登录注册
请使用微信扫一扫
关注公众号完成登录
1.2 LiFePO4/Li半电池的组装与性能测试
按质量比8∶1∶1将磷酸铁锂(LiFePO4)、导电剂超级碳黑SuperP和聚偏氟乙烯(PVDF)混合均匀,再加入N-甲基吡咯烷酮(NMP),搅拌成均匀的浆料,涂覆在20滋m厚的铝箔(99.9%)集流体上,在120℃下真空(-0.1MPa,下同)干燥24h,再进行分切(=14mm),制成LiFePO4电极(含4.32mg活性物质)。
在氩气气氛手套箱中,以金属锂片为负极、LiFePO4电极为正极,组装CR2025扣式电池,用CHI660C型电化学工作站进行循环伏安和交流阻抗测试。循环伏安测试的电位为2.5~4.0V,扫描速率为0.1mV/s;交流阻抗测试的频率为105~10-2Hz,交流扰动电压为5mV。
1.3 18650型电池的组装与性能测试
按质量比91.0∶1.0∶2.0∶1.5∶4.5将LiFePO4、超级碳黑SuperP、导电石墨KS6、碳纳米管(CNT)和PVDF混匀,然后加入NMP,搅拌成均匀的浆料,用转移式涂布机涂覆在铝箔集流体上,在120℃下真空干燥24h,再以8MPa的压力压成137滋m厚,分切成80cm×5.3cm的LiFePO4电极(含8.5g活性物质)。
按质量比93∶2∶5将天然石墨(AGP)、超级碳黑SuperP和PVDF混匀,然后加入NMP,搅拌成均匀的浆料,用转移式涂布机涂覆在12滋m厚的铜箔(99.9%)集流体上,在120℃下真空干燥24h,再以11.5MPa的压力压成82滋m厚,分切成86cm×5.4cm的AGP电极(含5.0g活性物质)。
根据LiFePO4和AGP的比容量,设计正负极活性物质的质量配比及相应的电池工艺参数(负极容量约过量3%)。将制好的电极与Celgard2400膜卷绕成电芯,经装壳焊接、滚槽、85℃真空干燥24h、注液(6g)及密封等工艺,制成18650型实验电池。
用5V/10A自动充放电仪对电池进行化成,以0.5A恒流充电至3.65V,转恒压充电至0.1A,静置10min后,以0.5A恒流放电至2.30V,循环3次。用恒流限压、恒压限流的充放电制度,在5V/20A自动充放电仪上进行倍率特性测试,电压为3.65~2.00V。
2 结果与讨论
2.1 电解液电导率、黏度及锂离子迁移数
电导率是体现电解液离子传导能力的一个重要物化参数,在一定程度上反应了电解质中电流的传输速度和电池内部阻抗。在一定的温度下,电解液电导率与其黏度、锂盐浓度等因素直接相关。离子迁移数反应了某种离子运载的电流与通过溶液的总电流之比。在充放电过程中,锂离子电池的电极反应所需要的电荷转移主要由Li+承担,而高的Li+迁移数能减轻电极反应的浓差极化,使电池产生高的比能量和比功率。一般来说,电导率和锂离子迁移数直接反映了电解液的导离子能力。
采用恒电位极化法测得锂离子迁移数,图1为1.2mol/LLiPF6-0.1mol/LLiFSI电解液锂离子迁移数测试结果,由电流-时间曲线图1(a)和极化前后电池阻抗谱图图1(b)组成。对电极体系加上10mV电势差,初始时浓度梯度为零,流过电池两端的电流为正负离子在电场力作用下的电迁移所决定,其初始电流为I0,随后电流下降并达到稳态,稳态时负离子的运动对电流的贡献为零,即体系的电流都是由正离子的运动所贡献的,稳态电流为Iss。当电池极化前后,电极表面电荷转移阻抗以及钝化膜阻抗发生了变化,其值对应于阻抗谱的第一个半圆直径。根据式(1)计算电解液的锂离子迁移数。
