登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
14 质量保证和质量控制
14.1 监测仪器设备的检定和校准
14.1.1 属于国家强制检定目录内的工作计量器具,应按期送计量部门检定,经检定合格出具检定证书,检定证书在有效期内方可用于监测工作。
14.1.2 其他不属于国家强制检定目录的仪器及其他辅助设备应定期进行校准。
14.1.3 便携式烟气分析仪应根据使用频率至少每半年进行一次低、中、高浓度的标准气体对仪器线性校准,测定值与标准气体的浓度值的误差应符合相关标准要求。
14.1.4 便携式烟气分析仪应根据仪器使用频率,每个月至少进行一次零点漂移、量程漂移的测定,零点漂移、量程漂移测定结果应符合相应标准。
14.2 监测仪器设备的质量检验
14.2.1 烟气采样器的技术要求见HJ/T 47,烟尘采样器的技术要求见HJ/T 48,便携式烟气分析仪的技
术要求见9.3.2,其他监测仪器设备的技术要求应符合相关监测方法标准的规定。
14.2.2 应严格检查皮托管和采样嘴等其他辅助设备,发现变形或损坏后不得使用。
14.2.3 仪器抗负压能力应大于烟道负压,避免仪器采样流量减少,导致测定结果偏低或无法测出。
14.3 现场监测质量保证和质量控制
14.3.1 排气参数的测定
14.3.1.1 打开采样孔后应仔细清除采样孔内的积灰,插入采样管或采样探头后,严密堵住采样孔周围缝隙防止漏气。
14.3.1.2 排气温度测定时,应将温度计的测定端插入烟道中心位置,待示值稳定后读数,不允许将温度计测定端抽出烟道外读数。
14.3.1.3 排气水分含量测定时,采样管前端应装有颗粒物过滤器,采样管应有加热保温措施。应对系统的气密性进行检查。对于直径较大的烟道,应将采样管尽量深地插入烟道,减少采样管外露部分,以防水汽在采样管中冷凝,造成测定结果偏低。
14.3.1.4 测定排气流速时皮托管的全压孔要正对气流方向,偏差不得超过10 度。
14.3.2 颗粒物监测
14.3.2.1 采样位置的选取应遵循以下要求:
a) 应尽可能选择气流平稳的管段;
b) 采样断面最大流速与最小流速之比不宜大于3 倍,否则影响等速采样的精度。
14.3.2.2 采样系统在现场安装连接完毕,应对采样系统进行气密性检查,发现问题及时解决。
14.3.2.3 采样头的制作过程中,应压紧固定防止漏气,并防止压成双滤膜或双铝箔。
14.3.2.4 采样孔打开后,需进行仔细检查,清除采样孔沉积的灰浆、污垢和液态水;采样过程中确保采样嘴不碰到采样孔内壁、挡板等,避免损坏和沾污。
14.3.2.5 现场应及时清理采样管,减少样品沾污。
14.3.2.6 采样嘴应先背向气流方向插入管道,采样时采样嘴应对准气流方向,偏差不得超过10 度。
采样结束,应先将采样嘴背向气流,迅速抽出管道,防止管道负压将尘粒倒吸。采样仪器应开启防倒吸功能。
14.3.2.7 等速采样时仪器跟踪率应控制在90%-110%。
14.3.2.8 全程序空白采样过程中,采样嘴应背对废气气流方向,采样管在烟道中放置时间和移动方式与实际采样相同。全程序空白应在每次测量系列过程中进行一次,并保证至少一天一次。为防止在采集全程序空白过程中空气(烟道为负压)或废气(烟道为正压)进入采样系统,应断开采样管与采样器主机的连接,密封采样管末端接口。
14.3.2.9 采样结束后小心将采样头从采样管上取下,迅速扣上采样嘴帽并放入专用袋中,采样嘴朝上放入采样箱中,运送过程中不可倒置,并尽量避免震动。
