登录注册
请使用微信扫一扫
关注公众号完成登录
以下为发言实录:
各位嘉宾,上午好!我叫廖强强,来自上海电力大学。我今天报告的题目是“梯次利用电池在分布式储能系统的研究与应用”,我们课题组主要开展电池性能的状态评估、储能系统在电网中的应用、规划以及经济性等方面的工作。
我将主要从以下四方面进行汇报:第一,梯次利用的意义;第二,国内外梯次利用实践的情况;第三,我们在储能方面以前的研究研究工作基础;第四,梯次利用的问题探讨。大家都说梯次利用很好、成本很低,利用过程中其实有很多问题的。
梯次利用的意义,刚才前面很多专家也都提到了微电网、储能、新能源的发展等等,由于分布式电源的多样性,以及微电网运行方式的复杂性,储能系统作为能量的蓄水池,是微电网运行可靠安全的一个保障,上面的这几个图,分别代表几种典型的电化学储能的一些案例,比如说第一个是钠硫电池、第二个是反液流电池、第三个是锂离子电池、第四个是铅炭电池,现在这些储能案例都是有很多的。下面两张图是我们上海电力大学微电网的一些场景,我们有两个校区,一个是杨璞校区,一个是林岗校区,林岗校区也是刚刚搬到林岗区的,正在建设的过程。
刚才很多专家也提到了,在各种储能技术当中,电化学储能是发展最快的,而且成本降的也是最快的。但是电化学储能现在推广的,就是大家一直在说,投上去以后积极性好不好,其实主要的障碍是什么呢,就是成本的问题,比如锂离子电池储能系统的成本仍然要达到3元/瓦时的样子。
锂离子电池在我们国家非常大的应用场景就是电动汽车上,电动汽车刚刚刘博士也提到了,电动汽车的保有量已经超过了200多万辆了,我当时的数据已经是上半年的数据,接近200万辆的样子,这200万进入到市场以后,3—5年或者5—8年,总要从电动汽车上退役下来,所以我们国家动力电池的退役大潮即将来临,经预测,到2020年,我国动力电池退役电池将到12万—17万吨。我们政府方面做了很多工作,比如工信部下发了《关于做好新能源汽车动力蓄电池回收利用工作的通知》,这里面关键的基础,我们在退役电池的梯次利用主要关注在快速分享方面。
第一节,梯次利用意义非常重大,其中主要的是可以降低储能的成本,促进我国的节能减排和循环利用等产业可持续发展,往高里说就是提高生态文明的建设水平。
第二节,国内外梯次利用的实践。梯次利用最感兴趣的就是各个新能源汽车厂商,因为他们推出了新能源汽车以后,像我们国家当时提出了电动汽车的电池退役以后两个责任主体,一个就是新能源汽车厂商,还有一个就是电池提供商,所以各个新能源汽车厂商其实对于梯次利用也都非常感兴趣。
第一个案例是通用汽车,通用汽车最早推出的是沃兰特的增程车,他是16千瓦时的电池系统,他当时沃兰特有很多样车,里面电池退役了,当时跟ABB做了一个案例,将无组型或者放在车上的蓄电池重新整合成25千瓦/50千瓦时的模块化装置,可以放在美国的比如house里面或者社区储能里面,可以支持3—5个美国家庭的2小时电源供应,比如家里屋顶有光伏的话,可以跟光伏配合起来使用。
日本尼桑他最早推出的电动汽车品牌是Life,他的这款电动汽车的电池系统是24度电,后来由于电池性能的提高、能量密度的提高、成本的下降,他系统电池容量越来越高,达到40千瓦/60千瓦时的样子。2014年,将16辆日产聆风的的退役动力电池和光伏配合使用,平滑光伏的输出功率。
各种电动汽车里面日产尼桑的市场占有率还是非常高的,2018年的数据,市面上Life电动汽车储量达到30万辆的规模,所以他也非常关注退役电池怎么来利用好,他也做了一些案例,比如通过实验室测试来分析各个退役电池的一致性的工作。
日本退役电池叫再生电池,根据容量来说,如果退役电池衰减不是很厉害,达到90%以上的话,可以在电动汽车使用,如果80%左右用在低速电动汽车上,因为他是汽车厂商,所以关注的还是汽车上怎么用好,当衰减更多的时候可以作为备用电池系统。退役电池最大的好处就是成本比较低,是新电池一半左右的价格,也是比较有吸引力的。
