登录注册
请使用微信扫一扫
关注公众号完成登录
图2 Brine4power电池系统示意图
4 应用前景展望
中国地下盐矿资源丰富,储量超过1万亿吨,且分布范围广,在华东、华北及西北地区,如苏北、苏南、河南、四川、陕西等,均发现了大型盐矿的存在,具备良好的建设地下盐穴储液库的地质条件[40]。中国岩盐开采的规模已超过4000 万吨/年,且以每年10%的速度在递增,形成的溶腔体积达500 万m3/年[42]。目前,中国盐穴资源基本处于闲置状态,利用率普遍较低,已用的盐穴数量仅占总量的0.2%,主要用来储存天然气及石油等战略物资。鉴于目前大部分盐穴处于闲置状态,尚有较大的利用空间,相关的盐业公司也在积极探索盐穴在更多其他方面的应用以提高盐穴资源利用率。国内,在盐穴造腔工艺技术和储库建造技术上已处于领先水平的中盐金坛盐化有限责任公司(中盐金坛公司),目前正在探索盐穴在新能源领域的储能技术应用。2017年5月27日,国家能源局正式批复中盐金坛公司与清华大学(电机系)合作开展基于盐穴压缩空气储能系统相关工作[42]。作为国家压缩空气储能示范项目,该示范项目一期建设规模为 50 MW的压缩空气储能发电系统,并将结合项目所在区域负荷发展及可再生能源开发情况,构建基于盐穴空气储能发电系统的微电网工程。如前面介绍,德国Ewe Gasspeicher GmbH能源公司也正在积极筹建盐穴电池储能系统。
作为中国优质的盐穴资源,金坛盐矿埋深800 m~1200 m,盐矿分布面积约60多km2,具有 NaCl含量高、泥盐夹层少、矿层顶底板分布稳定、密封性好等优势,是建造盐穴储气库的优越资源。目前金坛共有空闲盐穴650 万m3,经过改造,这些盐穴可以用于建设盐穴电池。按照2个10 万m3的盐穴电池储能700 MWh的标准计算,金坛目前盐穴总装机容量可以超过20000 MWh。如此巨大的储能容量对于支撑当地电网的调峰需求,促进电力系统经济运行,缓解峰谷差造成的电力供应紧张局面具有重要意义。因此,利用盐穴取代液流电池中的储液罐来制造大规模盐穴电池储能系统,将是盐穴应用于储能领域的另一重要发展。
中国的可再生清洁能源主要分布在西南、西北、东北和华北等地区,由于可再生能源的不稳定性及不可控性等特点,可再生能源发电的并网存在较大问题。中国的能源结构复杂,存在资源分布不均衡的问题,即西北部可再生能源发电量高,但是需求量低,而东部和中部经济较发达地区需求量大,但可再生能源存量低。然而,由于受电网输送及跨区域交易机制的影响,可再生能源的消纳成为目前新能源发展的瓶颈问题。大规模盐穴电池储能技术可以平抑短时间内的波动,帮助可再生能源向电网友好接入,减少弃风、弃光,从而切实提高可再生能源的消纳水平。此外,对于中国传统电力行业而言,电力的生产、传输、配电及使用是同时进行的,因此存在用电高峰时不能及时给负荷供电,用电低峰时又会出现输配电线路利用率低的问题。目前这种传统电网峰谷差问题正呈现出日益增大的趋势。大规模盐穴电池储能技术在用电低谷时进行储能,在用电高峰时释放能量,不仅可以提高输电线路的利用率,在同等输电线路容量的条件下可以满足更高的负荷要求,而且对于冲击性负荷也可以起到很好的削峰填谷作用。虽然目前技术成熟度较高的抽水蓄能技术也可以在一定程度上解决上述问题,但抽水蓄能电站对地理地势条件要求较高,大多数高负荷需求的城市并不存在建设抽水蓄能电站的条件,而且可能还存在生态及移民等问题,其推广应用受到一定的限制。
总之,盐穴电池储能系统具有储能容量大、响应速度快、循环寿命长及成本造价低等优点,是解决弃风、弃光问题,实现可再生能源大规模接入的关键手段,也是解决传统电力削峰填谷,提高传统能源综合利用效率,发展智慧能源与能源互联网的重要支撑技术。同时,盐穴电池储能技术的发展还可以提高资源整合度,充分利用高负荷需求地区丰富的盐穴资源,克服其他储能技术的高成本及规模化建设等问题,实现可再生能源与盐穴资源的综合高效利用。
5 结语
液流电池因为功率输出与能量储存分别独立设计的特点,在大规模储能方面具有显著优势。而利用天然体积巨大的盐穴进行电解液储存,设计盐穴电池储能系统,不仅可以低成本的制备大规模储能电池,而且可以提高地上空间利用效率。中国盐矿资源丰富,分布范围广,随着利用盐穴储气、储油技术的推广,溶腔造穴的技术也日益成熟,为开展盐穴电池储能技术的发展提供了有利条件。随着技术的发展及规模化储能的迫切需求,大规模、高效率液流电池的产业化与大规模应用已迫在眉睫,这也必将带动盐穴电池储能技术的发展。
参考文献