14.3.2.10 采样头处理(放置、安装、取出、标记、转移)和称重称量容器以及称量部件时应戴无粉末、抗静电的一次性手套。
14.3.2.11 采样结束后应检查滤膜是否破损(采用整体称重时,称量结束后再检查),如发生破损则该样品无效。
14.3.3 气态污染物(SO2、NOX)监测
14.3.3.1 便携式烟气分析仪的除湿系统脱水率应不小于90%,出口露点不高于4℃,组分丢失率不大于5%。对于能在湿式方式下测定气体浓度的分析仪,除湿系统是不必要的,但应同时测定含湿量,并把待测气体浓度由湿基转换成干基。
14.3.3.2 在除湿系统的出口处附加过滤介质,用以除去颗粒物保护采样泵和气体分析仪。也可以在采样探头的前端附加粗过滤器。过滤介质应由与待测气体无反应的材料制成。
14.3.3.3 仪器测定过程中不能重新启动,避免仪器零点发生变化,影响测量准确性,如重新启动,应按照仪器要求重新验证或校准。
14.3.3.4 应严格按照监测分析方法和仪器说明书进行操作,监测前后用标准气体进行测定,示值误差和系统偏差应符合监测分析方法要求,否则本次监测数据无效。
14.3.3.5 测试时应在仪器显示浓度值变化趋于稳定后读数,测试完毕将采样探头取出,置于环境空气通入高纯氮气,清洗仪器读数直至仪器示值满足说明书要求后再关机。
14.3.4 汞及其化合物监测
14.3.4.1 在采样前和结束后,均进行装置气密性检查。如在采样前发现漏气,应及时查找原因并排除故障;如在采样结束后发现系统漏气,则此组样品作废。
14.3.4.2 在采样孔打开后需进行仔细检查,清除采样孔中沉积的灰浆、污垢和液态水。
14.3.4.3 采用活性炭吸附/热裂解原子吸收分光光度法时,在烟气中气态汞采样前,应在加热杆温度达到120℃以上时再开展监测,同时还应维持前置采样头温度不超过140℃,并应确保加热杆温度维持在正常工作范围。
14.3.4.4 采用活性炭吸附/热裂解原子吸收分光光度法时,平行双样采集时,采样参数应保持一致,
即应保证采样流量一致和采样的同步性。
14.4 实验室内分析质量保证和质量控制
14.4.1 实验室应设专用天平室,在恒温恒湿设备内用天平称重,确保天平防震、防尘、防风、防阳光直射、防腐蚀性气体侵蚀。采样前、采样后平衡及称量时,应保证环境温度和环境湿度条件一致。并避免静电对称量造成的影响。
14.4.2 应使用有证标准物质,其不确定度应符合相关分析方法要求。
14.4.3 采用HJ 917 测定汞时,实验室分析活性炭管之前,先将空的样品舟放入热解炉进行加热,去除样品舟上吸附着的汞,之后再进行标准曲线的绘制与进行样品分析。
14.5 其他
14.5.1 应严格执行各监测分析方法中的质量保证和质量控制要求。
14.5.2 烟气连续排放监测系统校验及抽检的技术要求和质量控制按HJ 75 和HJ 76 的规定执行。
附 录 A
(规范性附录)
固定污染源废气 二氧化硫、氮氧化物的测定 傅立叶变换红外光谱法
A.1 用范围
本方法适用于固定污染源废气中二氧化硫、氮氧化物浓度的测定。
本方法二氧化硫、氮氧化物检出限为3 mg/m3,检出下限为12 mg/m3。
A.2 方法原理
分子的每一种运动状态都具有一定能量,当红外光与物质分子有选择性地相互作用时,不同结构的分子就吸收或发射一定波长的红外光,形成具有特征性的红外光谱。物质的吸收强度和浓度遵循朗伯-比尔定律。因此实验测量的原始光谱图是光源的干涉图,然后通过计算机对干涉图进行快速傅立叶变换计算,从而得到以波长或波数为函数的光谱图,可对待测物质浓度加以计算。
A.3 试剂及材料
包括以下试剂和材料:
