的,我们用镊子剥下来还是有一个保护膜的。这个方法还可以发展成点对点的连续方式,我们在实验室里做的简单的装置,可以连续的转移石墨烯。转移石墨烯以后得到的薄膜,我们可以对折,成为透明导电薄膜做触摸屏。10英寸的触摸屏是我们和深圳一家企业用石墨烯薄膜做的屏,触控效果和现在我们使用的ITO,也就是氧化铟锡是一样的。氧化铟锡是陶瓷,没有这样的效果,我们预计未来可穿戴电子上石墨烯有它的用武之地。这是另一个柔性屏,这是OLED的发光器件,发光效果非常好,非常均匀。
刚刚讲了CVD方法是薄膜,如果单纯的石墨烯是0.7毫克,企业界的人士如果想用在锂电或者储能器件上那是非常困难的,成本也太高了。所以CVD方法能不能规模生长石墨烯?因为CVD生产的没有官能团,结构非常完整,质量非常好,我们要把二维的变成三维的生长模式,选择基底材料非常关键。5、6年前我们用泡沫镍,镍上可以长石墨烯,如果泡沫镍生长石墨烯,不是可以得到多孔结构吗?把镍去掉就得到了这样的自支撑的、半透明的三维石墨烯结构,就可以做一系列的材料,包括复合材料。
我简单介绍了石墨烯的制备,因为时间关系不能过细的讲。我们现在可以得到石墨烯材料多种多样,从薄膜到分体,到纤维,到多层膜,到三维的结构。有了这些石墨烯,我们就可以考虑做一些应用。其中科学家们探索比较多,大家也经常能听到这样、那样消息的应用就是储能方面的应用,我用剩下的十几分钟时间介绍一下石墨烯在储能中的可能应用。
石墨烯有这些特点,二维结构、导电性能非常好,非常好官能化,稳定性非常好,确实可以在电化学储能中有它的用武之地。他可以在多种储能中应用,刚刚探索了很多,从锂离子电池、纳离子电池、超级电容器、柔性储能器件和液流电池等等,组成部分也多,可以做活性物质、导电网络、催化剂、催化剂载体、界面材料、基体材料等等,我下面就分别做一些简单的介绍。
比方说锂离子和超级电容器中的应用。
首先一个是对于应用来说,我觉得越简单越好,比较早的工作是金属集体流的涂层材料,这是实验室的结果,涂的面积很大了,我们找了一家公司给我们涂的。涂了以后在铝箔或者铜箔上涂,涂了以后再把磷酸铁锂或者碳酸锂涂布上去,组装成电池。大家可以看到涂了很薄的石墨烯涂层以后,电池的被黏合性得到了极大的提升。
第二,现在已经产业化的作为导电添加剂来加以应用。目前据说有些公司已经采用了石墨烯导电添加剂,这也是我们很多年以前做的一个工作,确实发现用石墨烯替代导电,在添加剂比较少的情况下,循环利用性和被黏合性得到很好的保持。当然碳酸锂被黏合性比较好,在充放电情况下仍然获得比较好的稳定性。
第三,有很多会说石墨烯是否可以作为负极材料?我们最早也是这么想的,所以一开始得到克量级的石墨烯就开始做锂电,结果发现容量非常高,大家可以看到不同种类的石墨烯容量不太一样,但具有非常高的不可逆,大家知道不可逆容量很高,我们的材料就很难被实际应用了。因为有很高的表面面积,很高的官能团和非常多的缺陷等等,形成了能够使锂被留在材料中而不能循环使用。
另外一个考虑,我们想能不能把石墨烯作为一个载体来与高容量复合?这方面做得比较多,我们知道比较容易团聚、导电性差,容易体积膨胀,我们想能不能二者结合起来,发挥协同效应,用石墨烯一直氧化物的团聚体积变化,一直石墨烯的再堆叠,石墨烯有很高的导电网络,从而提高稳定性和被黏合性。这非常简单的,从夹心饼干到三明治,到包子等等,做起来也是非常简单的。因为石墨烯或者氧化石墨烯容易分散在水溶液中,石墨烯有很多官能团,氧化物会形成、长大,形成拉敏性,这也是非常早期的工作,可能是最早的石墨烯复合材料之一了。大家可以看到石墨烯工作之后,循环稳定性和被黏合性得到很大的提升,当然遗憾的是存在首次效率的问题,不可逆容量还是比较高。
