登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
(2)供暖:区域外热网+冷热电三联供+地源热泵+电采暖(配合储热)。
价值创造:通过热电联产提升热能的利用效率;储热作为电力系统的部分“虚拟储能”为电力系统提供了灵活性,降低对区域外热网供应的刚性需求,提升了热电厂灵活性,同时配合电采暖联合运行降低供暖成本。
(3)供冷:冷热电三联供+电空调+蓄冷。
价值创造:与供暖类似,冷热电三联供提升了制冷效率,冰蓄冷为电力系统提供灵活性,同时配合电空调联合运行降低供冷成本。
(4)生活热水供应:光热+冷热电三联供+燃气热水+电热水。
价值创造:充分利用可再生能源降低热水供应成本,冷热电三联供充分利用了低品位的热源,燃气热水和电热水为生活热水的供应提供灵活性。
在多能源系统的物理基础上,需要提出综合能源监控系统的体系架构和功能应用,在统一的平台上实现电、气、热、冷等多能源的集中信息采集,实时监测控制,统一调度运行,并延伸为用户提供增值服务是需要研究的难点及关键点。针对这个关键点,一方面需要研究面向调度运行、分析决策、交易结算等不同业务,面向用户、运营商等不同对象的监控系统自动化、信息化、智能化功能架构、信息体系、设备参数和二次网络结构;基于区域能源互联网商业模式和分布式能源对能源传输网络影响的定性、定量分析,研究含分布式能源的电、气、热、冷等多能源综合调度运行方法。另一方面需要研究基于综合能源调度运行与监控系统的区域能源控制中心总体构架和主要功能,提出包含交易层、调控层、生产管理层及增值服务层等多层次的综合能量管理控制系统工作机制和应用流程;研究区域能源互联网信息安全体系。
3.3.2 基于多能源系统的综合需求响应策略设计
区域能源互联网利用智能需求侧管理引导用户合理用能,实现对能源负荷进行削峰填谷,降低能源备用、能源设备投资。根据太原地区的实际情况,如何基于多能源系统制定智能需求侧管理互动机制,准确设计综合需求侧响应的市场交易机制是需要研究的关键点,如何对需求响应资源的互动效益进行评估是需要研究的难点。
针对目前综合需求响应研究较少的现状,需要研究综合需求响应的基础理论和基本模型,建立基于多能源系统的电—热/冷、电—气需求响应弹性计算模型,提出综合需求响应潜力评估模型。另外需要对综合需求响应资源给电网运行带来的经济效益与社会效益进行全方位分析,建立综合需求响应资源互动效益计算模型,评价不同类型需求侧响应对售电公司售电利润的影响,在此基础上针对山西电网煤电机组为主的特点,研究综合需求侧响应对改善火电机组运行能耗的影响,测算综合需求侧响应带来的节能减排效益。
3.3.3 区域能源互联网运营与商业模式
区域能源互联网的投资建设及运营需要社会各方的参与。面对新一轮电力体制改革,供电公司作为区域能源互联网主体运营商,该制定何种运营和商业模式是需要研究的难点及关键点。
针对这个关键点,需要对主体运营商的运营与商业模式、分布式能源和综合需求响应的商业模式与效益、考虑传输容量约束的多能源系统运行方法三个方面进行分析与研究。
首先,针对区域能源公司的运营与商业模式进行调研,重点研究国内外区域电、气、热、冷综合供应商的运营模式。在此基础上,研究新一轮电改中关于售电侧的市场机制和国家政策,以掌握区域能源公司运营的政策背景。在此背景下,调研太原地区电、热、冷、气能源交易现状,研究区域能源公司在“互联网+”背景下的购售电、个性化服务等商业模式,并研究支撑这些商业模式的市场交易机制。研究能够协同能源购售、第三方分布式能源、分布式储能、以及用户互动的区域能源公司运营模式。
其次,调研我国现行分布式能源补贴政策以及太原地区终端电价、热价、气价信息,结合新一轮电改带来的售电侧“红利”,研究分布式能源在销售侧市场放开情况下的盈利空间,给出不同情境下的盈利范围。采用运行模拟的方法,分析不同投资机制下分布式能源的经济效益;对于需求响应资源种类进行调研,按照不同的参照标准对于需求响应资源进行分类,分析不同类型的需求响应资源的响应特点,分析每种需求响应资源能够发挥的潜在效益,在此基础上设计基于多能源系统的综合需求管理商业模式。
最后,根据山西科创城的规划情况,选取合理的负荷指标及动态模型,对园区的电、热、冷负荷需求进行动态预测分析,绘制区域内不同季节典型日的逐时负荷曲线及年负荷曲线。综合以上结果,设计区域能源公司运营效益最大化、考虑传输容量约束的多能源系统运行方法。特别是针对不同季节太原地区对电、热、冷、气需求量的差异,设计经济效益最大化的多种运行方式。