a) 高纯氮气:纯度高于99.99 %(钢瓶气);
b) SO2 标准气体(国家级标物,不确定度小于2 %);
c) NO 标准气体(国家级标物,不确定度小于2 %);
d) NO2 标准气体(国家级标物,不确定度小于2 %)。
A.4 干扰及消除
废气中的颗粒物和水气的干扰,以及废气温度对测定的影响,通过过滤器滤尘和全程加热装置确保无冷凝水对待测物质的吸附影响,减少干扰至可接受的程度。
A.5 仪器
A.5.1 组成
傅立叶变换红外测定仪由采样系统(含采样探头、颗粒物过滤器、样品输送管线、采样泵等)和分析系统(含光谱仪、定量光谱图、分析软件等)组成。
A.5.1.1 采样探头
探头要由不会对待测物产生反应或吸附、耐高温的材质制造,且长度要满足采样要求。
A.5.1.2 过滤器
探头顶部可插入玻璃纤维塞(选配)用于去除烟气中大颗粒物,探头出口处连接过滤器,要求过滤器对平均粒径2 μm 以上的颗粒物去除率达到99%。
A.5.1.3 样品输送管线
样品输送管线应为可加热、耐高温的(保证待测物不会冷凝)不锈钢、聚四氟乙烯或其他不与待测物反应的材料所制造。
A.5.1.4 采样泵
采样泵要求气密性良好,带有旁路阀门,其材料需耐热并不与待测物发生反应。
A.5.1.5 傅立叶红外分析系统
傅立叶红外分析系统应满足如下要求:光谱仪能够达到待测物的检出限浓度;分析系统需连接电脑,电脑上应安装能够自动收集光谱的分析软件;定量图谱库内存有易与待测气体发生反应或被采样系统吸附的干扰气体背景谱图,并每隔一年对干扰气体背景谱图进行校准。
A.5.2 技术要求
技术要求如下:
a) 示值误差:不超过±5%(标准气体浓度值<100μmol/mol 时,不超过±5μmol/mol);
b) 系统偏差:不超过±5%;
c) 零点漂移:不超过±3%F.S.(校准量程≤200μmol/mol 时,不超过±5%F.S.);
d) 量程漂移:不超过±3%F.S.(校准量程≤200μmol/mol 时,不超过±5%F.S.);
e) 具有消除干扰功能;
f) 采样管加热及保温温度大于120℃,温度可设、可调,确保烟气中水分完全汽化。
A.6 测定步骤
A.6.1 零点校准
步骤如下:
a) 按照仪器说明书正确连接仪器主机与采样器、采样探头,检查系统是否漏气,检漏应符合GB/T16157 中系统现场检漏的要求;打开主机,采样系统和主机达到说明书规定的工作状态。样气室温度达到且稳定在仪器规定值,并使干涉图达到稳定高度。
b) 在气室中通入干燥氮气,待没有明显的干扰物(如水蒸气和二氧化碳)混入,仪器稳定达到正常工作水平,收集背景光谱,命名并保存。零点校准结束后关闭高纯氮气。
A.6.2 样品采集和测定
将采样管插入烟道采样点位,开动采样泵,以仪器规定的采样流量连续采样,用烟气清洗采样管道,
抽取烟气进行测定,待仪器读数稳定后即可记录分析仪读数,同一工况下应连续测定不少于45 分钟,
取平均值作为测量结果。
A.6.3 测定结束
测定结束后,将采样管置于清洁的环境空气中,继续启动采样泵,抽取环境空气清洗气路;清洗气路后关闭采样泵,将高纯氮气通入主机样气室完成清洗,使仪器示值回到零点后关机。
A.7 二氧化硫精密度和准确度
A.7.1 精密度
五个实验室对二氧化硫浓度分别为225μmol/mol、102μmol/mol、51.1μmol/mol 的有证标准气体样品进行了测定:
实验室内相对标准偏差分别为0.1%~0.4%,0.1%~1.8%,0.2%~0.4%;
实验室间相对标准偏差分别为0.08%、0.5%、0.4%;