加上石墨烯以后氧化可以形成非常简单的拉敏基,它的循环稳定性和黏合性得到很大的改善。如果我们简单的结算,发现1+1大于2,所以有一个协同效应,所以我们也想有没有办法把宏观的机制进行研究。我们从宏观和微观的都进行了研究,发现加了石墨烯可以抑制氧化物的颗粒粉化,大家看动画,这是高分子,下面一片是石墨烯,上面是氧化镍拉力片,这也是世界上首次直接观察到石墨烯确确实实可以抑制氧化物的。
第二方面,石墨烯在锂硫电池中的应用。容量比我们使用的锂离子电池高很多,但问题也高很多,容量下降非常快,被黏合性很大。因为硫不导电,多硫化物在正负极之间穿梭效应,同时有70%-80%的体积膨胀,导致循环性很差。所以科学家一直在进行研究。随着研究的推进,进展已经大,有机是硫正极部分。石墨烯在锂硫电池中应用比较多,使得穿梭效应减到最低。
还有一种方法是利用石墨烯很容易成膜、三维结构,具有很好的导电性,又是多孔结构,我们可以把它进行集成电级结构的设计,抑制穿梭,利用它的高导电性。我们比较早对石墨烯在锂硫进行探索,将硫锚定在石墨烯上,改变被黏合性和循环稳定性。这个方法通过化学合成来实现非常烦琐。同时我们也可以对石墨烯进行氮穿杂,因为多硫化物是极性分子,让他们之间的结合变强,从而抑制穿梭效应。利用石墨烯作为肌体,与金属氧化物和氮化物重合,来控制它的效应。我们用氮化矾,有极强的导电性,与石墨烯合成一个结构,石墨烯与多硫化物结合只有0.74微克,氧化矾有3.7,可以大家提升循环稳定性。
化学方法我刚刚也提到,步骤比较分散,对实用来说并不一定有很好的效果,所以我们一直在想有没有能够利用石墨烯本身的结构来解决锂硫电池的行为?我这里举两个例子,一个是用石墨烯薄膜是多层结构,能够吸附硫和多硫化物,我们做了双层膜的结构,把石墨烯作为硫的单载体,在隔膜上突破石墨烯作为阻挡层,来改进黏结,吸附多硫化物。结果大家可以看到红色的曲线是石墨烯晶体和石墨烯阻挡层以后我们锂硫电池相对其他有很大的提升。薄膜非常容易制备,涂层也很容易做,用简单的方法改进性能非常理想。我们最近做了多层集成结构,用部分氧化还原的石墨烯来吸附多硫化物,用多孔的石墨烯单载硫,用高导电的石墨烯作为晶体,这样硫的含量达到80%,这样容量比较高。这些结果也预示着有可能石墨烯在硫电池里的应用。
未来的便携式电子可能会导向可穿戴电子的方向发展,当然储能器件也要走向这个方式。因此我们需要开发能够针对可弯折器件、可拉伸器件等便携式电子器件来开发相应的储能材料。所以我们用石墨烯做了一个探索,将石墨烯与导电高分子结合,用于柔性的超级电容器,柔软性很高,循环稳定性也很好。刚刚介绍的CVD生长的石墨烯,活性物质直接组装到结构力,不需要黏结剂,稳定性非常好,被黏合性也非常好。
最后一个,我们尝试了石墨烯可以在液流电池中应用像钒液流电池,我们设计了梯度双功能的石墨烯电极,一边有很高的含氧官能团,一边是非常低的含氧官能团的石墨烯,具有很高的导电性,利用这个结构来做矾液流的电极,和其他的电极比具有非常好的还原性。除了石墨烯以外,二维材料家族是非常庞大的,MOX、MX等等,我们可以进行进一步探索。
最后做一个小结,石墨烯材料目前来看有可能用于各种不同的智能器件的,也可以起各种不同的作用。实际上这个过程比较遥远,我们还需要做很多工作。比方说针对不同应用的材料规模制备和质量控制,还有分散的控制,还有与储能紧密相关的SEI的形成与控制,储能机制的理解,首先库仑效率与循环性能的提升。虽然石墨烯在逐步商业化,但将石墨烯全面用于储能器件中还有一条比较长的路要走,我相信石墨烯在变换的储能领域里有比较强的前景。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
作者:樊慧敏1彭浩鸿1孟辉1唐梦宏1易昊昊1丁静1刘金成1徐成善2冯旭宁2单位:1.惠州亿纬锂能股份有限公司2.清华大学引用本文:樊慧敏,彭浩鸿,孟辉,等.储能电池模组膨胀力特性研究及仿真分析[J].储能科学与技术,2025,14(6):2488-2497.DOI:10.19799/j.cnki.2095-4239.2024.1210本文亮点:1.对模组全SOC的