4 结语
明晰与界定区域能源互联网创造的价值是实现能源互联网价值创造以及将创造的价值在多方投资主体和用户之间进行合理分配的前提。在区域能源互联网的框架之下,电、气、热、冷各类能源及相应技术相互耦合、协同互补,形成了区别于传统分立能源系统的多能源系统,提高了能源利用效率,降低了整个能源供应系统的运营成本,这便是区域能源互联网创造的价值。在介绍了能源互联网的三层架构与多能源系统的基本概念的基础上,本文阐述了能源互联网价值的创造与实现途径以及能源互联网价值的分配模式。以山西太原区域能源互联网的规划建设为实例,对太原区域能源互联网的建设背景、潜在价值、关键问题和难点以及技术路线几个方面进行了总结和展望。
参考文献
[1] 李克强.政府工作报告—2015年3月5日在第十二届全国人民代表大会第三次会议上[Z/OL].http://www.gov.cn/guowuyuan/2015-03/16/content_2835101.htm.
[2] 国家发展改革委和国家能源局.能源发展“十三五”规划[Z/OL].http://www.ndrc.gov.cn/zcfb/zcfbtz/201701/t20170117_835278.html.
[3] 董朝阳,赵俊华,文福拴,等.从智能电网到能源互联网:基本概念与研究框架[J]. 电力系统自动化,2014,38(15):1-11.
Dong Zhaoyang, Zhao Junhua, Wen Fushuan, et al.From Smart Grid to Energy Internet: Basic Concept and Research Framework[J].Automation of Electric Power Systems, 2014,38(15): 1-11(in Chinese).
[4] 张宁,王毅,康重庆,等. 能源互联网中的区块链技术:研究框架与典型应用初探[J]. 中国电机工程学报,2016,36(15):4011-4022.
Zhang Ning, Wang Yi, Kang Chongqing, et al.Blockchain Technique in the Energy Internet: Preliminary Research Framework and Typical Applications[J].Proceedings of the CSEE, 2016, 36(15): 4011-4022(in Chinese).
[5] 孙宏斌,郭庆来,潘昭光.能源互联网:理念、架构与前沿展望[J].电力系统自动化,2015,39(19):1-8.
Sun Hongbin, Guo Qinglai, Pan Zhaoguang.Energy Internet:Concept, Architecture and Frontier Outlook [J].Automation of Electric Power Systems, 2015, 39(19): 1-8(in Chinese).
[6] 国家发展改革委,国家能源局和工业和信息化部.关于推进“互联网+”智慧能源发展的指导意见[Z/OL].http://www.gov.cn/xinwen/2016-03/01/content_5047633.htm.
[7] 国家能源局.关于组织实施“互联网+”智慧能源(能源互联网)示范项目的通知[Z/OL].http://www.bjdch.gov.cn/n1515644/n2022693/c4224604/part/4224605.pdf.
[8] 国家能源局.关于公布首批“互联网+”智慧能源(能源互联网)示范项目的通知[Z/OL].http://zfxxgk.nea.gov.cn/auto83/201707/t20170706_2825.htm.
[9] 贾宏杰,王丹,徐宪东,等.区域综合能源系统若干问题研究[J].电力系统自动化,2015,39(7):198-207.
Jia Hongjie, Wang Dan, Xu Xiandong, et al.Research on Some Key Problems Related to Integrated Energy Systems[J].Automation of Electric Power Systems, 2015, 39(7): 198-207(in Chinese).
