登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
(2)供暖:区域外热网+冷热电三联供+地源热泵+电采暖(配合储热)。
价值创造:通过热电联产提升热能的利用效率;储热作为电力系统的部分“虚拟储能”为电力系统提供了灵活性,降低对区域外热网供应的刚性需求,提升了热电厂灵活性,同时配合电采暖联合运行降低供暖成本。
(3)供冷:冷热电三联供+电空调+蓄冷。
价值创造:与供暖类似,冷热电三联供提升了制冷效率,冰蓄冷为电力系统提供灵活性,同时配合电空调联合运行降低供冷成本。
(4)生活热水供应:光热+冷热电三联供+燃气热水+电热水。
价值创造:充分利用可再生能源降低热水供应成本,冷热电三联供充分利用了低品位的热源,燃气热水和电热水为生活热水的供应提供灵活性。
在多能源系统的物理基础上,需要提出综合能源监控系统的体系架构和功能应用,在统一的平台上实现电、气、热、冷等多能源的集中信息采集,实时监测控制,统一调度运行,并延伸为用户提供增值服务是需要研究的难点及关键点。针对这个关键点,一方面需要研究面向调度运行、分析决策、交易结算等不同业务,面向用户、运营商等不同对象的监控系统自动化、信息化、智能化功能架构、信息体系、设备参数和二次网络结构;基于区域能源互联网商业模式和分布式能源对能源传输网络影响的定性、定量分析,研究含分布式能源的电、气、热、冷等多能源综合调度运行方法。另一方面需要研究基于综合能源调度运行与监控系统的区域能源控制中心总体构架和主要功能,提出包含交易层、调控层、生产管理层及增值服务层等多层次的综合能量管理控制系统工作机制和应用流程;研究区域能源互联网信息安全体系。
3.3.2 基于多能源系统的综合需求响应策略设计
区域能源互联网利用智能需求侧管理引导用户合理用能,实现对能源负荷进行削峰填谷,降低能源备用、能源设备投资。根据太原地区的实际情况,如何基于多能源系统制定智能需求侧管理互动机制,准确设计综合需求侧响应的市场交易机制是需要研究的关键点,如何对需求响应资源的互动效益进行评估是需要研究的难点。
针对目前综合需求响应研究较少的现状,需要研究综合需求响应的基础理论和基本模型,建立基于多能源系统的电—热/冷、电—气需求响应弹性计算模型,提出综合需求响应潜力评估模型。另外需要对综合需求响应资源给电网运行带来的经济效益与社会效益进行全方位分析,建立综合需求响应资源互动效益计算模型,评价不同类型需求侧响应对售电公司售电利润的影响,在此基础上针对山西电网煤电机组为主的特点,研究综合需求侧响应对改善火电机组运行能耗的影响,测算综合需求侧响应带来的节能减排效益。
3.3.3 区域能源互联网运营与商业模式
区域能源互联网的投资建设及运营需要社会各方的参与。面对新一轮电力体制改革,供电公司作为区域能源互联网主体运营商,该制定何种运营和商业模式是需要研究的难点及关键点。
针对这个关键点,需要对主体运营商的运营与商业模式、分布式能源和综合需求响应的商业模式与效益、考虑传输容量约束的多能源系统运行方法三个方面进行分析与研究。
首先,针对区域能源公司的运营与商业模式进行调研,重点研究国内外区域电、气、热、冷综合供应商的运营模式。在此基础上,研究新一轮电改中关于售电侧的市场机制和国家政策,以掌握区域能源公司运营的政策背景。在此背景下,调研太原地区电、热、冷、气能源交易现状,研究区域能源公司在“互联网+”背景下的购售电、个性化服务等商业模式,并研究支撑这些商业模式的市场交易机制。研究能够协同能源购售、第三方分布式能源、分布式储能、以及用户互动的区域能源公司运营模式。
其次,调研我国现行分布式能源补贴政策以及太原地区终端电价、热价、气价信息,结合新一轮电改带来的售电侧“红利”,研究分布式能源在销售侧市场放开情况下的盈利空间,给出不同情境下的盈利范围。采用运行模拟的方法,分析不同投资机制下分布式能源的经济效益;对于需求响应资源种类进行调研,按照不同的参照标准对于需求响应资源进行分类,分析不同类型的需求响应资源的响应特点,分析每种需求响应资源能够发挥的潜在效益,在此基础上设计基于多能源系统的综合需求管理商业模式。