“中国国际石墨烯创新大会”是由中国石墨烯产业技术创新战略联盟联合欧盟、英国、马来西亚、巴西、澳大利亚等各国石墨烯权威机构共同发起的全球石墨烯行业盛会。“2025年中国国际石墨烯创新大会”将由石墨烯产业技术创新战略联盟(CGIA)和正泰集团联合主办,将于2025年11月14日至16日在温州市(乐清)举办
在人工智能浪潮席卷全球的今天,开放与理性成为拥抱AI时代的两大核心姿态。7月3日-4日,亚布力中国企业家论坛第十一届创新年会在杭州召开,以“拥抱AI:开放与理性”为主题,汇聚AI领域领航者与各行各业企业家精英,共绘科技发展的宏伟蓝图,共探无限可能的崭新篇章。会议期间,亚布力中国企业家论坛轮
北极星储能网获悉,2025年7月1日,国家石墨烯联盟在上海石墨烯应用科技孵化园举行新闻发布会,宣布全球首创石墨烯全固态电池即将大规模量产。技术优势能量密度高:与传统电池相比,石墨烯全固态电池具备更高的能量密度,可使电动汽车续航里程大幅提升,有望突破2000公里,为电动汽车、储能系统等领域带
作者:贺瑞璘1张通1吴镓淳1王朝阳3邓永红1张光照1许晓雄2单位:1.南方科技大学材料科学与工程系2.南方科技大学创新创业学院3.华南理工大学材料学院引用本文:贺瑞璘,张通,吴镓淳,等.骨架型材料与设计在高比能锂电池中的应用研究进展[J].储能科学与技术,2025,14(5):1758-1775.DOI:10.19799/j.cnki.2095
福州大学1日披露,该校校长吴明红与马来西亚拉曼大学校长尤芳达当天在拉曼大学双溪龙校区签署《福州大学—拉曼大学未来技术联合研究院合作协议》,并共同为研究院揭牌。此次合作是两校在2024年签署校级合作协议基础上的进一步深化。该联合研究院立足马来西亚,辐射东南亚等共建“一带一路”国家与地区
作者:陈海生1李泓2徐玉杰1徐德厚3王亮1周学志1陈满4胡东旭1林海波1,2李先锋5胡勇胜2安仲勋6刘语1肖立业7蒋凯8钟国彬9王青松10李臻11康飞宇14王选鹏15尹昭1戴兴建1林曦鹏1朱轶林1张弛1张宇鑫1刘为11岳芬11张长昆5俞振华11党荣彬2邱清泉7陈仕卿1史卓群1张华良1李浩秒8徐成8周栋14司知蠢14宋振11赵新宇16
北极星售电网获悉,6月29日,贵州省人民政府发布2025年贵州省重大工程和重点项目名单,其中包括修文县首融独立储能电站及虚拟电厂项目、贵安新区源网荷储一体化及多能互补建设项目等共3199个。详情如下:2025年贵州省重大工程和重点项目名单(共3199个)一、四化项目(2438个)(一)新型工业化(1429
产业界对硫化物全固态电池的参与热情高涨,称其已进入商业化的“最后一公里”。然而,现实似乎更为复杂。一项即将成熟的电池技术,其上下游关键材料理应出现更明确的突破与工程化信号,但为何在新一代集流体领域,我们看到的却是路径分化、充满不确定性的景象?理论与现实之间的“温差”,或许揭示了集
6月19日,《2025年中国电器行业系列白皮书》(以下简称“《白皮书》”)发布会在上海隆重举行。正泰连续五年蝉联六星企业,并以市占率15.5%,内资第一的优势领跑,通过“技术创新+全球化布局”双轮驱动,持续扩大市场领先优势。本次活动由中国电器工业协会指导,知名工业研究机构格物致胜主导发布,吸
近期,全国首座LONGiHiROOFS工商业光伏电站,山东恒圣新材料有限公司二期光伏项目成功并网发电。作为一家专注于石墨烯新材料及光伏新能源产品研发、生产与销售的高新技术企业,恒圣新材料在业务高速发展中,面临用电成本攀升、稳定性需求高和节能减排的多重压力。这座光伏电站的落成,不仅为企业自身解
北极星储能网获悉,藏格矿业股份有限公司(以下简称“公司”)全资子公司格尔木藏格钾肥有限公司(以下简称“藏格钾肥”)于2025年7月16日收到海西州自然资源局、海西州盐湖管理局下发的《关于责令立即停止锂资源开发利用活动的通知》。《通知》要求严格依照国家法律法规,切实履行企业主体责任,立即