[1]黄其励. 中国可再生能源发展对建设全球能源互联网的启示 [J]. 全球能源互联网,2018,1(1): 1-9.Huang Qili. Insights from China Renewable Energy Development for Global Energy Interconnection [J]. Journal of Global Energy Interconnection, 2018, 1(1): 1-9(in Chinese).
[2]Luo X, Wang J, Dooner M, et al. Overview of Current Development in Electrical Energy Storage Technologies and the Application Potential in Power System Operation [J].Applied Energy, 2015, 137: 511-536.
[3]Zakeri B, Syri S. Electrical Energy Storage Systems: A Comparative Life Cycle Cost Analysis [J]. Renewable and Sustainable Energy Reviews, 2015, 42: 569-596.
[4]Ferreira H L, Garde R, Fulli G, et al. Characterisation of Electrical Energy Storage Technologies [J]. Energy, 2013, 53:288-298.
[5]Larcher D, Tarascon J M. Towards Greener and More Sustainable Batteries for Electrical Energy Storage [J]. Nature Chemistry, 2014, 7: 19-29.
[6]Wang W, Luo Q, Li B, et al. Recent Progress in Redox Flow Battery Research and Development [J]. Advanced Functional Materials, 2013, 23(8): 970-986.
[7]许守平,李相俊,惠东. 大规模储能系统发展现状及示范应用 [J]. 电源技术,2015,39(1): 217-220.Xu Shouping, Li Xiangjun, Hui Dong. Survey of Development and Demonstration Application of Large-Scale Energy Storage [J].Chinese Journal of Power Sources, 2015, 39(1): 217-220(in Chinese).
[8]郑雅丽,赵艳杰. 盐穴储气库国内外发展概况 [J]. 油气储运,2010,29(9): 652-655.Deng Yali, Zhao Yanjie. General Situation of Salt Cavern Gas Storage Worldwide [J]. Oil & Gas Storage and Transportation,2010, 29(9): 652-655(in Chinese).
[9]丁国生,谢萍. 利用地下盐穴实施战略石油储备 [J]. 油气储运,2006,25(12): 16-19.Ding Guosheng, Xie Ping. Salt Cavern Available for State Strategic Petroleum Storage [J]. Oil & Gas Storage and Transportation, 2006, 25(12): 16-19(in Chinese).
[10]谢聪鑫,郑琼,李先锋,等. 液流电池技术的最新进展 [J].储能科学与技术,2017,6(5):1050-1057.Xie Congxin, Deng Qiong, Li Xianfeng, et al. Current Advances in the Flow Battery Technology [J]. Energy Storage Science and Technology, 2017, 6(5): 1050-1057(in Chinese).