[10] 王毅,张宁,康重庆.能源互联网中能量枢纽的优化规划与运行研究综述及展望[J].中国电机工程学报,2015,35(22):5669-5681.
Wang Yi, Zhang Ning, Kang Chongqing.Review and Prospect of Optimal Planning and Operation of Energy Hub in Energy Internet[J].Proceedings of the CSEE, 2015, 35(22):5669-5681(in Chinese).
[11] 邵成成,王锡凡,王秀丽,等.多能源系统分析规划初探[J].中国电机工程学报,2016,36(14):3817-3828.
Shao Chengcheng, Wang Xifan, Wang Xiuli, et al. Probe into Analysis and Planning of Multi-Energy System[J]. Proceedings of the CSEE, 2016, 36(14): 3817-3828(in Chinese).
[12] 杨经纬,张宁,王毅,康重庆.面向可再生能源消纳的多能源系统:述评与展望[J/OL].电力系统自动化,2018.http://aeps-info.com/aeps/ch/reader/view_abstract.aspx?edit_id=20180110100254905&flag=2&file_no=201710020000004&journal_id=aeps.
Yang Jingwei, Zhang Ning, Wang Yi, Kang Chongqing.Review and Prospect of Multiple Energy Systems Towards Renewable Energy Accommodation[J/OL]. Automation of Electric Power Systems, 2018. http://aeps-info.com/aeps/ch/reader/view_abstract.aspx?edit_id=20180110100254905&flag=2&file_no=201710020000004&journal_id=aeps.
[13] Quelhas A, Gil E, Mccalley J D, et al.A Multiperiod Generalized Network Flow Model of the U.S.Integrated Energy System: Part I—Model Description[J].IEEE Transactions on Power Systems, 2007, 22(2): 829-836.
[14] Meibom P, Hilger K B, Madsen H, et al.Energy Comes Together in Denmark: The Key to a Future Fossil-Free Danish Power System[J].IEEE Power & Energy Magazine, 2013,11(5): 46-55.
[15] Geidl M, Koeppel G, Favre-Perrod P, et al.Energy Hubs for the Future[J].Power & Energy Magazine IEEE, 2007, 5(1):24-30.
[16] Wang Y, Zhang N, Kang C, et al.Standardized Matrix Modeling of Multiple Energy Systems[J].IEEE Transactions on Smart Grid, accepted, in press.DOI: 10.1109/TSG.2017.2737662.
[17] Chicco G, Mancarella P.Matrix Modelling of Smallscale Trigeneration Systems and Application to Operational Optimization[J].Energy, 2009, 34(3): 261-273.
[18] Wang Y, Zhang N, Zhuo Z, et al.Mixed-Integer Linear Programming-Based Optimal Configuration Planning for Energy Hub: Starting from Scratch[J].Applied Energy,accepted, in press.DOI: 10.1016/j.apenergy.2017.08.114.
[19] Geidl M, Andersson G.Optimal Power Flow of Multiple Energy Carriers[J].IEEE Transactions on Power Systems,2007, 22(1): 145-155.
[20] Unsihuay C, Lima J W M, Souza A C Z D.Modeling the Integrated Natural Gas and Electricity Optimal Power Flow[C].Power Engineering Society General Meeting.IEEE, 2007: 1-7.
[21] Li T, Eremia M, Shahidehpour M.Interdependency of Natural Gas Network and Power System Security[J].IEEE Transactions on Power Systems, 2008, 23(4): 1817-1824.
[22] 龙虹毓,马建伟,吴锴,等.含热电联产和风电机组的电网节能调度[J].电力自动化设备,2011,31(11):18-22.
Long Hongyu, Ma Jianwei, Wu Kai, et al.Energy Conservation Dispatch of Power Grid with Mass Cogeneration and Wind Turbines[J].Electric Power Automation Equipment,2011, 31(11): 18-22(in Chinese).
[23] Nuytten T, Claessens B, Paredis K, et al.Flexibility of a Combined Heat and Power System with Thermal Energy Storage for District Heating[J].Applied Energy, 2013, 104(4):583-591.