宝马也做过不少案例,有做的比较小的家庭的梯次利用的,也是做了相当于大型储能的案例。宝马i3,最早i3上的电池系统是22度电的,后来由于电池性能的提高、能量密度的提高,就是在原有的电池框架的基础上将22度电提升到33组电,也可以看出来电池技术发展是比较迅猛的,能量密度提高一半。他将新电池,如果整个电池包衰减的一致性比较好,大家都均匀的衰减到70%或者80%的情况下,整个电池包加上逆变器把协议打通,其实就可以作为储能系统来使用,这样子改造的成本也相对会比较低一点,这是一种情况。
他也有做成比较大的储能电站,这个是跟光伏配套来使用的这样一个案例,他整个电池储存里面就储存了很多的电池包。这个案例里也是,整个电池包不拆解就进行使用,跟风力发电来配合使用。
另外是他做的最大的一个退役的储能的案例,是100多辆宝马上的2600个退役电池模组,建立了2.8兆瓦时的退役电池的储能电站,这个储能是调频进行使用的,保持电网的稳定。
凯美瑞做的电动汽车大家可能听到的也不是很多的,他做的是插电式的,原来一款车叫凯美瑞混合动力车,这个混合动力车里头的电池其实是一个启动电源,容量非常小,只有1度电,就是把208个凯美瑞的电池组也做成一个储能系统,一个85度的储能系统,用在美国黄石公园的太阳能发电站里面,跟光伏来配合使用。这个案例里边最大的借鉴意义是什么呢,这个放电深度比较浅,放电深度我计算了一下在50%左右,也提出来了对于梯次利用旧电池使用的策略不能深度充放电,要浅充放电的模式。
我们国家在梯次利用方面其实有很多案例,每个省也都有自己的电力构思在主导的,还有一些新能源汽车厂商或者电池厂商在主导的梯次利用的案例,这个是去年的一个案例,这个案例系统页比较大,1.1兆瓦时。这个案例我觉得可以借鉴的是什么,每个储能单元采用组串式的并联,这样的好处就是电池基本单元的一致性就可以忽略掉了,就没有这个事情了,我觉得这是一个比较好的方式。另外一个,他又在一个工业园区里面的削峰填谷、需量电费的管理,使用策略一个是浅充浅放,另外放电倍率比较低,0.2C。计算了一下,他整个储能系统成本大约在1块钱/瓦时的样子,相对来讲还是比较低的。
说到各个汽车厂商梯次利用的一些案例,不得不提到一个特斯拉,特斯拉其实我们去看一些报道,好像没有关于特斯拉在梯次利用方面的一些案例报道,我分析可能以下几个原因:第一个,现在用的电池是21700,已知的在电池里面能源密度最高的,达到300瓦时/千克的样子,虽然是圆柱形的21700,它的容量比一般的圆柱形的容量还是高很多,可以达到,有的报道是5安时,我看到一个报告5.75安时,总规5安时以上,相对这个容量还是比较小的,在特斯拉的电池系统里面有7千到8千个电池串并联起来才组成他的比如100度电、80度电的电池系统、动力电源系统。这个豆粒电池在他的寿命达到终止的时候,你想七八千个电池,它的不一致性就非常显著,这是一个原因。第二个原因,他本身的新电池的成本就做的很低了,也是看到的报道,21700的电池系统售价在170美元/千瓦时,也是合到1元/瓦时的样子,他新电池就做到了我们旧电池的成本了,在梯次利用上挖掘他的价值没有什么意思。第三个,他使用的是三元电池,正极材料是镍钴铝。
第三个,宣传一下电力学院在电池方面的工作。有一些研究平台,科委的省部级的平台,一个是上海电力转换工程技术研究中心,是跟上海公司联合申请的,还有一个是上海市电力材料与材料重点实验室,我们一帮老师在这两个平台上进行工作的。
这是我们实验室的一些情况,我们这里头有一些充放电机或者电池检测设备,还有微网系统、电化学工作站,可以测电池的内阻等等情况做一些分析,另外材料的设备也是有的。
在前期的储能研究过程中我们也做了一些工作,比如说制定了上海市地方标准,这个标准是智能电网用储能电池性能测试技术规范,也获得了一些奖项。
这是申请的一些专利,蓝颜色的就是在申请、在实施的过程中,红颜色的是已经授权的,前三个专利都是在梯次利用做的一些工作。这是授权专利证书的情况。也发了一些文章,现在主要的工作就是在梯次利用上。承担了一些项目,这里非常感谢科学院新能源研究所的项目,另外还有其他的一些项目,三个都是2018年的项目。
第四个,梯次利用中的问题探讨。我从以下几个方面来说:
