登录注册
请使用微信扫一扫
关注公众号完成登录
能源互联网在纵向可以划分为三层,从低层至顶层依次为物理层、信息层和商业模式层,如图1所示。能源互联网通过信息能量深度耦合以及多能源系统的广泛集成,能够实现电能、冷、热能的高效生产、灵活控制以及智能利用,促进可再生能源的大幅接入,实现开放、灵活互动的电能交易形式,能够深入挖掘用户需求响应潜力,最终整体提高终端能源的使用效率,降低能源生产成本,减少全社会碳排放量[5]。从能源互联网运营商的角度而言,通过灵活控制区内能量生产环节、降低传输环节能耗、增强能源供应可靠性,利用价格信号充分协调不同时间、空间以及能源形式的使用,大幅度提高终端能源生产与利用效率,从而创造额外的商业价值;对用户而言,能够通过合理安排能源利用,降低能源使用费用,进而降低生产成本;从能源互联网投资商的角度,通过投资能源互联网中新能源发电、冷热电联供、先进信息以及控制技术,降低了多能源系统的运营成本,实现了充分的收资回报。
我国已经开始启动城市级/园区级能源互联网的建设。为落实《关于推进“互联网+”智慧能源发展的指导意见》(发改能源〔2016〕392号)[6]、《国家能源局关于组织实施“互联网+”智慧能源(能源互联网)示范项目的通知》(国能科技〔2016〕200号)[7]等有关要求,国家能源局在2017年6月底公布了首批55个“互联网+”智慧能源(能源互联网)示范项目[8],其中城市能源互联网综合示范项目12个、园区能源互联网综合示范项目12个、其他及跨地区多能协同示范项目5个。多能源系统的优化规划是这些示范工程面临的首要问题。
集成电、气、热、冷等不同形式能源的多能源系统是能源互联网的物理基础。多能源系统的统一规划能够有效地考虑各个能源系统之间的互补和耦合关系,弥补原来各个能源系统分开单独规划的不足。然而目前,我国的电力、热力、燃气等能源系统均处于各自分立管理、单独规划的状态。另外,随着热电联产、电热泵、吸收式制冷机等分布式能源技术的发展,不同形式的能源在生产、传输、消费等各个环节的耦合关系越来越复杂、耦合作用越来越强,这也在客观上迫使业界对多能源系统展开研究[9-11]。
1 能源互联网的物理基础—多能源系统
广义的多能源系统(Multiple Energy Systems,MES)是指煤炭、天然气、石油、核能、水能、风能、太阳能等多种形式能源的开发、转换、储备、运输、调度、控制、管理、使用等环节所组成的大系统。多能源系统将所有一次能源通过多个环节的转化与传输,最终以电、热/冷、燃料等形式为人类生产与生活提供动力[12]。图2给出的是一个典型的面向可再生能源消纳的多能源系统能量流动示意图。
电力、热力、燃气等多能源系统进行融合与协同优化,充分考虑各能源系统的互补特性,对于提升能源利用效率,降低能源开发与利用对环境的影响,促进可再生能源消纳具有重要意义。在多种能源形式中,电能是应用最广泛的能源形式,电力系统是智能化程度最高的能源系统,同时承担着利用水能、风能以及太阳能的任务。为此,以电力为核心,以能源高效清洁利用为目标,以大规模可再生能源并网消纳为背景,研究电力系统、热力系统以及天然气系统组成的多能源系统的集成与协调优化是目前的研究热点。国际上将该问题称为“能源系统集成”(Energy Systems Integration,ESI),是应对能源高效清洁利用的有效途径。
美国国家能源部于2001年提出了能源集成系统(Integrated Energy System,IES)研究计划,其目标在于保证能源系统运行可靠性的前提下,提高可再生能源在能源系统中的占比,并促进热电联产技术等多能源集成技术的应用与推广[13]。德国政府于2010发布了《德国能源构想草案》(Draft German Energy Concept),着重突出了各能源系统之间协调运行的机制设计与技术实现,并于2011年启动了能源研究方案的制定与实施工作,其中广泛涉及新能源发电、储能等多能源系统集成关键技术的研究。丹麦政府大力支持分布式可再生能源的发展,利用生物质能进行热电联产和集中供热,致力于高比例可再生能源的消纳,并试图通过电网、热网、气网和交通网的协调规划和运行,设计相应能源市场机制,充分调动需求侧响应资源,力争在2050年之前实现新能源占比100%[14]。国际上的专家学者在2014年成立了能源系统集成国际联合研究会(The International Institute for Energy Systems Integration,IIESI),目的是为了解决能源系统的协调与优化问题。IIESI目前已经分别在美国、丹麦以及日本召开了三次国际性会议,在国际上迅速发展。