[24] Lund H, Clark W W.Management of Fluctuations in Wind Power and CHP Comparing Two Possible Danish Strategies[J].Energy, 2002, 27(5): 471-483.
[25] Geidl M, Andersson G.Optimal Coupling of Energy Infrastructures[C]. Power Tech, 2007 IEEE Lausanne.IEEE,2008: 1398-1403.
[26] Sheikhi A, Ranjbar A M, Oraee H.Financial Analysis and Optimal Size and Operation for a Multicarrier Energy System[J].Energy & Buildings, 2011, 48(1): 71-78.
[27] Ren H, Gao W, Ruan Y.Optimal Sizing for Residential CHP System[M]. Challenges of Power Engineering and Environment.Springer Berlin Heidelberg, 2007: 514-523.
[28] Arcuri P, Florio G, Fragiacomo P.A Mixed Integer Programming Model for Optimal Design of Trigeneration in a Hospital Complex[J].Energy, 2007, 32(8): 1430-1447.
[29] Ooka R, Komamura K.Optimal Design Method for Building Energy Systems Using Genetic Algorithms[J].Building &Environment, 2009, 44(7): 1538-1544.
[30] Chicco G, Mancarella P.From Cogeneration to Trigeneration:Profitable Alternatives in a Competitive Market[J]. IEEE Transactions on Energy Conversion, 2006, 21(1): 265-272.
[31] Zhang X, Shahidehpour M, Alabdulwahab A, et al. Optimal Expansion Planning of Energy Hub With Multiple Energy Infrastructures[J].IEEE Transactions on Smart Grid, 2017,6(5): 2302-2311.
[32] Qiu J, Yang H, Dong Z Y, et al.A Linear Programming Approach to Expansion Co-Planning in Gas and Electricity Markets[J].IEEE Transactions on Power Systems, 2016,31(5): 3594-3606.
[33] 国家发展改革委和国家能源局.关于推进多能互补集成优化示范工程建设的实施意见 [Z/OL].http://www.ndrc.gov.cn/zcfb/zcfbtz/201607/t20160706_810652.html.
[34] 封红丽.国内外综合能源服务发展现状及商业模式研究[J]. 电器工业,2017,(06):34-42.
Feng Hongli.Research on the Development Status and Business Model of Integrated Energy Services at Home and Abroad[J].China Electrical Equipment Industry, 2017, (06):34-42 (in Chinese).
[35] 徐沛宇.综合能源供应商萌芽[J].中国能源,2016(12):49-51.
Xu Peiyu.Budding of Integrated Energy Suppliers[J].Energy of China, 2016(12): 49-51 (in Chinese).
[36] 山西省人民政府.关于积极推进“互联网+”行动的实施意见[Z/OL]. http://www.gov.cn/zhengce/2016-02/24/content_5045499.htm.
[37] 太原市人民政府.太原市推进“互联网+”行动实施方案[Z/OL]. http://www.taiyuan.gov.cn/zfwjzflgfgfxwj/334931.jhtml.