第一,退役电池的容量衰减问题。我们做过几个案例,我们也统计了电池衰减的情况,这个案例是荣威E50上的电池,我们从电池模组的角度进行衰减,这是20个3P3S的退役电池模组,单芯容量20安时,模组容量60安时,我们对模组的容量因为衰减的不一致,有些衰减的快、有些衰减的慢,我们看到底容量是多少。我们对20个模组来分类,SOH在90%以上的13个,在80%—90%的有5个,80—70%的有1个,70—60%的有1个,换句话说,这20个模组里边其实大部分衰减的不厉害,只有少部分衰减到80%、70%、60%以下,而且数量也很少。从模组的角度来看,电池的衰减情况是参差不齐的,有些衰减的厉害、有些衰减的不厉害,另外大部分来讲,衰减的并不厉害。因此从模组的角度来进行梯次利用,其价值更有可挖掘的潜力。
另外我们做的另一个案例,奇瑞电动汽车的电池,是圆柱形的26650的天津比克的,整个模组的容量是40安时,我们也对24个模组进行容量测试,来看它的衰减情况,分为3组,SOH在90%的有14个,90%—80%的有8个,80%—70%的有2个,低于70%的没有。从这里我们也看得出来,其实从电池系统角度容量衰减80%或者70%,其实大部分里面的模组衰减的并不厉害,只是有某一个或者某几个模组或者某一个或者某几个模组中的某些担心,性能衰减的比较快,所以脱离了整个系统的容量下来了,这个就是大家常说的木桶效应。但是我们从这些数据里可以得到一个启示,如果整个电池包退役下来了以后,我梯次利用怎么利用呢?我如果从模组的角度进行梯次利用的话,是不是有更多的剩余价值可以挖掘。
第二,退役电池的循环寿命问题。这个也是以奇瑞这个模组做的循环,这个时间也很长的,我们做了2C充/2C放、1C充/1C放,还有削峰填谷模式,就是1/3额定功率冲/1个额定功率放,削峰填谷的模式下进行梯次利用的话1800次,大约5年的样子。所以对于旧电池来讲,低倍率的充放电制度下,梯次利用的使用寿命还是可以达到5年左右的,这是寿命的问题。
第三,能量转换效率的问题。我们也做成一个储能系统,我们跟光伏配合使用,能量转换效率在88%左右,比新电池90%几稍微低一点,但是也还可以。
第四,这是电池功率的事情。这个功率能不能放得出来,比较大的功率情况下持续时间是什么样的情况,我们做过一串的、两串并起来的,一个模组、两个模组串起来的、四个模组串起来的情况,我们发现放电持续时间接近理论的放电时间。
第五,一致性快速分解。这方面我们做了一些工作,由于担心退役电池的性能,从单芯的角度做一些分析,像身体健康检查一样的,各方面检查,分析到电阻的情况得到这么一个规律,退役电池的容量跟锂离子扩散系数呈显著正相关,就是那张图,锂离子扩散系数大的容量高,容量高的锂离子扩散系数大。我们从模组的角度进行快速拆解做了一些工作,这张图应该是5%、10%、3%,发现低SOC下退役电池模组的最大开路电压差跟电池容量呈线性负相关。刚才是开路电压的情况,我们也从工作电压的角度来进行分析,我们发现可以得到更好的规律,通过一定的计算,计算出一个参数叫Lorenz的离散度,Lorenz发现这个离散度在不同的SOC范围里面,Lorenz这个参数跟SOH之间呈线性负相关。我们也把它做成一个软件,我们希望通过这样一个软件来快速进行率选,我们现在正在跟奇瑞方面洽谈合作的事宜。
第六,刚才讲的这几个案例里面我小结一下。
1,动力电池系统的容量可能低于80%以下,这是退役电池退役的标准。但是其中很多模组的容量仍然具有不低于80%的容量,这个就提示我们如果梯次利用,它的剩余价值最大挖掘我们从模组角度利用可能更好。
2,单芯容量量较大的退役电池可考虑从单芯角度进行梯次利用,对单芯容量较小退役电池从模组角度来讲可能更好,可以挖掘出最大的剩余价值。
3,对退役电池怎么用,在低倍率的充放电,就是浅充浅放的状态下,倍率比较低的情况下进行使用,它的梯次利用寿命可以比较长,可以达到5年的样子。
4,梯次利用一致性好的退役电池撤下来以后,仍然表现出比较好的功率特性,前提是一致性较好的进行串联。退役电池成组的退役转换效率比较高。
5,对与退役电池一致性变差以后,我们要从低成本角度考虑梯次利用的话,一个工作肯定要做,就是说一致性的快速衰减。这也是工信部通知里面提出的要求。
我的汇报就到这里。谢谢大家!