最后,根据山西科创城的规划情况,选取合理的负荷指标及动态模型,对园区的电、热、冷负荷需求进行动态预测分析,绘制区域内不同季节典型日的逐时负荷曲线及年负荷曲线。综合以上结果,设计区域能源公司运营效益最大化、考虑传输容量约束的多能源系统运行方法。特别是针对不同季节太原地区对电、热、冷、气需求量的差异,设计经济效益最大化的多种运行方式。
4 结语
明晰与界定区域能源互联网创造的价值是实现能源互联网价值创造以及将创造的价值在多方投资主体和用户之间进行合理分配的前提。在区域能源互联网的框架之下,电、气、热、冷各类能源及相应技术相互耦合、协同互补,形成了区别于传统分立能源系统的多能源系统,提高了能源利用效率,降低了整个能源供应系统的运营成本,这便是区域能源互联网创造的价值。在介绍了能源互联网的三层架构与多能源系统的基本概念的基础上,本文阐述了能源互联网价值的创造与实现途径以及能源互联网价值的分配模式。以山西太原区域能源互联网的规划建设为实例,对太原区域能源互联网的建设背景、潜在价值、关键问题和难点以及技术路线几个方面进行了总结和展望。
参考文献
[1] 李克强.政府工作报告—2015年3月5日在第十二届全国人民代表大会第三次会议上[Z/OL].http://www.gov.cn/guowuyuan/2015-03/16/content_2835101.htm.
[2] 国家发展改革委和国家能源局.能源发展“十三五”规划[Z/OL].http://www.ndrc.gov.cn/zcfb/zcfbtz/201701/t20170117_835278.html.
[3] 董朝阳,赵俊华,文福拴,等.从智能电网到能源互联网:基本概念与研究框架[J]. 电力系统自动化,2014,38(15):1-11.
Dong Zhaoyang, Zhao Junhua, Wen Fushuan, et al.From Smart Grid to Energy Internet: Basic Concept and Research Framework[J].Automation of Electric Power Systems, 2014,38(15): 1-11(in Chinese).
[4] 张宁,王毅,康重庆,等. 能源互联网中的区块链技术:研究框架与典型应用初探[J]. 中国电机工程学报,2016,36(15):4011-4022.
Zhang Ning, Wang Yi, Kang Chongqing, et al.Blockchain Technique in the Energy Internet: Preliminary Research Framework and Typical Applications[J].Proceedings of the CSEE, 2016, 36(15): 4011-4022(in Chinese).
[5] 孙宏斌,郭庆来,潘昭光.能源互联网:理念、架构与前沿展望[J].电力系统自动化,2015,39(19):1-8.
Sun Hongbin, Guo Qinglai, Pan Zhaoguang.Energy Internet:Concept, Architecture and Frontier Outlook [J].Automation of Electric Power Systems, 2015, 39(19): 1-8(in Chinese).
[6] 国家发展改革委,国家能源局和工业和信息化部.关于推进“互联网+”智慧能源发展的指导意见[Z/OL].http://www.gov.cn/xinwen/2016-03/01/content_5047633.htm.
[7] 国家能源局.关于组织实施“互联网+”智慧能源(能源互联网)示范项目的通知[Z/OL].http://www.bjdch.gov.cn/n1515644/n2022693/c4224604/part/4224605.pdf.
[8] 国家能源局.关于公布首批“互联网+”智慧能源(能源互联网)示范项目的通知[Z/OL].http://zfxxgk.nea.gov.cn/auto83/201707/t20170706_2825.htm.