表1列出了加入不同量LiFSI后混合锂盐电解液的电导率、粘度及锂离子迁移数。从表1中数据可知,当加入0.1mol/LLiFSI时,电导率由11.03增大到了11.18,同时锂离子迁移数也由0.4874增大到0.5133;当LiFSI浓度增加到0.3mol/L时,因为粘度的增加使电导率有所下降,但仍高于未加LiFSI电解液的电导率,而此时锂离子迁移数仍在增加;当LiFSI浓度进一步增大到0.5mol/L时,电导率继续下降,低于未加LiFSI电解液,而此时锂离子迁移数仍在增加。这说明加入适量的LiFSI能够提高电解液的电导率和锂离子迁移数,增大其导离子能力。
2.2 LiFePO4/Li半电池电化学阻抗与循环伏安测试
为了分析LiFSI的加入对电解液/LiFePO4界面的影响,以LiFePO4为工作电极、Li为对电极进行了循环伏安和交流阻抗测试。
图2为使用不同电解液的LiFePO4/Li半电池充放电3次后的循环伏安谱图,由图2可知,随着LiFSI的加入,氧化峰和还原峰的峰位差在减小,说明LiFePO4的电极反应的可逆性在增加,这一方面是因为LiFSI的加入使电解液的锂离子迁移数增大,能够减小电池的浓差极化,提高电极反应的可逆性;另一方面也表明LiFSI的加入有助于在LiFePO4表面形成稳定的、导离子性好的钝化膜,这一推测在电池的电化学阻抗谱中也得到了证实。
图3为循环三圈后电池的电化学阻抗,电化学阻抗谱的Nyquist曲线由高、中频区的半圆和低频区的斜线组成,高、中频区的半圆对应于工作电极表面钝化膜阻抗以及电解液/电极界面电荷转移阻抗之和,低频区的斜线为Li+在电极中的扩散阻抗[7-8]。由图3可知,相对于纯LiPF6电解液,LiFSI的加入明显降低了电解液/电极界面的阻抗,这说明LiFSI的加入使LiFePO4表面形成更有利于锂离子通过的钝化膜。
2.3 LiFePO4/石墨18650全电池倍率性能测试
为了考察混合盐电解液在高功率电池中的应用,制备了LiFePO4/石墨18650全电池,对其进行0.5~20的倍率放电,测试结果如图4所示。
由图4(a)可知,在倍率增大到15前,放电比容量大小存在微小的差异,随着倍率继续增大到20时,放电容量开始出现较明显的不同,尤其是1.2mol/LLiPF6电解液的电池的放电性能衰减很快,由0.5的120.2mAh/g衰减到86.3mAh/g,容量保持率为71.8%;而加入0.5mol/LLiFSI的电解液电池则是从120mAh/g衰减到102.3mAh/g,容量保持率体高度了85.2%,图4(b)为20放电时的电压-容量曲线,从图4中可见,LiFSI的加入大大改善了20放电性能,平均放电电压由2.3V提高到2.75V,放电容量也有所提高。这主要源于LiFSI的加入,使得锂离子迁移数增大,电解液中可迁移的Li+数目增多,浓差极化减弱,同时在电极表面形成阻抗较低的钝化膜,这些因素使得LiFSILiPF6混合盐电解液适合于高倍率放电。
3 结论
研究表明,LiFSI加入LiPF6电解液中能够提高电解液的电导率和锂离子迁移数,增强电解液导离子能力;同时LiFSI有助于降低电极表面膜阻抗,形成稳定的、导离子性较好的钝化膜;18650全电池倍率测试结果表明LiFSI-LiPF6混合盐更适用于高功率锂离子电池。
参考文献:李萌, 邱景义, 余仲宝,等. LiPF6/LiFSI混合盐在高功率锂离子电池中的应用[J]. 电源技术, 2018(1):12-15.