(根据北极星储能网现场速记整理,未经嘉宾审核)
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
5月27日,广西现代物流集团下属广西环保集团与北京朝阳环境集团在南宁举行战略合作框架协议签约仪式。北京市朝阳区国资委党委书记、主任贾恩松,广西现代物流集团党委副书记、副董事长、总经理冯小金,北京朝阳环境集团党委书记、董事长皮猛出席仪式并见证签约。此次签约,是京桂两地国企协同服务国家
5月29日,宁德时代与兰州市人民政府正式签署战略合作协议。双方将重点围绕新能源电池后市场建设、全域交通电动化升级及零碳城市生态构建三大领域深化合作,致力于将兰州打造成西北地区零碳转型的样板城市。兰州市市委常委、副市长魏永辉,副市长阮强,与宁德时代监事会主席、区域管理总裁吴映明,华南
日前,海南省生态环境厅发布《海南省深化推进全域“无废岛”建设工作方案(2025—2027年)(征求意见稿)》。文件提出,到2027年,全域“无废岛”建设成型起势,4个地级市和昌江黎族自治县“无废城市”建设形成引领示范。全省生活垃圾、建筑垃圾、工业固体废物等资源利用效率向国内先进水平迈进,危险
5月22日,重庆市发展和改革委员会印发《推动经济社会发展全面绿色转型行动计划(2025—2027年)》的通知。三年行动计划指出:1、推动传统产业“智改数转绿色化”转型。推动钢铁、有色、石化、化工、建材、造纸、印染等行业实施节能降碳改造升级,深入推进“绿效码”应用,推进存量低效数据中心节能降碳
北极星电力网获悉,重庆市发改委5月22日正式印发《推动经济社会发展全面绿色转型行动计划(2025—2027年)》指出:统筹提升能源安全供应能力。夯实市内电源基础,加快推动两江燃机二期等天然气发电、合川双槐三期煤电项目,加快云阳建全、丰都栗子湾、奉节菜籽坝抽水蓄能电站建设。全力推进外电入渝工
5月22日,重庆市发展和改革委员会印发《推动经济社会发展全面绿色转型行动计划(2025—2027年)》。文件提出,健全以治水治气为牵引的“九治”生态治理体系。打好治水攻坚战,加快污水收集处理设施新建改扩建进度,全域全面消除黑臭水体。打好治气攻坚战,严格控制PM2.5浓度。加强土壤污染源头防控,协
日前,福州发布关于征求《福州市石化化工行业碳达峰实施方案(送审稿)》《福州市钢铁行业碳达峰实施方案(送审稿)》《福州市建材行业碳达峰实施方案(送审稿)》意见的通知。详情如下:关于征求《福州市石化化工行业碳达峰实施方案(送审稿)》《福州市钢铁行业碳达峰实施方案(送审稿)》《福州市建材行
北极星储能网获悉,5月14日,上海市人民政府发布了人大代表《关于推进电池护照体系建设提升电池产业绿色贸易竞争力的建议》的答复。其中提出,鼓励企业开展试点。将结合产品数字护照实施总体部署及试点推进,在国家总体标准体系布局下,围绕数据采集、行业应用等地方性特色要求,探索利用标准创新联合
近日,百思凯新能源(上海)有限公司正式签署总投资32亿元的“动力电池高值化利用零碳工厂项目”,项目落地江苏淮安工业园区,标志着长三角新能源产业协同发展迈入新阶段。本项目总占地面积380亩,建成后将实现年处理30万吨退役动力电池、年产2万吨电池级碳酸锂、10万吨再生电池级磷酸铁的战略目标,同
北极星储能网获悉,近日,新疆维吾尔自治区克拉玛依市独山子区人民政府与新疆烽焱资源循环利用有限公司正式签署战略合作协议,共同推进3万吨/年废旧锂电池综合回收项目达成战略合作协议。独山子区人民政府指出,废旧锂电池回收综合利用项目,深度契合独山子区产业向高端化、智能化转型需求,有力推动绿
近日,位于河北唐山曹妃甸工业区钢铁电力园区的中冶新材料项目二期整体已完工75%,预计2025年上半年完成施工,即将进入设备安装阶段。“中冶新材料项目”是中冶集团抓住新能源汽车行业爆发式增长的市场机遇,依托自身矿产资源优势和动力锂电池正极材料的综合技术优势打造的关键项目。项目共分两期建设
