登录注册
请使用微信扫一扫
关注公众号完成登录
1.2 LiFePO4/Li半电池的组装与性能测试
按质量比8∶1∶1将磷酸铁锂(LiFePO4)、导电剂超级碳黑SuperP和聚偏氟乙烯(PVDF)混合均匀,再加入N-甲基吡咯烷酮(NMP),搅拌成均匀的浆料,涂覆在20滋m厚的铝箔(99.9%)集流体上,在120℃下真空(-0.1MPa,下同)干燥24h,再进行分切(=14mm),制成LiFePO4电极(含4.32mg活性物质)。
在氩气气氛手套箱中,以金属锂片为负极、LiFePO4电极为正极,组装CR2025扣式电池,用CHI660C型电化学工作站进行循环伏安和交流阻抗测试。循环伏安测试的电位为2.5~4.0V,扫描速率为0.1mV/s;交流阻抗测试的频率为105~10-2Hz,交流扰动电压为5mV。
1.3 18650型电池的组装与性能测试
按质量比91.0∶1.0∶2.0∶1.5∶4.5将LiFePO4、超级碳黑SuperP、导电石墨KS6、碳纳米管(CNT)和PVDF混匀,然后加入NMP,搅拌成均匀的浆料,用转移式涂布机涂覆在铝箔集流体上,在120℃下真空干燥24h,再以8MPa的压力压成137滋m厚,分切成80cm×5.3cm的LiFePO4电极(含8.5g活性物质)。
按质量比93∶2∶5将天然石墨(AGP)、超级碳黑SuperP和PVDF混匀,然后加入NMP,搅拌成均匀的浆料,用转移式涂布机涂覆在12滋m厚的铜箔(99.9%)集流体上,在120℃下真空干燥24h,再以11.5MPa的压力压成82滋m厚,分切成86cm×5.4cm的AGP电极(含5.0g活性物质)。
根据LiFePO4和AGP的比容量,设计正负极活性物质的质量配比及相应的电池工艺参数(负极容量约过量3%)。将制好的电极与Celgard2400膜卷绕成电芯,经装壳焊接、滚槽、85℃真空干燥24h、注液(6g)及密封等工艺,制成18650型实验电池。
用5V/10A自动充放电仪对电池进行化成,以0.5A恒流充电至3.65V,转恒压充电至0.1A,静置10min后,以0.5A恒流放电至2.30V,循环3次。用恒流限压、恒压限流的充放电制度,在5V/20A自动充放电仪上进行倍率特性测试,电压为3.65~2.00V。
2 结果与讨论
2.1 电解液电导率、黏度及锂离子迁移数
电导率是体现电解液离子传导能力的一个重要物化参数,在一定程度上反应了电解质中电流的传输速度和电池内部阻抗。在一定的温度下,电解液电导率与其黏度、锂盐浓度等因素直接相关。离子迁移数反应了某种离子运载的电流与通过溶液的总电流之比。在充放电过程中,锂离子电池的电极反应所需要的电荷转移主要由Li+承担,而高的Li+迁移数能减轻电极反应的浓差极化,使电池产生高的比能量和比功率。一般来说,电导率和锂离子迁移数直接反映了电解液的导离子能力。
采用恒电位极化法测得锂离子迁移数,图1为1.2mol/LLiPF6-0.1mol/LLiFSI电解液锂离子迁移数测试结果,由电流-时间曲线图1(a)和极化前后电池阻抗谱图图1(b)组成。对电极体系加上10mV电势差,初始时浓度梯度为零,流过电池两端的电流为正负离子在电场力作用下的电迁移所决定,其初始电流为I0,随后电流下降并达到稳态,稳态时负离子的运动对电流的贡献为零,即体系的电流都是由正离子的运动所贡献的,稳态电流为Iss。当电池极化前后,电极表面电荷转移阻抗以及钝化膜阻抗发生了变化,其值对应于阻抗谱的第一个半圆直径。根据式(1)计算电解液的锂离子迁移数。