北极星储能网获悉,7月15日,杉杉股份在2025年半年度业绩预增公告中表示,实现归属于上市公司股东的净利润16,000万元至24,000万元,与上年同期(法定披露数据)相比,将增加14,242.55万元至22,242.55万元,同比增加810.41%至1265.61%;预计2025年半年度实现归属于上市公司股东的扣除非经常性损益后的净
SKOn将以北美储能系统市场为目标,加速其磷酸铁锂电池业务,努力建立一个可靠的供应链来支持其最新的合资企业。7月15日,SKOn宣布,公司近日与LF就向北美市场供应LFP阴极材料签署了谅解备忘录。在SKOn看来,与总部位于韩国的主要电池材料制造商LF合作,积极应对美国对LFP电池不断增长的需求,旨在加强
北极星储能网获悉,7月10日,科力远披露,公司目前已取得储能项目建设所需批准备案、即将投建的有河北省合计400MW/1000MWh规模、山东省合计400MW/800MW规模、内蒙古合300MW/1200MWh规模、广东100MW/200MWh规模的8个独立储能及共享储能项目。预计将于今年3-4季度逐步释放。另有各类型储能应用场景储备项
北极星储能网获悉,7月10日,恩捷股份在2025年半年度业绩预告中表示,2025年1月1日至2025年6月30日间,归属于上市公司股东的净利润亏损8,265.00万元-10,735.00万元,扣除非经常性损益后归属于上市公司股东的净利润亏损8,320.00万元-10,790.00万元,基本每股收益亏损0.09元/股-0.11元/股,整体业绩预计
北极星储能网获悉,7月8日,璞泰来在投资者互动平台上披露业务布局情况。在半固态电解质膜方面,半固态电池生产仍需要采用湿法+涂覆的工艺,但工艺参数要求和技术难度更高,公司已有相应的技术和产能储备。公司产品在340Wh/kg高硅碳体系、400Wh/kg锂金属体系中,Ah级别电芯1C充电倍率循环已达到约500周
我国固态电池再获里程碑式进展。近日,由奇瑞参股的安徽安瓦新能源宣布,其自主研发的GWh级新型固态电池生产线首批工程样件成功下线。至此,我国目前的GWh级固态电池生产线有望增至7条,并且超过30条固态电池中试线几乎齐头并进。这些项目的推进,一方面标志着国内固态电池产业快速发展,另一方面已预
作者:刘德帅1朱慧琴1孙睿浩1李蒙2巩文豪2李晓辉2钱伟伟2,3单位:1.郑州中科新兴产业技术研究院,河南省储能材料与过程重点实验室2.龙子湖新能源实验室,氢能储能中心3.中国科学院过程工程研究所,离子液体清洁过程国家重点实验室引用本文:刘德帅,朱慧琴,孙睿浩,等.双添加剂协同提升钠离子电池循环稳
2025年6月30日,蜂巢能源与泰国万浦集团合资建设的泰国春武里SVOLT泰国工厂迎来第10000套EV电池包下线。蜂巢能源泰国基地总经理陈磊、副总经理张建欣,万浦集团子公司BanpuNEXTCEOSmittiponSrethapramote、高级副总裁Suwit作为合资方代表,长城东盟副总裁李光宇作为客户方代表,莅临现场共同见证这一里
北极星储能网获悉,6月30日,据恩捷股份消息,为加速推进硫化物固态电解质材料的规模化量产进程,完善固态电池核心材料战略布局,恩捷股份旗下湖南恩捷前沿新材料科技有限公司子公司——玉溪恩捷前沿新材料科技有限公司(简称“玉溪恩捷前沿”)日前在云南玉溪正式成立。恩捷股份表示,玉溪恩捷前沿将
6月30日,硅宝科技在投资者互动平台表示,公司硅碳负极材料主要用于高能量密度锂电池制备,可以应用于液态、半固态和固态电池。公司将积极拓展市场,加大销售,满足客户及市场需求。
广东灵活调节能力现状及提升路径分析——《新型电力系统下广东灵活调节能力分析及提升举措》摘编王雪辰/整理(中能传媒能源安全新战略研究院)在构建新型电力系统进程中,电力系统的运行特性发生了根本性的变化。新能源大规模接入电网,导致电力系统的灵活调节需求急剧攀升,传统电力系统的灵活调节能