“十五五”是我国经济迈向高质量发展的关键阶段,也是全球能源格局深刻调整的重要时期。在当前和今后一段时间,我国能源电力将持续处于清洁低碳、安全高效转型的大趋势大环境中,如何更加有效地发挥电力在国民经济中的基础和先导作用,促进国家重大发展战略和目标的实现,更好地满足人民群众日益增长的
改革是电力行业发展的核心驱动力之一。进入“十四五”以来,在我国“双碳”目标的提出,以及能源安全韧性的拷问下,新一轮电力体制改革全面提速,为构建新型电力系统探索适配的“软件系统”。根据国家能源局公布的数据,2025年一季度,我国风电光伏发电合计新增装机7433万千瓦,累计装机达到14.82亿千
面向新型电力系统开展电力规划,应对“不确定性”是其中的关键命题。高比例新能源、高比例电力电子设备的“双高”特性,叠加用户侧用电结构变化和大量新型负荷的崛起,源荷双侧不可预测性显著增强,传统“源随荷动”的平衡模式难以适用,电力系统安全韧性面临的挑战在“十四五”期间已逐步显现,“十五
5月28日,哈萨克斯坦主权财富基金Samruk-Kazyna首席执行官努尔兰·扎克波夫会见远景能源高级副总裁、国际产品线总裁徐刚,双方围绕在哈萨克斯坦绿色能源转型展开深入讨论。根据共识,双方将在风电、储能、绿氢及零碳产业园等领域深化合作,协同推动哈萨克斯坦能源零碳进程与经济高质量发展。徐刚表示:
国家发展改革委、国家能源局近期发布《关于有序推动绿电直连发展有关事项的通知》(以下简称《通知》),国家能源局有关负责同志接受采访,回答记者提问。问:什么是绿电直连?答:直连是指电源不直接接入公共电网,而通过与用户直接连接的电力线路向单一用户供电,供应的电量可以清晰物理溯源。一是绿
北极星售电网获悉,5月30日,南方能源监管局发布关于公开征求对《广东省提升新能源和新型并网主体涉网安全能力实施方案(征求意见稿)》意见的通知。文件明确,科学界定涉网安全管理范围。应纳入涉网安全管理范围的并网主体包括海上风电、陆上风电、集中式光伏、分布式光伏、分散式风电等新能源,以及
北极星输配电网整理了5月26日~5月30日的一周输配电政策动态。西安关于开展建设零碳工厂(园区)和综合能源示范项目摸底工作的通知5月30日,陕西西安市工信局发布《西安市工业和信息化局关于开展建设零碳工厂(园区)和综合能源示范项目摸底工作的通知》。为推动光伏、氢能、地热、智能微电网、新型储能
截至2024年底,中国新能源汽车保有量已达到3140万辆。面对新能源汽车爆发式增长带来的充电基础设施需求压力,储能技术正成为破解充电网络峰谷矛盾的核心突破口。近日,海博思创完成星纪云能(无锡)科技有限公司在上海北翟路超级充电站的储能项目交付,通过精准的峰谷套利策略与智能功率支撑技术,为充
近期,多座储能电站获最新进展,北极星储能网特将2025年5月26日-2025年5月30日期间发布的储能项目动态整理如下:我国首个大型锂钠混合储能站投产5月25日,我国首个大型锂钠混合储能站——南方电网宝池储能站在文山壮族苗族自治州丘北县正式投产。宝池储能站属于国家新型储能试点示范项目,也是云南省首
近日,国家能源局综合司等部门联合发布《关于加强电化学储能安全管理有关工作的通知》,从提升电池系统本质安全水平、健全标准体系、强化全生命周期安全管理责任等六个方面,为储能行业划出安全“底线”,也为行业高质量发展提供清晰方向。作为储能行业的技术引领者,天合储能始终把“安全”作为系统设
近日,国家发改委、国家能源局印发《关于有序推动绿电直连发展有关事项的通知》。政策直指单一利用公用电网方式下的高比例新能源消纳困境和碳壁垒,提出“主网和微网协同发展”的思想,同时带动发电、用能和电网体系的结构性变革,将对我国能源体制、市场规则和企业角色带来全方位转变。政策背景:促进