表1列出了加入不同量LiFSI后混合锂盐电解液的电导率、粘度及锂离子迁移数。从表1中数据可知,当加入0.1mol/LLiFSI时,电导率由11.03增大到了11.18,同时锂离子迁移数也由0.4874增大到0.5133;当LiFSI浓度增加到0.3mol/L时,因为粘度的增加使电导率有所下降,但仍高于未加LiFSI电解液的电导率,而此时锂离子迁移数仍在增加;当LiFSI浓度进一步增大到0.5mol/L时,电导率继续下降,低于未加LiFSI电解液,而此时锂离子迁移数仍在增加。这说明加入适量的LiFSI能够提高电解液的电导率和锂离子迁移数,增大其导离子能力。
2.2 LiFePO4/Li半电池电化学阻抗与循环伏安测试
为了分析LiFSI的加入对电解液/LiFePO4界面的影响,以LiFePO4为工作电极、Li为对电极进行了循环伏安和交流阻抗测试。
图2为使用不同电解液的LiFePO4/Li半电池充放电3次后的循环伏安谱图,由图2可知,随着LiFSI的加入,氧化峰和还原峰的峰位差在减小,说明LiFePO4的电极反应的可逆性在增加,这一方面是因为LiFSI的加入使电解液的锂离子迁移数增大,能够减小电池的浓差极化,提高电极反应的可逆性;另一方面也表明LiFSI的加入有助于在LiFePO4表面形成稳定的、导离子性好的钝化膜,这一推测在电池的电化学阻抗谱中也得到了证实。
图3为循环三圈后电池的电化学阻抗,电化学阻抗谱的Nyquist曲线由高、中频区的半圆和低频区的斜线组成,高、中频区的半圆对应于工作电极表面钝化膜阻抗以及电解液/电极界面电荷转移阻抗之和,低频区的斜线为Li+在电极中的扩散阻抗[7-8]。由图3可知,相对于纯LiPF6电解液,LiFSI的加入明显降低了电解液/电极界面的阻抗,这说明LiFSI的加入使LiFePO4表面形成更有利于锂离子通过的钝化膜。
2.3 LiFePO4/石墨18650全电池倍率性能测试
为了考察混合盐电解液在高功率电池中的应用,制备了LiFePO4/石墨18650全电池,对其进行0.5~20的倍率放电,测试结果如图4所示。
由图4(a)可知,在倍率增大到15前,放电比容量大小存在微小的差异,随着倍率继续增大到20时,放电容量开始出现较明显的不同,尤其是1.2mol/LLiPF6电解液的电池的放电性能衰减很快,由0.5的120.2mAh/g衰减到86.3mAh/g,容量保持率为71.8%;而加入0.5mol/LLiFSI的电解液电池则是从120mAh/g衰减到102.3mAh/g,容量保持率体高度了85.2%,图4(b)为20放电时的电压-容量曲线,从图4中可见,LiFSI的加入大大改善了20放电性能,平均放电电压由2.3V提高到2.75V,放电容量也有所提高。这主要源于LiFSI的加入,使得锂离子迁移数增大,电解液中可迁移的Li+数目增多,浓差极化减弱,同时在电极表面形成阻抗较低的钝化膜,这些因素使得LiFSILiPF6混合盐电解液适合于高倍率放电。
3 结论
研究表明,LiFSI加入LiPF6电解液中能够提高电解液的电导率和锂离子迁移数,增强电解液导离子能力;同时LiFSI有助于降低电极表面膜阻抗,形成稳定的、导离子性较好的钝化膜;18650全电池倍率测试结果表明LiFSI-LiPF6混合盐更适用于高功率锂离子电池。
参考文献:李萌, 邱景义, 余仲宝,等. LiPF6/LiFSI混合盐在高功率锂离子电池中的应用[J]. 电源技术, 2018(1):12-15.