重复性限为1.3μmol/mol、3.3μmol/mol、0.4μmol/mol;
再现性限为1.4μmol/mol、3.4μmol/mol、0.6μmol/mol。
A.7.2 准确度
五个实验室对二氧化硫浓度分别为225μmol/mol、102μmol/mol、51.1μmol/mol 的有证标准气体样品进行了测定:
相对误差分别为:1.4%~1.7%、3.2%~4.3%、2.6%~3.6%;
相对误差最终值:1.6%±0.2%、3.7%±1.0%、3.2%±0.8%。
A.8 氮氧化物精密度和准确度
A.8.1 精密度
五个实验室对氮氧化物浓度分别为290μmol/mol、196μmol/mol、49.7μmol/mol 的有证标准气体样品进行了测定:
实验室内相对标准偏差分别为:0.09%~0.3%,0.1%~0.4%,0.3%~0.6%;
实验室间相对标准偏差分别为:0.2%、0.9%、0.9%;
重复性限:1.5μmol/mol、1.2μmol/mol、0.6μmol/mol;
再现性限:2.1μmol/mol、5.1μmol/mol、1.4μmol/mol。
A.8.2 准确度
五个实验室对氮氧化物浓度分别为290μmol/mol、196μmol/mol、49.7μmol/mol 的有证标准气体样品进行了测定:
相对误差分别为:0%~0.3%、0.2%~2.3%、2.0%~4.3%;
相对误差最终值:0%±0.4%、0.7%±1.8%、2.6%±1.9%。
A.9 方法检出限的验证
A.9.1 二氧化硫方法检出限的验证
对浓度为方法检出限(3mg/m3)3 倍的二氧化硫样品连续测定7 次平行样,计算检出限为1.8 mg/m3,样品浓度未超过所得检出限的10 倍,认为方法检出限合理。
A.9.2 氮氧化物方法检出限的验证
对浓度为方法检出限(3mg/m3)3 倍的氮氧化物样品连续测定7 次平行样,计算检出限为1.1 mg/m3,样品浓度未超过所得检出限的10 倍,认为方法检出限合理。
A.10 质量保证及控制
A.10.1 采样的同时,要注意样品光谱基线。如果样品光谱基线在任何分析区域的变化达到5%以上(吸光度-0.02至0.02),则需要制备新的背景光谱。
A.10.2 查看样品光谱,确认被测样品光谱与标定光谱库内的标准光谱的吸收峰形状一致。确认被测样品浓度与标定光谱库内量程一致。测试前后标定气体的示值浓度相对偏差不超过±5%。
A.10.3 用二氧化硫、氮氧化物标准气体(A.3)按照仪器说明书规定的校准程序对仪器的测定量程进行校准。由于分析仪灵敏度随时间变化,为保证测试精度,应根据仪器使用频率至少每三个月校准一次,在使用频率较高的情况下,应增加校准次数。
A.10.4 示值误差检查:每次监测前,选择合适浓度的二氧化硫、氮氧化物标准气体,对仪器进行示值误差检查,示值相对误差不超过±5.0%,则状态检查合格,否则应查找原因并进行相应的修复或维护直至满足要求后方可开展监测。监测完成后,亦需重复上述检查。若示值相对误差超过±5.0%,则本次监测数据作废,并进行相应的修复或维护,满足要求后重新进行监测。
A.11 注意事项
A.11.1 烟气中的颗粒物会堵塞采样管路或者粘附在仪器反射镜面上,影响仪器精度,使用前应仔细检查过滤装置的状况,及时更换或清理。
A.11.2 每次在使用仪器后,要在干净的空气中清洗仪器,根据测量气体的浓度确定清洗时间,浓度越高清洗时间越长。
A.11.3 分析仪主机建议每年进行一次水标定,防止水的吸收峰对其它组分的干扰。
附 录 B