近几年,得益于政策的大力支持,中国新能源汽车快速增长。进入2018年以来,在打赢蓝天保卫战三年行动计划政策的刺激下,各省陆续下达新能源汽车“推广令”,预计十三五末期新能源汽车将延续高速增长态势。新能源汽车的快速推广和增长也为以有序充电、车电互联(V2G)、电池更换、退役电池等为主要方式的
北极星储能网总结10月26日要闻,分布式储能是储能行业真正的未来北京朝阳区拟将储能项目纳入专项资金支持;2018年10月26日2018中国分布式储能峰会顺利召开,峰会上储能行业众专家、项目业主、投资方、储能设备提供商围绕分布式储能这个话题展开了一场精彩对话;充电桩数量猛增14倍利用率却不足15%这个
分布式储能是储能行业真正的未来!短期来看,发电侧、可再生能源并网等需求势头较猛,但从能源互联的角度来看,储能的未来一定在用户侧和分布式,分布式储能也最能体现储能的真正价值,改变整个电力产业格局。在2018年10月26日,由北极星电力网、北极星储能网、中关村储能产业技术联盟联合主办的“2018
“现在储能项目整体来讲数量比较少,要总结出一个共性难度非常大。现在我们觉得对储能市场来讲还停留在第一阶段,就是这个投资主体,包括整个项目量还需要有进一步的增长,达到一定量级之后,至少各种模式都有足够的量支撑,吸引更多的主体投资进入到这个市场中来,后面两项再根据投资人自身的不同,做
“从投资收益率上,我们比较保守,储能能算到8%还是得拿梯次利用的,很多清洁供暖的项目20%的收益率是很常见的。”——摘自万琳在2018中国分布式储能峰会发言2018年10月26日,北极星电力网、北极星储能网、中关村储能产业技术联盟在北京西国贸大酒店联合举办2018中国分布式储能峰会,在下午下半场“储
“并不是说在一个地区所有的火电厂都可以上这种储能调频项目,一般来说我们是先去对当地电厂的整体情况做总体调研,一般会选当前的考核,就是分担考核当中罚款比较多的电厂来做后期调频的经济性测算,同时也跟当地的政策密切相关,现在有些地方补偿政策已经开始下调了,这样他的收益马上时间也就拉长了
“设备的选型,我们选用了磷酸铁锂电池,主要考虑第一个就是设备的稳定性、还有一个是安全性。他充放电的功率,均能满足我们目前几个需求,第一个就是我们电网侧特高压直流响应速度的,磷酸铁锂响应速度也是毫秒级的,可以满足特高压直流闭锁的时候快速响应;第二个,充放电的时间,2个小时、4个小时都
“乙烷的化学储能条件下,是目前现今社会下所有的化学储能最优秀的一个方法工艺,也就是说现在全部欧洲、美洲跟亚洲区块有很多的单位都用到这个系统,中国目前为止是全世界除了在美国陆军有用到以外另一个落点,中国现在是希望能够进入到一个最好的环境,也希望大家能了解到化学储能最起码的基本概念跟
微电网规划设计特征一共有五个,主要是“综合、互联、高效、共享、友好”。传统意义上,如果我们对微电网的规划设计不是特别理解,可能会有这样一个想法,微电网商业模式驱动综合服务以及综合能源。其实这种理解对电力企业转型发展的产业变革、趋势、技术内涵、业态升级都是存在一定偏差的。”——摘自
“很多人咨询,到底一个光伏电站应该配多少储能,通常有说配置20%、15%的,现在很难做一个定位,首先你要确定不同的功率目标,后边根据你的约束条件选择你的电池和你的放电深度,这样才能得出相应的计算结果,这个计算过程每一个可能要单独出一个方案,要一对一的进行设计。”——摘自杨子龙在2018中国
“电网侧储能实际是通过租赁的方式来实现电站管理的,目前没有考核机制、管理办法,对整个电网、对储能电站租赁方式下的储能电站的管理还没有形成闭环。管理办法要结合运行成效的指标、可靠性的指标进行管理,这样才能真正意义上由电网来管理储能电站,发挥更多的电网关注的功能和作用。”——摘自王德
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!