黄武靖
作者简介:黄武靖(1995),男,博士研究生,主要从事多能源系统的建模、运行和规划的研究工作,E-mail:hwj17@mails.tsinghua.edu.cn。
张宁(1985),男,副教授,主要从事新能源、电力系统规划及运行、多能源系统的研究工作,E-mail:ningzhang@tsinghua.edu.cn。
董瑞彪(1967),男,高级工程师,主要从事电力系统规划与运行、区域能源互联网的研究工作,E-mail:tydrb214@163.com。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
当今世界正处于百年未有之大变局,全球能源危机带来的压力使得能源市场、地缘政治和全球经济无法稳定发展,进一步破坏的风险始终存在。同时,由于能源系统电气化程度的提高,电力的增长速度持续超过能源需求总量的增长,电力供应愈加影响着经济、区域发展以及许多其他领域,电力安全和可负担性在许多国
在“双碳”目标与电力市场化改革的双重驱动下,一种无烟囱、无冷却塔,却能调度百万千瓦级资源的“隐形电厂”正在全球崛起——这就是虚拟电厂(VirtualPowerPlant,VPP)。它不生产一度电,却通过算法与数据将零散的分布式光伏、储能、电动汽车乃至空调负荷,编织成一张覆盖全社会的能源互联网。从特斯
4月28日,全国首个农村配电台区“车网互动”微电网在江苏省成功投运。该项目位于南通市通州区东社镇杨港居,整个微电网系统设有30千瓦的车棚光伏发电装置,4座80千瓦的“V2G”直流充电桩、6座7千瓦的普通充电桩,1台100千瓦时的储能柜和1台STS开关并离网柜。据介绍,该装置通过智慧微网,除满足周边村
4月27日,作为国家首批增量配电业务改革试点单位的宿迁运河港配售电有限公司,正式完成虚拟电厂注册,开启增量配电网转型发展新纪元。通过数智化技术聚合分布式能源、储能及可控负荷,成功构建起“源网荷储”协同互动的虚拟电厂运营体系,实现传统配电业务与新兴能源服务的深度融合,为新型电力系统建
4月28日-30日,全球能源互联网发展合作组织(以下简称“合作组织”)主席、中国电力企业联合会理事长辛保安带队赴陕西西安开展会员单位走访调研,与西安交通大学、陕西投资集团有限公司、隆基绿能科技股份有限公司相关负责人举行会谈。辛保安介绍了合作组织工作情况。他表示,作为我国首个能源领域国际
编者按近日,国家发展改革委、国家能源局发布《关于加快推进虚拟电厂发展的指导意见》,规范虚拟电厂的定义和定位,进一步理顺了虚拟电厂建设运行管理、参与电力市场机制等问题。本报邀请国网能源研究院有限公司能源互联网研究所对《意见》进行解读。近年来,我国风电、光伏发电等新能源发电装机高速增
北极星售电网获悉,新疆和布克赛尔县增量配电网项目一期EPC总承包(一标段)公开招标,预算金额3.35亿元,招标人为中食寰纪(和布克赛尔)能源发展有限公司。详情如下:活动推荐:第五届智能配电网建设研讨会在能源革命与数字技术深度融合的背景下,智能配电网不仅是能源互联网的“神经末梢”,更是实
2025年4月10日上午,全国电力系统管理及其信息交换标准化技术委员会“电力系统动态监测工作组”(以下简称“工作组”)主任张道农一行到访金风科技股份有限公司(以下简称“金风科技”)达坂城零碳风电装备数字工厂进行参观及技术交流。工作组一行深入全球领先的风电装备制造基地,实地考察智能化生产体
北极星售电网获悉,4月25日,内蒙古科尔沁左翼后旗发展和改革委员会发布科尔沁左翼后旗自主创新承接产业转移示范区增量配电网项目投资运营主体优选结果公示,项目投资运营主体为通辽市广通新能源有限公司。项目建设内容:配电区域内规划建设一座220千伏变电站、三座66千伏变电站及配网等。项目配电区域
4月25日下午,清华大学能源互联网创新研究院建院10周年暨第三届能源智库高质量发展论坛在清华大学中央主楼后厅成功举办。本次论坛以“能创十载,智绘未来”为主题,由清华大学能源互联网创新研究院(以下简称"研究院")常务副院长高文胜主持。来自国家部委、重点企业、行业协会、科研院所等机构的代表
在加快建设新型能源体系的战略指引下,2024年国家发改委、国家能源局等部委出台了一系列关于加快构建新型电力系统的纲领性政策和建设新能源供给消纳体系、加强电网调峰储能、智能化调度、配电网高质量发展等各电力关键环节的指导意见,强调要深化电力体制改革,统筹发挥源网荷储各类调节资源作用,加快