7月16日,中国电力企业联合会电动交通与储能分会发布《电化学储能行业发展报告2025》(简称《报告》)。其中显示,2024年电化学储能运行效率与商业价值实现“双突破”,平均转换效率达88.75%。《报告》分析了9个省份独立储能运营模式,以江苏为例,“充放电价差+顶峰补贴+容量租赁+储能补贴”模式,50M
2025年7月14日,甘肃省发布《关于建立发电侧容量电价机制的通知(征求意见稿)》,成为全国首个推出“全容量+四大补偿”电价政策的省份。为何甘肃在稀缺定价、容量市场、容量补偿三种主流机制中独选后者?这需要从机制本质差异出发,结合我国电力市场建设展开系统性分析。(来源:电联新媒作者:闫鑫)
北极星售电网获悉,7月15日,广州市发展和改革委员会发布关于市十六届人大五次会议第20252856号建议答复的函。答复文件明确,中国人民银行、国家金融监管总局、中国证监会、国家外汇局、广东省人民政府联合印发的《关于金融支持广州南沙深化面向世界的粤港澳全面合作的意见》发布,意见第9条“创新服务
作者:樊慧敏1彭浩鸿1孟辉1唐梦宏1易昊昊1丁静1刘金成1徐成善2冯旭宁2单位:1.惠州亿纬锂能股份有限公司2.清华大学引用本文:樊慧敏,彭浩鸿,孟辉,等.储能电池模组膨胀力特性研究及仿真分析[J].储能科学与技术,2025,14(6):2488-2497.DOI:10.19799/j.cnki.2095-4239.2024.1210本文亮点:1.对模组全SOC的
对光伏人来说,2025年又是一个让人心惊肉跳的5·31。2018年的5·31,因为累计20年待支付光伏发电补贴费用超过1万亿元,中央政府对光伏新建项目急刹车。在政策的影响下,光伏装机容量装机大跌、产业链大量企业倒逼,投资商资金链断裂。这段光伏项目业主和光伏产业链上生产企业遭受灭顶之灾的历史,让广
北极星储能网获悉,7月15日,新疆天业在投资者互动平台上表示,为发展石河子市新能源产业,助力公司走好绿色低碳高质量发展之路,公司与国电投(深圳)能源发展有限公司共同投资设立项目公司,投资、建设和经营管理十户滩工业园区200MW源网荷储一体化项目,该项目规划石河子及周边地区建设包含200MW光
7月11日晚,在国网山东省电力公司调度控制中心统一指挥下,山东144座新型储能电站在晚高峰精准启动,集中向电网输送电能,最大放电功率达803.59万千瓦,相当于济宁市度夏期间的用电负荷水平。近年来,随着新能源发电装机比例不断提升,它的随机性、间歇性和波动性加剧了电网平衡难度。以7月5日山东电网
北极星氢能网获悉,7月10日,海南省人民政府关于印发《海南低碳岛建设方案》的通知。文件指出,2030年前,全省实现碳达峰,经济社会发展向低碳方向快速迈进。2045年前,全面建成低碳岛,全省二氧化碳年排放量比峰值期下降70%,建成零碳、高效、智慧、韧性、安全的新型能源系统。2060年前,全省实现碳中
绿证作为可再生能源电力消费凭证,用于可再生能源电力消费量核算、可再生能源电力消费认证等,1个绿证对应1000千瓦时可再生能源电量。国家发展改革委、财政部、国家能源局《关于做好可再生能源绿色电力证书全覆盖工作促进可再生能源电力消费的通知》(发改能源〔2023〕1044号)明确,绿证是我国可再生
北极星储能网获悉,7月14日,大连市工业和信息化局发布对市政协十四届四次会议第0110号提案的答复,提到加强人才培养。大连理工大学2024年新增储能科学与工程本科专业,实施本硕博贯通长周期培养模式。在电化学储能、液流电池、固态电池、压缩空气储能、氢能、储能装备与安全、能源互联网等关键技术及
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!