(规范性附录)
仪器法二氧化硫、氮氧化物监测技术导则
B.1 适用范围
本方法适用于固定污染源废气中的二氧化硫、氮氧化物等气态污染物浓度的测定,其它气态污染物的测定可参照本标准。
B.2 方法概述
B.2.1 相关的标准和依据
本方法参照美国环境保护局EPA Method 6C《固定污染源排放二氧化硫的测定(仪器分析法)》和Method 7E 《固定污染源排放氮氧化物的测定(仪器分析法)》以及欧洲标准EN 14181:《2004 固定污染源排放—自动检测系统的质量保证》。
B.2.2 方法原理
从固定污染源中连续抽出气体,引入分析仪内,以测定样气中SO2 及NOx 的浓度。仪器原理包括:紫外吸收法、交替流动调制化学发光法、高温滤波红外光谱法等适用于烟气中低浓度污染物测定的方法。
所用的方法应为国家或行业发布的分析方法、《空气和废气监测分析方法》中所列的分析方法、国际标准、欧盟标准及各国发布的标准方法。
B.2.3 测量范围
对于本方法,测量范围由所选择的测定系统量程所定,量程的选择应视排气中二氧化硫及氮氧化物的浓度而定,原则上被测的气态污染物浓度应不低于使用量程的20%,若在一次测定期间的任何时刻,气态污染物浓度超过所选量程,则该次测定无效。
B.2.4 灵敏度
最低检出限应低于满量程的2% 。
B.3 试剂及材料
包括以下试剂和材料:
a) 高纯氮气:纯度高于99.99 %(钢瓶气);
b) SO2 标准气体(国家级标物,不确定度小于2 %);
c) NO 标准气体(国家级标物,不确定度小于2 %);
d) NO2 标准气体(国家级标物,不确定度小于2 %);
e) CO 标准气体(国家级标物,不确定度≤2 %)。
B.4 干扰及消除
可通过串联型气动检测器或气体滤波等相关技术消除干扰气体的干扰。废气中的颗粒物和水气的干扰,以及废气温度对测定的影响,通过过滤器除尘、除湿冷却装置快速除水和废气降温消除或减少干扰至可接受的程度。
B.5 仪器
B.5.1 组成
仪器由分析系统、采样系统(含采样探头、颗粒物过滤器、样品输送管线、采样泵、气体流量计等)和数据记录仪组成。
B.5.2 技术要求
要求如下:
a) 示值误差:不超过±5%(标准气体浓度值<100μmol/mol 时,不超过±5μmol/mol);
b) 系统偏差:不超过±5%;
c) 零点漂移:不超过±3%F.S.(校准量程≤200μmol/mol 时,不超过±5%F.S.);
d) 量程漂移:不超过±3%F.S.(校准量程≤200μmol/mol 时,不超过±5%F.S.);
e) 具有消除干扰功能;
f) 采样管加热及保温温度大于120℃,温度可设、可调,确保烟气中水分完全汽化。
B.6 测量步骤
B.6.1 检查气密性
仪器的各组成部分应连接牢固,测定前后应按照要求检查仪器的气密性。仪器连接完成后,可堵紧进气口,若仪器的采样流量示值在2min 内降至零,表明气密性合格。
B.6.2 标定零点
应按照如下步骤进行零点校准:
a) 按仪器使用说明书,正确连接仪器的主机、采样管(含滤尘装置和加热装置)、导气管、除湿冷却装置,以及其它装置。
b) 将加热装置、除湿冷却装置及其它装置等接通电源,达到仪器使用说明书中规定的条件。
c) 打开主机电源,预热,将高纯氮气经相应减压阀和流量控制器,以仪器规定的流量,通入进气口,待仪器指示稳定后,进行零点校准。测量浓度较高的气体样品时,也可用新鲜空气进行零点校准。
B.6.3 样品测定