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
6月6日,阳泉市能源局关于印发《阳泉市能源领域碳达峰实施方案》的通知,通知指出,大力推进风光新能源建设。充分利用各类国土空间资源,统筹优化布局,梳理全市风光资源现状及开发潜力。坚持集中式与分布式开发并举,全面推进风电、光伏发电大规模开发利用和高质量发展,逐步带动新能源产业链延伸发展
宁德时代重新入股江西升华后,双方的合作关系再进一步。这次宁德时代预定了更多磷酸铁锂产能。6月5日晚间,富临精工发布公告,子公司江西升华与宁德时代签署补充协议,对2024年8月达成的业务合作协议进行修订。协议修订后,宁德时代对江西升华的支持力度进一步增强,承诺的采购期间有所延长,采购规模
北极星储能网获悉,6月6日,阳泉市能源局印发《阳泉市能源领域碳达峰实施方案》,提到,鼓励大数据中心、电动汽车充(换)电站、虚拟电厂运营商以及储能运营商作为市场主体参与用户侧储能项目建设。积极构建多层次智能电力系统调度体系,提高电网调度智能化水平。到2025年,全市实现快速灵活的需求侧响
随着全球储能市场需求持续增长,行业竞争日益激烈,终端降本压力不断加大。在此背景下,储能电芯产品正加速从第一代280Ah、第二代314Ah向500Ah+、600Ah+迭代升级,部分头部企业更是已将技术触角延伸至1000Ah+超大容量领域。然而,在136号文推动行业从政策驱动转向价值驱动的关键阶段,行业需要的不仅是
在碳中和目标驱动下,储能产业迎来技术爆发期。温差控制与电芯安全成为两大核心攻坚点。融捷能源以双轨并行的技术战略,同步发布三大新品:587Ah第三代长时储能电芯、125kW/261kWh浸没式户外柜储能系统以及浸没式锂电UPS电源柜。此次发布的三大储能新品是融捷能源“深耕电芯技术、突破系统瓶颈、开辟增
作者:彭鹏1王成东2陈满1王青松2雷旗开1金凯强2单位:1.南方电网调峰调频发电有限公司储能科研院2.中国科学技术大学火灾科学国家重点实验室引用本文:彭鹏,王成东,陈满,等.某钛酸锂电池储能电站热失控致灾危害评价[J].储能科学与技术,2025,14(4):1617-1630.DOI:10.19799/j.cnki.2095-4239.2024.1006本
北极星储能网获悉,6月3日消息,福建省科学技术厅等四部门关于组织申报2025年高校产学研联合创新项目的通知,新材料方向包括,锂离子电池、燃料电池等关键材料及工程化技术;电池梯级利用与绿色回收技术;乏燃料后处理技术;先进锂离子电池、动力锂离子电池凝胶聚合物电解质、高离子电导率和高稳定的无
在能源转型与技术革新的浪潮中,远航锦锂顺应行业发展需求,凭借深厚的技术积累与创新实力,推出循环再生系列电芯。这一系列创新产品不仅性能卓越,更为可再生能源的高效利用与广泛应用提供了全新的解决方案,有望引领新能源行业迈向更加绿色、高效、智能的新纪元。远航锦锂与上下游开展深度的技术合作
在被视作下一代储能电池——500+Ah储能电芯的竞赛上,远景动力和宁德时代率先发力。5月29日,远景动力沧州超级工厂正式下线500+Ah储能电芯,成为行业率先实现500+Ah电芯量产的企业。无独有偶,本月中旬,宁德时代位于山东济宁的新能源电池工厂一期项目投产。此前,有消息称,宁德时代587Ah储能电芯将于
5月29日,远景动力沧州电池超级工厂正式下线500+Ah储能电芯,成为行业率先实现500+Ah电芯量产的企业,持续领跑储能大容量电芯迭代。远景动力沧州500+Ah储能电芯产线实景据悉,远景动力此次量产的500+Ah电芯将适配当前市场主流6+MWh储能系统方案。相较上一代产品大幅提升了单体储能集装箱能量密度,节约
全球新能源产业进入高速增长期,但政策不确定性、技术迭代加速、国际竞争加剧等因素导致法律风险频发。近年来,全球新能源产业呈现爆发式增长态势。然而,行业高速发展背后暗藏多重法律风险。(作者:莫泰京北京市盈科律师事务所律师)新能源行业法律风险白皮书——合规挑战与应对策略目录一、行业趋势