[11]Noack J, Roznyatovskaya N, Herr T, et al. The Chemistry of Redox-Flow Batteries [J]. Angewandte Chemie International Edition, 2015, 54(34): 9776-9809.
[12]Yang Z, Zhang J, Kintner-Meyer M C W, et al. Electrochemical Energy Storage for Green Grid [J]. Chemical Reviews, 2011,111(5): 3577-3613.
[13]Jia C, Liu J, Yan C. A Significantly Improved Membrane for Vanadium Redox Flow Battery [J]. Journal of Power Sources,2010, 195(13): 4380-4383.
[14]Hagedorn N H, Thaller L H. Redox Storage Systems for Solar Applications [A]. in: Power Sources Conference[C]. United States: NASA Lewis Research Center,1980. NASA-TM-81464.
[15]F. Gahn R, H. Hagedorn N, A. Johnson J. Cycling Performance of the Iron-Chromium Redox Energy Storage System [M]. in:20th Intersociety Energy Conversion Conference[C]. United States: NASA Lewis Research Center, 1985. NASA-TM-87034.
[16]Gareth K, A. S A, C. W F. Development of the All-Vanadium Vedox Flow Battery for Energy Storage: A Review of Technological, Financial and Policy Aspects [J]. International Journal of Energy Research, 2012, 36(11): 1105-1120.
[17]Leung P, Li X, Ponce de Leon C, et al. Progress in Redox Flow Batteries, Remaining Challenges and Their Applications in Energy Storage [J]. RSC Advances, 2012, 2(27): 10125-10156.
[18]Maria S K, George K, Grace P, et al. Recent Advances with UNSW Vanadium-Based Redox Flow Batteries [J]. International Journal of Energy Research, 2010, 34(2): 182-189.
[19]Skyllas-Kazacos M, Chakrabarti M H, Hajimolana S A, et al. Progress in Flow Battery Research and Development[J]. Journal of The Electrochemical Society, 2011, 158(8):R55-R79.
[20]Wang W, Nie Z, Chen B, et al. A New Fe/V Redox Flow Battery Using a Sulfuric/Chloric Mixed-Acid Supporting Electrolyte [J].Advanced Energy Materials, 2012, 2(4): 487-493.
[21]Huskinson B, Marshak M P, Suh C, et al. A Metal-Free Organic–Inorganic Aqueous Flow Battery [J]. Nature, 2014,505: 195-198.
[22]Lin K, Chen Q, Gerhardt M R, et al. Alkaline Quinone Flow Battery [J]. Science, 2015, 349(6255): 1529-1532.
[23]Janoschka T, Martin N, Martin U, et al. An Aqueous, Polymer-Based Redox-Flow Battery Using Non-Corrosive, Safe, and Low-Cost Materials [J]. Nature, 2015, 527: 78-81.
[24]Hazza A, Pletcher D, Wills R. A Novel Flow Battery: A Lead Acid Battery Based on An Electrolyte with Soluble Lead(ii)Part I. Preliminary Studies [J]. Physical Chemistry Chemical Physics, 2004, 6(8): 1773-1778.
[25]Collins J, Kear G, Li X, et al. A Novel Flow Battery: A Lead Acid Battery Based on An Electrolyte with Soluble Lead(II)Part VIII. The Cycling of a 10cm×10cm Flow Cell [J]. Journal of Power Sources, 2010, 195(6): 1731-1738.
[26]Lim H S, Lackner A M, Knechtli R C. Zinc-Bromine Secondary Battery[J]. Journal of the Electrochemical Society,1977, 124(8): 1154-1157.
[27]Leung P K, Ponce de León C, Walsh F C. An Undivided Zinc–Cerium Redox Flow Battery Operating at Room Temperature(295 K) [J]. Electrochemistry Communications, 2011, 13(8):770-773.
[28]Li B, Nie Z, Vijayakumar M, et al. Ambipolar Zinc-Polyiodide Electrolyte for a High-energy Density Aqueous Redox Flow Battery [J]. Nature Communications, 2015, 6(6303): 1-8.