[9] 贾宏杰,王丹,徐宪东,等.区域综合能源系统若干问题研究[J].电力系统自动化,2015,39(7):198-207.
Jia Hongjie, Wang Dan, Xu Xiandong, et al.Research on Some Key Problems Related to Integrated Energy Systems[J].Automation of Electric Power Systems, 2015, 39(7): 198-207(in Chinese).
[10] 王毅,张宁,康重庆.能源互联网中能量枢纽的优化规划与运行研究综述及展望[J].中国电机工程学报,2015,35(22):5669-5681.
Wang Yi, Zhang Ning, Kang Chongqing.Review and Prospect of Optimal Planning and Operation of Energy Hub in Energy Internet[J].Proceedings of the CSEE, 2015, 35(22):5669-5681(in Chinese).
[11] 邵成成,王锡凡,王秀丽,等.多能源系统分析规划初探[J].中国电机工程学报,2016,36(14):3817-3828.
Shao Chengcheng, Wang Xifan, Wang Xiuli, et al. Probe into Analysis and Planning of Multi-Energy System[J]. Proceedings of the CSEE, 2016, 36(14): 3817-3828(in Chinese).
[12] 杨经纬,张宁,王毅,康重庆.面向可再生能源消纳的多能源系统:述评与展望[J/OL].电力系统自动化,2018.http://aeps-info.com/aeps/ch/reader/view_abstract.aspx?edit_id=20180110100254905&flag=2&file_no=201710020000004&journal_id=aeps.
Yang Jingwei, Zhang Ning, Wang Yi, Kang Chongqing.Review and Prospect of Multiple Energy Systems Towards Renewable Energy Accommodation[J/OL]. Automation of Electric Power Systems, 2018. http://aeps-info.com/aeps/ch/reader/view_abstract.aspx?edit_id=20180110100254905&flag=2&file_no=201710020000004&journal_id=aeps.
[13] Quelhas A, Gil E, Mccalley J D, et al.A Multiperiod Generalized Network Flow Model of the U.S.Integrated Energy System: Part I—Model Description[J].IEEE Transactions on Power Systems, 2007, 22(2): 829-836.
[14] Meibom P, Hilger K B, Madsen H, et al.Energy Comes Together in Denmark: The Key to a Future Fossil-Free Danish Power System[J].IEEE Power & Energy Magazine, 2013,11(5): 46-55.
[15] Geidl M, Koeppel G, Favre-Perrod P, et al.Energy Hubs for the Future[J].Power & Energy Magazine IEEE, 2007, 5(1):24-30.
[16] Wang Y, Zhang N, Kang C, et al.Standardized Matrix Modeling of Multiple Energy Systems[J].IEEE Transactions on Smart Grid, accepted, in press.DOI: 10.1109/TSG.2017.2737662.
[17] Chicco G, Mancarella P.Matrix Modelling of Smallscale Trigeneration Systems and Application to Operational Optimization[J].Energy, 2009, 34(3): 261-273.
[18] Wang Y, Zhang N, Zhuo Z, et al.Mixed-Integer Linear Programming-Based Optimal Configuration Planning for Energy Hub: Starting from Scratch[J].Applied Energy,accepted, in press.DOI: 10.1016/j.apenergy.2017.08.114.
[19] Geidl M, Andersson G.Optimal Power Flow of Multiple Energy Carriers[J].IEEE Transactions on Power Systems,2007, 22(1): 145-155.
[20] Unsihuay C, Lima J W M, Souza A C Z D.Modeling the Integrated Natural Gas and Electricity Optimal Power Flow[C].Power Engineering Society General Meeting.IEEE, 2007: 1-7.
[21] Li T, Eremia M, Shahidehpour M.Interdependency of Natural Gas Network and Power System Security[J].IEEE Transactions on Power Systems, 2008, 23(4): 1817-1824.
[22] 龙虹毓,马建伟,吴锴,等.含热电联产和风电机组的电网节能调度[J].电力自动化设备,2011,31(11):18-22.