国家发展改革委日前公布第二批国家碳达峰试点名单,贵州省黔南高新区这个从磷矿开采起家的老工业基地,凭借单位增加值碳排放强度五年骤降45%,同时工业增加值翻番的硬核指标成功入选。在“富矿精开”背景下,黔南高新区从能源、产业、治理三方面发力,构建起磷及磷化工、新能源材料、节能环保的千亿级
近日,云南省发展改革委依托省级重大项目清单,建立2025年云南省重点民间投资项目库,共纳入382个项目,总投资3456.62亿元,覆盖能源工业、能源以外工业、农业、文化旅游、数字经济、商贸物流、交通、社会事业、生态环保等行业领域。其中包含新安硅材料(瑞丽)有限公司1-4#炉余热综合利用发电项目、临
1-4月锂电产业链规划扩产项目达123个经历了2024年的低迷,2025年锂电池产业链扩产又迎来一波小高潮。据高工产业研究院(GGII)不完全统计,2025年1-4月,锂电池产业链共规划123个扩产项目,总投资额超3400亿元。具体到环节来看,锂电池、锂电池回收环节扩产项目分别有35个、23个,占整体规划扩产项目的
2024年,由于此前产能迅速扩张导致的阶段性、结构性过剩问题仍未解决,锂电产业产能建设进入“理性期”,主要表现为投资放缓,产能扩张减速。进入2025年一季度,各领域的产能投建呈现出不同的特征,少数头部企业扩产态势不减,更多的企业则根据具体情况适当削减项目,回笼资金。四巨头“悬崖勒马”去年
北极星电力网获悉,江西省发改委下达2025年第一批省重点建设项目计划,涉及91个电力能源项目,整理如下:一、建成投产项目江西赣能上高2×1000MW清洁煤电项目国能神华九江电厂2×1000兆瓦二期扩建工程风电、光伏项目(9项)三峡新能源万安弹前01.03风电项目江西省彭泽县棉船风电项目时代绿能奉新县赤田
行业概况锂电材料指为锂电池的生产过程中所需的各种原材料,能够决定电池的性能、安全性、寿命和成本。目前锂电池由正极、负极、电解质、电解质盐、胶粘剂、隔膜、正极引线、负极引线、中心端子、绝缘材料、安全阀、正温度系数端子(PTC端子)、负极集流体、正极集流体、导电剂、电池壳等构成,锂电材
3月3日,天赐材料发布《致全球投资者的重要提示》,针对近期资本市场传闻称其与海外某G公司合作开展电解液、六氟磷酸锂及添加剂等产品的代工及产能建设一事,天赐材料明确表示从未授权G公司在国内外进行相关产能建设及产品销售,任何未经公司公告的相关描述均涉嫌欺诈。天赐材料强调,公司已与全球核心
近日,研究机构EVTank联合伊维经济研究院共同发布了《中国六氟磷酸锂(LiPF₆)行业发展白皮书(2025年)》。白皮书数据显示,2024年全球六氟磷酸锂出货量达到20.8万吨,同比增长23.1%,总体市场规模为129.6亿元,同比下滑33.3%。EVTank在《中国六氟磷酸锂(LiPF₆)行业发展白皮书(2025年)》中表示
近日,研究机构EVTank联合伊维经济研究院共同发布了《中国六氟磷酸锂(LiPF#x2086;)行业发展白皮书(2025年)》。EVTank数据显示,截至2024年底,全球六氟磷酸锂实际有效产能39.0万吨,中国六氟磷酸锂实际有效产能为37.1万吨/年。EVTank之前发布的《中国六氟磷酸锂(LiPF#x2086;)行业发展白皮书(202
储能创造价值,市场牵引发展。历经2023年来行业疯狂“内卷”和价格血拼,我国储能产业逐渐从“卷价格”、“卷产能”,开始走向“卷技术”、“卷价值”的新型竞争轨道。低端劣质产能的市场出清加速,头部与二三线企业的行业分化加剧,电力市场改革推动的储能市场化盈利机制亦正在形成,云计算、AI人工智
北极星储能网获悉,2月5日晚间,天赐材料发布公告,公司全资子公司九江天赐高新材料有限公司(以下简称“九江天赐”)于2025年2月5日收到江西省九江市濂溪区人民法院出具的《刑事判决书》,九江天赐前员工李胜等人因将公司工艺技术资料违法违规透露给外部公司,一审被法院判决有期徒刑,并被追缴违法所
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!