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
日前,河南林州市人民政府网站发布《关于2025年6月27日拟对林州创锦新能源有限公司年产100万支聚合物锂电池生产项目环境影响报告表作出审批意见的公示》,这一锂电池项目正式迎来阶段性进展。公示信息显示,项目选址河南省安阳市林州市红旗渠经济技术开发区电子产业园,林州创锦新能源有限公司拟投资51
作者:陈英健1吴尚1曹元成2杜宝帅3王振兴1欧阳钟文1汤舜2单位:1.华中科技大学,2.华中科技大学电气与电子工程学院,3.国网山东省电力公司电力科学研究院引用本文:陈英健,吴尚,曹元成,等.磁场分选在废旧锂电池正负极材料回收中的应用[J].储能科学与技术,2025,14(5):1918-1927.DOI:10.19799/j.cnki.209
作者:陈海生1李泓2徐玉杰1徐德厚3王亮1周学志1陈满4胡东旭1林海波1,2李先锋5胡勇胜2安仲勋6刘语1肖立业7蒋凯8钟国彬9王青松10李臻11康飞宇14王选鹏15尹昭1戴兴建1林曦鹏1朱轶林1张弛1张宇鑫1刘为11岳芬11张长昆5俞振华11党荣彬2邱清泉7陈仕卿1史卓群1张华良1李浩秒8徐成8周栋14司知蠢14宋振11赵新宇16
北极星储能网获悉,7月1日消息,新疆吉木萨尔北庭100万千瓦#x2B;20万千瓦/100万千瓦时全钒液流储能一体化项目主体工程顺利完工,进入收尾阶段。据悉,吉木萨尔北庭100万千瓦光伏#x2B;20万千瓦/100万千瓦时全钒液流储能一体化项目,总投资达38亿元。项目运行后,年平均发电量约17.2亿千瓦时。全钒液流储
储能大电芯从起步到现如今百花齐放,也不过短短三年。但是企业对储能电芯的技术储备,和业界对于储能寿命的钻研,远远不止几年。随着储能行业向“价值驱动”转变,电芯技术要求已从单纯的低成本,扩展至高能量密度(优化空间)、长循环寿命(摊薄成本)及高可靠安全性(保障稳定)等多元维度。聚焦新赛
电芯作为能源存储的核心,电芯的全性能直接关系到用户生命财产安全,远东电池凭借其自主研发的圆柱电芯技术,全系高容量电芯、高倍率电芯和中倍率电芯,全系列产品已通过CCC认证。技术革新筑牢安全基石远东电池依托16年圆柱电池研发经验,推出全系列高安全、高比能圆柱电芯,以技术创新破解安全难题。
作者:唐从庆蔡京升单位:常熟理工学院材料工程学院引用本文:唐从庆,蔡京升.补钠技术在钠离子电池中的应用进展[J].储能科学与技术,2025,14(5):1884-1899.DOI:10.19799/j.cnki.2095-4239.2024.1069本文亮点:1.本文系统归纳了近年来钠离子电池领域补钠技术的研究进展,分别从正极、负极及电解液三个组
北极星储能网获悉,6月27日,恩捷股份披露投资者关系活动记录表,回答投资者有关公司业务布局的问题。在半固态电池隔膜业务布局方面,公司下属控股子公司江苏三合电池材料科技有限公司具备半固态电池隔膜量产供应能力,公司在积极开拓市场。在全固态电池材料布局方面,公司下属控股子公司湖南恩捷前沿
北极星储能网获悉,6月26日,天能股份披露投资者关系活动记录表,说明了公司钠离子电池、固态电池等前沿技术领域目前最新进展情况。在钠离子电池领域,公司针对小动力和储能市场,成功研发出一款能量密度达到160Wh/kg的高性能层状氧化物钠电软包电芯。此外,公司还成功开发出首款能量密度95Wh/kg的聚阴
2025年“赛程”过半,各大企业的固态电池项目也开始加速“冲刺”。6月下旬以来,亿纬锂能、孚能科技、国轩高科、赣锋锂业等头部企业先后官宣。而且,这次不只是半固态电池的“先锋”,而是全固态电池的预期量产。市场也再次陷入兴奋,并且不断开始向纵深挖掘“话题”。然而,整个产业链真的准备好了吗
受供需突变、债务高企、技术竞争力不足、供应链脆弱、地缘政治加剧贸易与投资不确定性等多重因素冲击,锂电产业链公司正经历前所未有的生存挑战,行业分化加剧,洗牌步入深水区,一场关乎存续与出局的战役已经打响。“红海”搏杀从高歌猛进到销声匿迹2025年全球电池行业破产、退市事件频发。在国际市场