Long Hongyu, Ma Jianwei, Wu Kai, et al.Energy Conservation Dispatch of Power Grid with Mass Cogeneration and Wind Turbines[J].Electric Power Automation Equipment,2011, 31(11): 18-22(in Chinese).
[23] Nuytten T, Claessens B, Paredis K, et al.Flexibility of a Combined Heat and Power System with Thermal Energy Storage for District Heating[J].Applied Energy, 2013, 104(4):583-591.
[24] Lund H, Clark W W.Management of Fluctuations in Wind Power and CHP Comparing Two Possible Danish Strategies[J].Energy, 2002, 27(5): 471-483.
[25] Geidl M, Andersson G.Optimal Coupling of Energy Infrastructures[C]. Power Tech, 2007 IEEE Lausanne.IEEE,2008: 1398-1403.
[26] Sheikhi A, Ranjbar A M, Oraee H.Financial Analysis and Optimal Size and Operation for a Multicarrier Energy System[J].Energy & Buildings, 2011, 48(1): 71-78.
[27] Ren H, Gao W, Ruan Y.Optimal Sizing for Residential CHP System[M]. Challenges of Power Engineering and Environment.Springer Berlin Heidelberg, 2007: 514-523.
[28] Arcuri P, Florio G, Fragiacomo P.A Mixed Integer Programming Model for Optimal Design of Trigeneration in a Hospital Complex[J].Energy, 2007, 32(8): 1430-1447.
[29] Ooka R, Komamura K.Optimal Design Method for Building Energy Systems Using Genetic Algorithms[J].Building &Environment, 2009, 44(7): 1538-1544.
[30] Chicco G, Mancarella P.From Cogeneration to Trigeneration:Profitable Alternatives in a Competitive Market[J]. IEEE Transactions on Energy Conversion, 2006, 21(1): 265-272.
[31] Zhang X, Shahidehpour M, Alabdulwahab A, et al. Optimal Expansion Planning of Energy Hub With Multiple Energy Infrastructures[J].IEEE Transactions on Smart Grid, 2017,6(5): 2302-2311.
[32] Qiu J, Yang H, Dong Z Y, et al.A Linear Programming Approach to Expansion Co-Planning in Gas and Electricity Markets[J].IEEE Transactions on Power Systems, 2016,31(5): 3594-3606.
[33] 国家发展改革委和国家能源局.关于推进多能互补集成优化示范工程建设的实施意见 [Z/OL].http://www.ndrc.gov.cn/zcfb/zcfbtz/201607/t20160706_810652.html.
[34] 封红丽.国内外综合能源服务发展现状及商业模式研究[J]. 电器工业,2017,(06):34-42.
Feng Hongli.Research on the Development Status and Business Model of Integrated Energy Services at Home and Abroad[J].China Electrical Equipment Industry, 2017, (06):34-42 (in Chinese).
[35] 徐沛宇.综合能源供应商萌芽[J].中国能源,2016(12):49-51.
Xu Peiyu.Budding of Integrated Energy Suppliers[J].Energy of China, 2016(12): 49-51 (in Chinese).
[36] 山西省人民政府.关于积极推进“互联网+”行动的实施意见[Z/OL]. http://www.gov.cn/zhengce/2016-02/24/content_5045499.htm.
[37] 太原市人民政府.太原市推进“互联网+”行动实施方案[Z/OL]. http://www.taiyuan.gov.cn/zfwjzflgfgfxwj/334931.jhtml.