[29]Lu Y, Goodenough J B. Regeable Alkali-Ion Cathode-Flow Battery [J]. Journal of Materials Chemistry, 2011, 21(27):10113-10117.
[30]Zhao Y, Wang L, Byon H R. High-Performance Regeable Lithium-Iodine Batteries Using Triiodide/Iodide Redox Couples in an Aqueous Cathode [J]. Nature Communications,2013, 4(1896): 1-7.
[31]Xi X, Li X, Wang C, et al. Non-Aqueous Lithium Bromine Battery of High Energy Density with Carbon Coated Membrane[J]. Journal of Energy Chemistry, 2017, 26(4): 639-646.
[32]Ding Y, Zhao Y, Yu G. A Membrane-Free Ferrocene-Based High-Rate Semiliquid Battery [J]. Nano Letters, 2015, 15(6):4108-4113.
[33]Wei X, Cosimbescu L, Xu W, et al. Towards High-Performance Nonaqueous Redox Flow Electrolyte Via Ionic Modification of Active Species [J]. Advanced Energy Materials, 2015, 5(1): 1400678.
[34]Wei X, Xu W, Vijayakumar M, et al. TEMPO-Based Catholyte for High-Energy Density Nonaqueous Redox Flow Batteries [J].Advanced Materials, 2014, 26(45): 7649-7653.
[35]Wei X, Xu W, Huang J, et al. Radical Compatibility with Nonaqueous Electrolytes and Its Impact on an All-Organic Redox Flow Battery [J]. Angewandte Chemie International Edition, 2015, 54(30): 8684-8687.
[36]Chiang Y-M, Carter W C, Duduta M, et al. High Energy Density Redox Flow Device[P]. United States: FC26-05NT42403,2013-08-26.
[37]Pan J, Ji L, Sun Y, et al. Preliminary Study of Alkaline Single Flowing Zn–O2battery [J]. Electrochemistry Communications,2009, 11(11): 2191-2194.
[38]Menictas C, Skyllas-Kazacos M. Performance of Vanadium-Oxygen Redox Fuel Cell [J]. Journal of Applied Electrochemistry, 2011, 41(10): 1223-1228.
[39]Zhu Y G, Jia C, Yang J, et al. Dual Redox Catalysts for Oxygen Reduction and Evolution Reactions: Towards a Redox Flow Li-O2Battery [J]. Chemical Communications, 2015,51(46): 9451-9454.
[40]梅生伟,公茂琼,秦国良,等. 基于盐穴储气的先进绝热压缩空气储能技术及应用前景 [J]. 电网技术,2017,41(10): 3392-3399.Mei Shengwei, Gong Maoqiong, Qin Guoliang, et al. Advanced Adiabatic Compressed Air Energy Storage System with Salt Cavern Air Storage and Its Application Prospects [J]. Power System Technology, 2017, 41(10): 3392-3399(in Chinese).
[41]World’s Largest Redox Flow Battery Being Built in Underground Salt Caverns [EB], https: //newatlas.com/brine4power-largest-redox-flow-battery/50405/
[42]郑明阳. 中盐金坛:盐穴不仅储气储油还储能 [J]. 中国盐业,2017,15(294): 52-54.Zheng Mingyang. Zhongyan Jin Tan: Salt Cavern not only Stores Gas, but also Stores Energy [J]. China Salt Industry,2017, 15(294): 52-54(in Chinese).