瑞士于2003年启动的“未来能源网络愿景(Vision of Future Energy Networks)”研究项目中首次提出了能量枢纽(energy hub,EH)的概念[15]。能量枢纽的概念将一个多能源系统抽象成为一个输入—输出双端口网络,认为一个多能源系统内部电、气、热、冷等能源之间的耦合关系从系统外部来看,都是输入的各种形式的能源,最终转换为其他形式的能源,以满足系统输出端的负荷需求。能量枢纽的输入和输出通过一个耦合矩阵建立联系。能量枢纽建模方法具有高度的抽象性,无论多能源系统的规模大小,都能通过能量枢纽这一模型工具进行规范化地描述[16-17]。国内外学者对于能量枢纽在多能源系统规划、运行中的应用也已经开展了详细的研究[18-19]。
2 从价值实现的角度看能源互联网规划
能源互联网的规划就是回答能源互联网价值来自哪里、怎样实现、怎样分配的问题。能源互联网价值源于多能源系统的集成、耦合与互补,最大化多能源系统之间的集成效益是能源互联网规划的目标;能源互联网的价值实现要基于具体的规划方法与方案;要实现能源互联网创造价值的合理分配,则需要合理的商业模式设计。
2.1 能源互联网的价值来源—多能源系统集成
能源互联网的价值来源于多能源系统的集成,包括电力与天然气系统集成、电力与热力系统集成等。
现阶段中国燃气机组在电力系统中所占比重较小,传统的电力系统协调运行往往不考虑天然气网络的运行工况。而实际上,天然气的输送及供应能力会对电力系统中燃气机组的运行产生影响,如果燃气机组同时承担热力负荷,那么气网的运行状况还会对热力系统产生影响。因此,在能源系统集成时,需建立精细化气网模型,将燃气的供应能力及天然气管网的运行状况考虑进去。C.Unsihuay与J.W.Marangon[20]建立了天然气和电力系统的联合优化运行模型,模型中考虑了压气机与储气设施的影响,采用进化策略算法并结合内点法进行求解。伊利诺伊理工大学的M.Eremia[21]将天然气管网约束加入到机组组合模型中,综合考虑了燃气合同以及燃气管道输送能力等限制条件。
电力系统与热力系统的集成,除需保证电力系统自身的安全运行以外,还需满足热力系统的相关约束,需要建立热力系统的运行模型。热力系统是一个多输入多输出系统,其能量传输过程具有明显的延时与损耗,同时,其水力过程与热力过程相互耦合,使得整个系统较为复杂。目前国内外还有许多关于电热协调运行的研究,分析如何打破“以热定电”原则,促使热电联产机组灵活运行。龙虹毓等人[22]基于采暖热水负荷和电力负荷等约束,建立了对热电联产机组和风力发电机组节能优化调度的数学模型,并基于我国现行电价和供暖热价,讨论了风电供暖的上网电价问题。Nuytten等人[23]分析了加装储热环节对热电联产系统的作用,同时比较了集中式储热与分布式储热这两种情况下的效益问题。Lund等人[24]针对丹麦的风电消纳问题提出了两种策略,一种是开拓欧洲市场,将剩余风电售到周边国家,另一种是将热电联产机组与电制热装置和储热装置结合起来,实现电热解耦,增强热电机组的调峰能力,并着重分析了第二种策略的经济效益。总体而言,国内的相关学者更多的着眼于如何在热电联产机组电热耦合约束的条件下,通过合理的电、热负荷分配,充分挖掘热电联产机组的新能源消纳潜力;而国外学者则致力于通过电锅炉、集中储热环节等装置拓展热电联产机组的运行边界,实现电热解耦,以扩展新能源的消纳空间。
2.2 能源互联网的价值实现方式—多能源系统协同规划
多能源系统规划是能源互联网价值实现的保证,只有在规划层面协同多个能源系统,充分考虑不同能源形式之间的互补和耦合,建成的能源互联网工程才具有经济性上的优势。多能源系统规划从空间范围上可以分为区域多能源系统规划和跨区多能源系统规划两个大类。