黄武靖
作者简介:黄武靖(1995),男,博士研究生,主要从事多能源系统的建模、运行和规划的研究工作,E-mail:hwj17@mails.tsinghua.edu.cn。
张宁(1985),男,副教授,主要从事新能源、电力系统规划及运行、多能源系统的研究工作,E-mail:ningzhang@tsinghua.edu.cn。
董瑞彪(1967),男,高级工程师,主要从事电力系统规划与运行、区域能源互联网的研究工作,E-mail:tydrb214@163.com。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
2月21日,南方电网公司董事、总经理、党组副书记钱朝阳与来访的全球能源互联网发展合作组织(以下简称“合作组织”)合作总监程志强举行会谈,双方就进一步深化合作进行座谈交流。公司党组成员、副总经理刘巍参加会谈。钱朝阳代表南方电网公司欢迎程志强一行来访,对合作组织取得的发展成就表示祝贺。钱
2月11日,国网江苏省电力有限公司营销服务中心购电专职刘恬畅参考算法库智能推荐的申报策略,运用能源互联网营销服务系统“省间现货购电业务支持”模块完成次日日前省间现货购电申报。根据出清结果,本次交易成交电量1147.305万千瓦时,最大成交电力210.121万千瓦。近期的寒潮天气影响了江苏全省,省间
农村能源作为我国能源体系的重要组成部分,是实现乡村全面振兴的基石和保障,也是我国能源革命与绿色低碳转型的重要抓手,是乡村产业振兴的重要引擎,“双碳”目标下农村能源转型是必然选择。近年来农村地区分布式可再生能源快速发展,对农村电网的智能化、数字化和自动化水平提出了更高的要求。分布式
当地时间1月14日,东盟可持续发展研讨会在马来西亚吉隆坡举行,马来西亚副总理兼能源及水务转型部部长法迪拉·尤索夫出席会议。全球能源互联网发展合作组织主席、中国电力企业联合会理事长辛保安应邀出席会议,并在“东盟能源的绿色未来”对话环节就加快区域电力互联互通、促进东南亚各国能源绿色转型
1月15日,在国家电网有限公司第四届职工代表大会第五次会议暨2025年工作会议上,公司党组1号文件《中共国家电网有限公司党组关于深入学习贯彻党的二十届三中全会精神以高质量党建引领保障高质量发展的意见》正式发布。党的二十届三中全会聚焦提高党的领导水平和长期执政能力,对坚持党中央对进一步全面
12月24日,全球能源互联网发展合作组织主席、中国电力企业联合会理事长辛保安在合作组织总部会见马拉维共和国驻华大使艾伦·钦泰扎,就深化双方合作进行了交流。辛保安欢迎钦泰扎再次到访合作组织。辛保安表示,合作组织高度重视与马拉维的合作,今年9月中非合作论坛期间,马拉维查克维拉总统到访合作
北极星储能网获悉,12月19日,重庆市经济和信息化委员会发布关于市政协六届二次会议第1181号提案答复的函。文件明确下一步重点计划,其中包括持续强化科技创新支撑。继续支持重庆大学、重庆邮电大学、重庆交通大学、重庆理工大学、重庆科技大学,聚焦储能技术、智能互联网新能源汽车、新材料打造先进制
12月16日,长沙市工信局发布关于工业互联网平台建设补贴资金拟支持项目的公示。其中包括湖南大唐先一科技有限公司的智慧新能源集控工业互联网平台项目,支持金额200万元;金杯电工股份有限公司的数据使能与数据治理云平台,支持金额200万元。原文如下:关于工业互联网平台建设补贴资金拟支持项目的公示
17日,记者从国网青海电科院获悉,近日,青海省市场监督管理局(知识产权局)正式致函国网青海省电力公司,明确同意筹建“青海电力产业知识产权运营中心”。这是国家电网公司推动能源技术创新和区域经济协调发展的重要里程碑,标志着国网青海电力在知识产权运营管理和产业链协同创新方面迈上新台阶。青海
最近,国网江苏省电力有限公司通过国家电网有限公司能源互联网营销服务系统,批量生成了包含5260.97万户用电客户和78.2万户分布式发电客户的10月份电费账单,并推送至“网上国网”APP等,将电费发行时长压缩至1天之内,实现了分布式光伏发电电费“一日发行”。随着全球能源需求的不断增长和环境问题的