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
北极星储能网获悉,2025年2月27日,在2025国际新能源产业营销峰会期间,北京卫蓝新能源副总经理魏纪周发表了《固态锂电池当前商业化进展》的主题演讲。他表示,固态电池的大规模起量会在储能领域。在固态电池的复合路线中,最大的问题是界面的问题,原位固态化的解决思路有助于解决这一问题,助力混合
北极星储能网获悉,2月24日消息,南非国家电力公司(Eskom)表示,由于大部分故障机组已成功恢复,限电措施将从周一(2月24日)凌晨00:30起降至第四阶段。此前,Eskom因马朱巴(Majuba)电站五个机组和梅杜皮(Medupi)电站一个机组发生故障,不得不在周六实施三级限电。周日凌晨,卡姆登(Camden)电
北极星储能网获悉,1月16日,2024年度中国科学院杰出科技成就奖颁奖仪式在京举行。中国科学院院长、党组书记侯建国颁奖,副院长、党组副书记吴朝晖宣读表彰决定。中国科学院物理研究所陈立泉院士、中国科学技术大学陈仙辉院士获个人成就奖,“银河系早期形成与演化”等4项成果获基础研究奖,“大规模压
欧洲电力市场再现“负电价”。美东时间1月2日,由于风能发电量高达40吉瓦,远超当时的需求,德国隔夜市场再次出现了4小时的负电价,发电商不得不向用户付费以消耗多余电力。“负电价”是指电力市场中供大于求导致市场结算价为负值。意味着,发电企业每发出一度电需要向购电者支付费用,购电者不仅不需
电池中国获悉,日前,中石油开启了总容量为2.5GWh储能系统的集采招标,共分为4个标包,各标包所列需求量均为其2025年全年预估量。值得一提的是,此次集采的磷酸铁锂电池储能系统,须在合同签订后90天内交货,投标人必须是有效的中石油供应商资源库中的“一级资质供应商”。实际上,自11月以来,中国电
北极星储能网获悉,12月31日,多氟多在投资者互动平台表示,公司新能源电池主要聚焦在新能源汽车市场、大规模储能市场和轻型车及小储能市场,已与多家企业形成长期合作关系,销量稳定。
当地时间12月23日,中国能建江苏院EPC总承包的马来西亚首个大规模电化学储能项目赛京卡特60MW项目顺利并网运行,标志着中马绿色能源合作的又一重要成果落地。项目坐落于砂拉越首府古晋的赛京卡特燃煤电站内,建设容量为60MW/80MWh。项目采用预制舱式风冷磷酸铁锂电池储能系统,高稳定性、长寿命和出色
北极星储能网获悉,12月16日,新疆华电昌吉木垒凯升1050MW风光储大基地项目构网型储能电站EPC总承包批次评标结果公示,本工程分两个区域,其中风电区域装机容量800MW,储能容量112.5MW/450MWh,光伏区域装机容量250MW,储能容量150MW/600MWh。合计储能规模262.5MW/1050MWh。第一中标候选人为中国能源建
11月27日,中国船舶集团旗下广船国际有限公司储能项目竣工验收揭牌,并顺利送电并网。这是粤港澳大湾区船企中最大规模的储能电站项目,将进一步助力广船国际实现节能降碳、绿色发展。据介绍,该储能项目是广船国际与南网能源继光伏发电、智慧空压站改造、照明节能改造战略合作框架下的又一项合作新成果
11月15日6时,220千伏安泰升压站1号主变第五次冲击合闸成功,标志着国网河北邢台供电公司原集体企业兴力集团有限公司、设计院联合承建的邢台悟思110兆瓦/240兆瓦时、钒锂结合电网侧独立储能电站并网成功,这也是邢台电网目前最大规模的并网储能电站。为确保项目顺利投运,邢台供电成立专项服务团队,主
据报道,目前,德国约有161GW储能项目向该国四家主要输电系统运营商申请并网,而这一数字并没有包括储能系统运营商向配电系统运营商(DSO)提出的并网请求。这一消息让业界人士为之振奋。德国太阳能开发商Enerparc公司的首席运营官StefanMüller日前在接受行业媒体采访时表示,根据挪威能源数据分析商M