无锡能源集团聚力加快虚拟电厂功能体系建设,提升虚拟电厂资源聚合规模和运营管理水平。一是加大负荷资源聚合。目前已接入全市光伏、储能、充电桩、楼宇空调、照明设施等资源12121个,总规模400兆瓦,可调负荷近40兆瓦,成为全省规模体量最大的地级市国有虚拟电厂。二是丰富智慧能源场景。持续接入智能
2025年5月7日至9日,在德国慕尼黑智慧能源展的聚光灯下,兴晟能源以创新技术实力与全球视野,再度掀起行业热潮!展会期间,兴晟能源与多家国际企业达成战略合作,进行了现场签约,标志着其全球化战略迈入全新阶段。图1:兴晟能源德国慕尼黑智慧能源展现场五大产品齐亮相,拓展光伏应用新边界展会现场,
5月8日,“2025城市新能源论坛”在大阪世博会中国馆北京活动周期间成功举办。活动期间,来自中日两国的能源领域代表就“绿色智慧能源,安全永续未来”主题进行深入讨论。该论坛由北京市昌平区主办,明阳智能作为唯一一家中国风电企业亮相本次活动。明阳智能业务总裁刘连玉出席论坛,在主题演讲中向全球
北极星储能网获悉,5月10日,安徽马鞍山市和县天能电池基地37.5MW/100.5MWh磷酸铁锂用户侧储能电站项目并网。项目由浙江荣能电力工程有限公司承建、浙江天旺智慧能源有限公司投资,采用磷酸铁锂电池方案,建设规模为37.5MW/100.5MWh。作为用户侧储能电站,运行模式为“削峰填谷”,能够有效调节电力供
北极星储能网获悉,5月12日,中国能建党委书记、董事长宋海良在辽宁鞍山与鞍钢集团党委书记、董事长谭成旭举行会谈。双方就深化绿色低碳转型、绿色燃料替代、数能融合、产业链协同等领域合作进行深入交流,并见证签署战略合作协议。宋海良感谢鞍钢集团长期以来给予中国能建的关心、支持和帮助,并简要
随着新型电力系统加速建设,传统“源随荷动”的平衡模式逐渐向“源网荷储协同互动”转变,充分挖掘负荷侧资源调节能力成为保障电力系统稳定运行的重要支撑。空调负荷具有较强的季节规律、良好的可控性和可短时中断特性,在可调节负荷侧资源中具有较大的调控潜力。以市场化手段挖掘空调负荷调节能力,对
2025年欧洲智慧能源展(IntersolarEurope2025)于5月7日至9日在德国慕尼黑国际展览中心隆重举行。作为影响力最大的光伏行业展会,欧洲智慧能源展汇聚了全球最尖端的技术产品和解决方案。作为数智化光伏支架和系统解决方案专家,安泰新能源携智能跟踪支架解决方案、固定支架全场景解决方案和屋顶光伏设
北极星售电网获悉,5月12日,重庆电力交易中心发布注册后连续12个月未进行实际交易售电公司名单公示(2025年第四批)。按照《售电公司管理办法》(发改体改规〔2021〕1595号)要求,重庆电力交易中心有限公司按月梳理了注册满一年且近12个月未进行实际交易售电公司名单,2024年5月1日至2025年4月30日期
慕尼黑当地时间5月7日,全球瞩目的2025欧洲智慧能源展(ThesmarterEEurope)拉开序幕。作为融捷集团旗下新能源事业板块的核心企业,融捷能源(YoungyEnergy)携多款明星产品亮相,涵盖72Ah至587Ah全容量电芯矩阵、1P52S/1P104S电池PACK、多款工商业户外储能柜及5MWh液冷储能电池舱等,为欧洲市场提供覆
德国当地时间5月7-9日,海辰储能携旗下全场景储能产品矩阵亮相欧洲智慧能源展(ThesmarterEEurope),重磅发布了专为欧洲市场定制的欧版#x221E;Power6.25MWh2h/4h储能系统。该系统凭借极致安全、极易适配、极易维护、超高效益和环保引领五大特性,成功解锁“容量、场景、环保”多重限制,助力欧洲能源
德国当地时间5月7-9日,全球顶尖能源盛会欧洲智慧能源展览会(ThesmarterEEurope)在德国慕尼黑盛大召开。海博思创以“PIONEERINGWITHAI-DRIVENENERGYSTORAGE”为主题,携最新国际化储能解决方案及明星产品矩阵亮相,全面展示公司在技术创新、智能化管理及全球化服务方面的领军实力。展会期间,来自全
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!