区域级多能源系统主要指园区、城市范围内各种形式能源的生产、转换、分配和存储系统,包括分布式电源、配电系统、燃气调压柜、换热站和燃气、热水管道等。G. Andersson等人[25]提出了一种混合整数非线性规划(mixed-integer nonlinear programming,MINLP)方法,对一个含有若干备选型号的热电联产机组(combine heat and power,CHP)、变压器和燃气锅炉的能量枢纽进行规划。A.Sheikhi等人[26]提出了一种非线性的规划方法,为德黑兰的一座旅店优化CHP、燃气锅炉、吸收式制冷机和储热装置的容量和运行模式。Hongbo Ren等人[27]提出了一种规划方法,实现了日本一幢含有CHP、储能装置和辅助锅炉的居民楼的年化费用的最小化。P. Arcuri等人[28]阐述了一种冷热电三联产系统的设计流程,设计了一座医院中的CHP和电热泵(electric heat pump,EHP)的容量。Ryozo Ooka等人[29]提出了一种基于遗传算法的方法,为每种楼宇多能源系统结构选择最优的设备容量和运行方案。Pierluigi Mancarella等人[30]在考虑了不同的运行策略的情况下对不同的冷热电三联产系统结构进行运行模拟,以此挑选最优的系统结构。
跨区多能源系统往往涉及到能够远距离传输的输电网络与天然气网络,与区域多能源系统的规划不同,跨区多能源系统规划需要考虑若干区域多能源系统之间的网络连接关系。Xiaping Zhang等人[31]以降低系统建设、运行总成本和提升系统可靠性为优化目标,引入能源综合利用效率、碳排放量等评价指标,对系统中的传统发电机组、输电线路、燃气炉和热电联产机组同时进行规划,并对各能源系统分开单独规划、多能源系统统一规划、热电联产机组容量事先固定等多种情形进行对比分析,结果表明多能源系统统一规划有利于降低系统建设、运行总成本和提高系统可靠性。Qiu等人[32]提出一种电气互联系统的联合规划方案,以降低其总的投资和运维成本,并对目标函数和约束条件中的非线性项进行了线性化,通过迭代求解实现两个互联系统的总体最优规划。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
当今世界正处于百年未有之大变局,全球能源危机带来的压力使得能源市场、地缘政治和全球经济无法稳定发展,进一步破坏的风险始终存在。同时,由于能源系统电气化程度的提高,电力的增长速度持续超过能源需求总量的增长,电力供应愈加影响着经济、区域发展以及许多其他领域,电力安全和可负担性在许多国
在“双碳”目标与电力市场化改革的双重驱动下,一种无烟囱、无冷却塔,却能调度百万千瓦级资源的“隐形电厂”正在全球崛起——这就是虚拟电厂(VirtualPowerPlant,VPP)。它不生产一度电,却通过算法与数据将零散的分布式光伏、储能、电动汽车乃至空调负荷,编织成一张覆盖全社会的能源互联网。从特斯
4月28日,全国首个农村配电台区“车网互动”微电网在江苏省成功投运。该项目位于南通市通州区东社镇杨港居,整个微电网系统设有30千瓦的车棚光伏发电装置,4座80千瓦的“V2G”直流充电桩、6座7千瓦的普通充电桩,1台100千瓦时的储能柜和1台STS开关并离网柜。据介绍,该装置通过智慧微网,除满足周边村
4月27日,作为国家首批增量配电业务改革试点单位的宿迁运河港配售电有限公司,正式完成虚拟电厂注册,开启增量配电网转型发展新纪元。通过数智化技术聚合分布式能源、储能及可控负荷,成功构建起“源网荷储”协同互动的虚拟电厂运营体系,实现传统配电业务与新兴能源服务的深度融合,为新型电力系统建
4月28日-30日,全球能源互联网发展合作组织(以下简称“合作组织”)主席、中国电力企业联合会理事长辛保安带队赴陕西西安开展会员单位走访调研,与西安交通大学、陕西投资集团有限公司、隆基绿能科技股份有限公司相关负责人举行会谈。辛保安介绍了合作组织工作情况。他表示,作为我国首个能源领域国际
编者按近日,国家发展改革委、国家能源局发布《关于加快推进虚拟电厂发展的指导意见》,规范虚拟电厂的定义和定位,进一步理顺了虚拟电厂建设运行管理、参与电力市场机制等问题。本报邀请国网能源研究院有限公司能源互联网研究所对《意见》进行解读。近年来,我国风电、光伏发电等新能源发电装机高速增
北极星售电网获悉,新疆和布克赛尔县增量配电网项目一期EPC总承包(一标段)公开招标,预算金额3.35亿元,招标人为中食寰纪(和布克赛尔)能源发展有限公司。详情如下:活动推荐:第五届智能配电网建设研讨会在能源革命与数字技术深度融合的背景下,智能配电网不仅是能源互联网的“神经末梢”,更是实
2025年4月10日上午,全国电力系统管理及其信息交换标准化技术委员会“电力系统动态监测工作组”(以下简称“工作组”)主任张道农一行到访金风科技股份有限公司(以下简称“金风科技”)达坂城零碳风电装备数字工厂进行参观及技术交流。工作组一行深入全球领先的风电装备制造基地,实地考察智能化生产体