北极星储能网获悉,3月11日,全球产能最大的短流程钒电解液制备项目在内江投运,这是四川发展(控股)公司贯彻落实国家“双碳”战略、加速布局新型储能战略性新兴产业的第一个重大产业化项目,标志着四川省储能产业建圈强链迈出新步伐。此次投产的年产60000m短流程钒电解液制备项目,采用自主研发的新
北极星储能网获悉,据大连融科3月12日消息,公司与中国电建集团西北勘测设计研究院有限公司联合体于2月25日中标新疆哈密国投石城子100MW/400MWh钒液流电池独立储能项目。据项目中标公告项目,中标金额约8.79亿元,折合单价2.199元/Wh。该项目由哈密东天山发电有限公司投资建设,大连融科负责100MW/400M
3月11日,楚雄金聚电力有限公司发布了云南永仁全钒液流储能项目设计、采购、施工总承包(EPC)项目招标公告。项目位于云南省楚雄州永仁县,项目占地193.44亩,终期建设300MW/1200MWh全钒液流电池储能电站,计划分两期建设:一期项目建设100MW/400MWh全钒液流电池储能电站,计划2025年5月30日并网投入运
3月11日,金江能源开发(禄丰)有限公司发布了禄丰市全钒液流储能项目设计、采购、施工总承包(EPC)项目招标公告。项目位于云南省楚雄州禄丰市,本期建设规模为100MW/400MWh,电池技术路线选用全钒液流电池,项目占地面积60.39亩。项目总投资122716万元,折合单价3.068元/Wh。
北极星储能网获悉,3月9日上午,隆晟新能源核心部件“零碳工厂”项目开工仪式在苏州市吴江区盛泽镇盛大举行。总投资10亿元的隆晟新能源核心部件“零碳工厂”,集研发、制造、销售、运营于一体。项目规划新能源钒液流电池的研发与生产、新型电力系统的开发与建设,开展零碳园区项目的投资与建设,以及源
北极星储能网获悉,近日,山东烟台举办春季高质量发展重大项目建设现场推进会,321个重点项目集中开工,其中包括烟台储能中心(西部)1GW/2GWh项目。据了解,山东烟台储能中心(西部)1GW/2GWh项目位于山东烟台莱州市,由蓝天东方(莱州)能源有限公司建设,主要建设电化学储能站及其配套设施,购置磷
2025年3月4日,在备受瞩目的“北极星杯”储能影响力企业评选颁奖典礼上,星辰新能凭借其全钒液流电池技术的卓越创新力、全产业链布局的领先优势,以及大规模交付能力,一举斩获“2025北极星杯储能影响力电池供应商”与“2025北极星杯储能技术创新企业”两项重大奖项,作为液流电池领域唯一入选企业,以“
北极星储能网获悉,3月1日,易成新能发布《关于高级管理人员辞职的公告》,董事会于近日收到副总裁杨国新先生递交的书面辞职报告。杨国新先生因达到领导干部离职年龄,申请辞去公司副总裁职务,辞职后,将不再担任公司任何职务。同日,董事会收到董事吕晶晶女士递交的书面辞职报告,吕晶晶女士因工作调
天山山脉西侧,新疆察布查尔75MW/300MWh全钒液流储能电站正稳定运行,上能电气向其提供定制化储能系统解决方案,为西北地区新型储能树立了标杆范式。作为新疆构建新型电力系统的关键实践,该储能电站深度契合区域能源转型需求,在高海拔、高寒地区实现工程化突破。上能电气创新客制化集中式储能变流器
近日,江苏美淼储能科技有限公司承担的陕西省咸阳市城市水厂光储一体全钒液流电池储能电站项目建设现场一片繁忙景象,正如火如荼进行基建施工。该项目位于陕西省咸阳市城市水处理厂,规划总规模为光伏1.15MW+钒电池储能系统0.5MW/2MWh,预计将于2025年5月1日正式并入电网运行。通过将光伏发电系统与先
北极星储能网获悉,2月25日,呼和浩特金山高新区投促局主要负责人同赛罕区投资促进中心领导专程前往山西国润储能科技有限公司进行招商对接,洽谈储能领域合作契机。山西国润储能科技有限公司成立于2020年,是国内综合布局全钒液流电池装备制造与液流电池核心隔膜材料生产的高新技术和“专精特新”企业
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!