北极星储能网讯:6月6日,工信部发布拟推荐工业产品碳足迹核算规则团体标准推荐清单(第二批)公示。其中包括锂离子电池正极材料、负极材料、六氟磷酸锂等相关的碳足迹量化方法与要求储能相关标准。原文如下:为落实国务院办公厅《加快构建碳排放双控制度体系工作方案》(国办发〔2024〕39号),支撑建
国家发展改革委日前公布第二批国家碳达峰试点名单,贵州省黔南高新区这个从磷矿开采起家的老工业基地,凭借单位增加值碳排放强度五年骤降45%,同时工业增加值翻番的硬核指标成功入选。在“富矿精开”背景下,黔南高新区从能源、产业、治理三方面发力,构建起磷及磷化工、新能源材料、节能环保的千亿级
近日,云南省发展改革委依托省级重大项目清单,建立2025年云南省重点民间投资项目库,共纳入382个项目,总投资3456.62亿元,覆盖能源工业、能源以外工业、农业、文化旅游、数字经济、商贸物流、交通、社会事业、生态环保等行业领域。其中包含新安硅材料(瑞丽)有限公司1-4#炉余热综合利用发电项目、临
1-4月锂电产业链规划扩产项目达123个经历了2024年的低迷,2025年锂电池产业链扩产又迎来一波小高潮。据高工产业研究院(GGII)不完全统计,2025年1-4月,锂电池产业链共规划123个扩产项目,总投资额超3400亿元。具体到环节来看,锂电池、锂电池回收环节扩产项目分别有35个、23个,占整体规划扩产项目的
2024年,由于此前产能迅速扩张导致的阶段性、结构性过剩问题仍未解决,锂电产业产能建设进入“理性期”,主要表现为投资放缓,产能扩张减速。进入2025年一季度,各领域的产能投建呈现出不同的特征,少数头部企业扩产态势不减,更多的企业则根据具体情况适当削减项目,回笼资金。四巨头“悬崖勒马”去年
北极星电力网获悉,江西省发改委下达2025年第一批省重点建设项目计划,涉及91个电力能源项目,整理如下:一、建成投产项目江西赣能上高2×1000MW清洁煤电项目国能神华九江电厂2×1000兆瓦二期扩建工程风电、光伏项目(9项)三峡新能源万安弹前01.03风电项目江西省彭泽县棉船风电项目时代绿能奉新县赤田
行业概况锂电材料指为锂电池的生产过程中所需的各种原材料,能够决定电池的性能、安全性、寿命和成本。目前锂电池由正极、负极、电解质、电解质盐、胶粘剂、隔膜、正极引线、负极引线、中心端子、绝缘材料、安全阀、正温度系数端子(PTC端子)、负极集流体、正极集流体、导电剂、电池壳等构成,锂电材
3月3日,天赐材料发布《致全球投资者的重要提示》,针对近期资本市场传闻称其与海外某G公司合作开展电解液、六氟磷酸锂及添加剂等产品的代工及产能建设一事,天赐材料明确表示从未授权G公司在国内外进行相关产能建设及产品销售,任何未经公司公告的相关描述均涉嫌欺诈。天赐材料强调,公司已与全球核心
近日,研究机构EVTank联合伊维经济研究院共同发布了《中国六氟磷酸锂(LiPF₆)行业发展白皮书(2025年)》。白皮书数据显示,2024年全球六氟磷酸锂出货量达到20.8万吨,同比增长23.1%,总体市场规模为129.6亿元,同比下滑33.3%。EVTank在《中国六氟磷酸锂(LiPF₆)行业发展白皮书(2025年)》中表示
近日,研究机构EVTank联合伊维经济研究院共同发布了《中国六氟磷酸锂(LiPF#x2086;)行业发展白皮书(2025年)》。EVTank数据显示,截至2024年底,全球六氟磷酸锂实际有效产能39.0万吨,中国六氟磷酸锂实际有效产能为37.1万吨/年。EVTank之前发布的《中国六氟磷酸锂(LiPF#x2086;)行业发展白皮书(202
储能创造价值,市场牵引发展。历经2023年来行业疯狂“内卷”和价格血拼,我国储能产业逐渐从“卷价格”、“卷产能”,开始走向“卷技术”、“卷价值”的新型竞争轨道。低端劣质产能的市场出清加速,头部与二三线企业的行业分化加剧,电力市场改革推动的储能市场化盈利机制亦正在形成,云计算、AI人工智
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!