近日,由国网天津市电力公司自主研发的数据血缘运营工具功能验证工作完成。该工具可帮助运维人员实时监测数据链路,实现跨系统、全场景数据全生命周期透明化运营管理。近年来,国网天津电力深化以数据中台为核心的数据底座建设,目前已汇集营销、设备、财务、人资等专业数据近2.4拍字节,全面支撑各专
在邢台新能源职业学院,晶澳智慧能源数字化平台系统如同隐形的“校园管家”,正悄然改变着校园的用能方式,助力校园用能实现舒适体验与节能降耗的完美平衡。遇到寒潮时,教室热力单元通过分析教学作息规律,可以自动匹配课前预热、课后调温模式,1小时内构建出18.5℃±0.5℃学习热岛。在宿舍区,算法通
3月18日,遂宁市政务服务和数据局关于开展人工智能试点应用的函。聚焦政务服务、产业升级、城市治理、民生服务四大方向,征集人工智能应用场景需求,组织开展试点应用,推动建立知识库体系和细分领域AI智能体,实现业务流程智能化、工作便捷化。在城市治理方面包括智慧能源管理。智能电网优化(负荷预
3月15日,国家电投集团2025年规划发展工作会在京召开。会议深入贯彻落实集团2025年度工作会议与系统主要负责人研讨班精神,总结集团2024年规划发展工作成效和经验,研判新形势下能源行业面临的新挑战和新任务,谋划集团2025年规划发展重点工作。国家电投集团总经理、党组副书记栗宝卿参加会议,党组成
3月11日,陕投集团首座光储充算测智慧能源电站正式投运。该电站由秦龙电力能动科技建设和运营,集成了光伏发电、电化学储能、充电桩、大数据算力与卫星测控等功能。电站规模包括0.12MWp光伏系统、0.5MW/1.044MWh储能设备及11台充电桩,预计年发电量12.4万度,年放电量约69万度,可同时满足13辆新能源车
在全球能源转型和AI高速发展的双重推动下,新型储能产业市场广阔、发展潜力巨大,对促进经济社会发展全面绿色转型具有重要意义。近日,依托全栈自研的125kW/261kWh工商业液冷储能一体机,易事特集团赋能华润燃气建成“光储充”示范站#x2014;#x2014;江门白石充电站,为传统能源转型升级提供发展新路径。
当地时间3月5-7日,意大利里米尼国际可再生能源展(KEYEnergy2025)盛大举行。作为全球领先的智慧能源系统解决方案提供商,科华数能携全场景光储解决解决方案亮相,吸引了众多专业观众的关注和咨询。荣耀加身,实力见证本次展会,科华数能凭借卓越的创新能力和技术实力,荣获“顶级创新储能品牌”奖。
3月7日,湖南省益阳高新智慧能源虚拟电厂举行揭牌仪式,该虚拟电厂是湖南省第二家按照市场规则注册入市并挂牌的虚拟电厂。虚拟电厂是指利用数字化、智能化等先进技术,将需求侧一定区域内的可调节负荷、分布式电源、储能等资源进行聚合、协调、优化,结合相应的电力市场机制,构成具备响应电网运行调节
年初,国家发展改革委、国家能源局发布通知,强制配储政策开始退坡,储能产业迎来价值重构关键期。与此同时,以DeepSeek为首的大模型呈现爆发增长态势,正在重塑各行业新生态。采日能源与DeepSeek的深度协同,推动储能系统“3D智能体进化”,实现储能资产从"静态收益模式"向"动态收益模式"的市场化能力
2025年3月5日,SUCE2025第二十届中国(济南)国际太阳能利用大会暨展览会在山东国际会展中心盛大开幕。晶澳智慧能源携前沿技术与创新方案重磅亮相,通过场景化、数字化的展示,探索“零碳未来”的无限可能。布局零碳城市,助力园区低碳转型在“双碳”目标的时代浪潮下,晶澳智慧能源积极布局,深入开展
2月28日,天津泰达电力有限公司智慧能源长时储能电站项目(以下简称长时储能项目)在天津经开区落地启动,该项目是天津市首个超长时储能电站项目。长时储能项目总投资约16亿元,总功率156兆瓦,装机容量约1115兆瓦时。在满功率输出的情况下,该储能电站可持续供电约7小时,每天可释放117万度的电能,每
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!