北极星售电网获悉,4月25日,内蒙古科尔沁左翼后旗发展和改革委员会发布科尔沁左翼后旗自主创新承接产业转移示范区增量配电网项目投资运营主体优选结果公示,项目投资运营主体为通辽市广通新能源有限公司。项目建设内容:配电区域内规划建设一座220千伏变电站、三座66千伏变电站及配网等。项目配电区域
4月25日下午,清华大学能源互联网创新研究院建院10周年暨第三届能源智库高质量发展论坛在清华大学中央主楼后厅成功举办。本次论坛以“能创十载,智绘未来”为主题,由清华大学能源互联网创新研究院(以下简称"研究院")常务副院长高文胜主持。来自国家部委、重点企业、行业协会、科研院所等机构的代表
在加快建设新型能源体系的战略指引下,2024年国家发改委、国家能源局等部委出台了一系列关于加快构建新型电力系统的纲领性政策和建设新能源供给消纳体系、加强电网调峰储能、智能化调度、配电网高质量发展等各电力关键环节的指导意见,强调要深化电力体制改革,统筹发挥源网荷储各类调节资源作用,加快
2025年欧洲智慧能源展(IntersolarEurope2025)于5月7日至9日在德国慕尼黑国际展览中心隆重举行。作为影响力最大的光伏行业展会,欧洲智慧能源展汇聚了全球最尖端的技术产品和解决方案。作为数智化光伏支架和系统解决方案专家,安泰新能源携智能跟踪支架解决方案、固定支架全场景解决方案和屋顶光伏设
北极星售电网获悉,5月12日,重庆电力交易中心发布注册后连续12个月未进行实际交易售电公司名单公示(2025年第四批)。按照《售电公司管理办法》(发改体改规〔2021〕1595号)要求,重庆电力交易中心有限公司按月梳理了注册满一年且近12个月未进行实际交易售电公司名单,2024年5月1日至2025年4月30日期
慕尼黑当地时间5月7日,全球瞩目的2025欧洲智慧能源展(ThesmarterEEurope)拉开序幕。作为融捷集团旗下新能源事业板块的核心企业,融捷能源(YoungyEnergy)携多款明星产品亮相,涵盖72Ah至587Ah全容量电芯矩阵、1P52S/1P104S电池PACK、多款工商业户外储能柜及5MWh液冷储能电池舱等,为欧洲市场提供覆
德国当地时间5月7-9日,海辰储能携旗下全场景储能产品矩阵亮相欧洲智慧能源展(ThesmarterEEurope),重磅发布了专为欧洲市场定制的欧版#x221E;Power6.25MWh2h/4h储能系统。该系统凭借极致安全、极易适配、极易维护、超高效益和环保引领五大特性,成功解锁“容量、场景、环保”多重限制,助力欧洲能源
德国当地时间5月7-9日,全球顶尖能源盛会欧洲智慧能源展览会(ThesmarterEEurope)在德国慕尼黑盛大召开。海博思创以“PIONEERINGWITHAI-DRIVENENERGYSTORAGE”为主题,携最新国际化储能解决方案及明星产品矩阵亮相,全面展示公司在技术创新、智能化管理及全球化服务方面的领军实力。展会期间,来自全
当地时间5月7日至9日,IntersolarEurope2025在慕尼黑新国际博览中心盛大启幕。采日能源亮相展会,重点推出适配工商业全场景的智慧储能解决方案矩阵。此次参展不仅系统呈现了采日能源持续深耕欧洲市场形成的深厚技术积淀,更通过多维度产品生态彰显了其在储能赛道的战略纵深。新品发布:新一代“星链”
全球能源行业盛会——2025欧洲智慧能源展(INTERSOLAREUROPE2025)于5月7日至9日在德国慕尼黑举行。全球传动领域的领军企业南高齿携光伏回转驱动创新成果参展,以“可靠、高效、绿色”的技术理念赋能新能源产业升级。精准传动,赋能光伏高效发电作为太阳能追踪系统的"动力心脏",南高齿光伏回转驱动系
倒计时2天!中能拾贝客户伙伴创新峰会:巅峰之约即将启幕!
5月8日,在2025年德国慕尼黑智慧能源展览会(ThesmarterEEurope)期间,远景科技集团面向全球发布《2025零碳行动报告》(下称《报告》),宣布自2022年起连续第三年实现运营碳中和,并于2024年成功实现100%可再生电力使用,提前一年达成RE100承诺,彰显出其在绿色能源转型领域的卓越领导力与高效执行力
IntersolarEurope2025展会期间,思格新能源在慕尼黑BrainlabTower举办盛大发布会,展示其在人工智能、电力电子与能源数字化方面的最新成果。活动现场汇聚了全球500余位合作伙伴、媒体与行业专家,共同见证思格新品与未来战略的发布。思格新能源董事长、CEO许映童在发布会上致辞,回顾了公司快速成长的
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!