把采样管插入烟道采样点位,以仪器规定的采样流量连续自动采样,用废气清洗采样管,抽取废气进行测定,待仪器读数稳定后开始记录读数,每分钟至少记录一次监测结果。同一工况连续测定不少于45 分钟,取测量结果平均值。
测试结束后,将采样管置于清洁的环境空气或高纯氮气中,使仪器示值回到零点后关机。不同分析仪操作步骤有差异,应严格按照仪器说明书进行操作。
B.7 质量控制和质量保证
B.7.1 不能直接测得NO2的仪器,二氧化氮/氮氧化物转化器每半年至少进行一次NO2至NO效率的测定,若转化效率低于85%,建议更换还原剂。B.7.2 用二氧化硫、氮氧化物标准气体(B.3)按照仪器说明书规定的校准程序对仪器的测定量程进行校准。由于分析仪灵敏度随时间变化,为保证测试精度,应根据仪器使用频率至少每三个月校准一次,在使用频率较高的情况下,应增加校准次数。
B.7.3 示值误差检查:由于分析仪的灵敏度随时间变化,为保证测试精度,应在测试前后选择合适浓度的二氧化硫、氮氧化物等标准气体对仪器进行示值误差检查。若示值误差大于±5%时,则检查应为无效。执行修正动作,重做示值误差检查至示值误差在±5%以内。
B.8 注意事项
使用本方法的人员应具备固定污染源废气排放现场监测工作的实践经验,熟悉紫外吸收法、化学发光法、高温滤波红外光谱法等适用于烟气中低浓度污染物测定方法原理的仪器。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
为进一步加强煤电节能减排监管,根据《节约能源法》《大气污染防治法》以及能源监管统计报表制度等相关规定和要求,福建能源监管办汇总统计了2025年上半年福建省统调燃煤电厂节能减排信息,现予公布。一、总体情况2025年上半年,福建省统调燃煤电厂加权(下同)平均供电标准煤耗294.15g/kWh,同比降低1
2015年7月15日,经国务院批准,由中国电力投资集团公司和国家核电技术有限公司合并重组而成的国家电力投资集团,在北京正式挂牌。这一天,两大能源央企的整合完成,不仅开创了我国能源产业体制改革的先河,也为中国能源转型提供了新的动力支撑。国家电投集团成立之初,就成为国内唯一同时拥有火电、水
2015年7月15日,经国务院批准,由中国电力投资集团公司和国家核电技术有限公司合并重组而成的国家电力投资集团,在北京正式挂牌。这一天,两大能源央企的整合完成,不仅开创了我国能源产业体制改革的先河,也为中国能源转型提供了新的动力支撑。国家电投集团成立之初,就成为国内唯一同时拥有火电、水
十年蜕变——国家电投重组成立以来改革发展成就综述2015年7月15日,经国务院批准,由中国电力投资集团公司和国家核电技术有限公司合并重组而成的国家电力投资集团有限公司(以下简称“国家电投”),在北京正式挂牌。这一天,两大能源央企的整合完成,不仅开创了我国能源产业体制改革的先河,也为中国
中国电煤采购价格指数(CECI)编制办公室发布的《CECI指数分析周报》(2025年第25期)显示,CECI沿海指数中高热值煤种现货成交价格分别较上期上涨分别较上期上涨7元/吨、3元/吨。曹妃甸指数小幅上涨。CECI进口指数到岸标煤单价继续上涨。CECI采购经理人连续5期处于扩张区间,分项指数中,除库存分指数
7月11日,国际二氧化碳捕集利用封存(CCUS)技术创新合作组织会员大会暨成立大会在京举行,中国石化集团公司董事长、党组书记侯启军出席并致辞。中国科学技术协会党组成员兼国际合作部部长罗晖、联合国教科文组织东亚区域办事处主任夏泽翰出席并致辞。集团公司党组成员、副总经理吕亮功主持。大会上,
近日,美丽北仑建设工作领导小组办公室印发《北仑区2025年空气质量持续改善行动方案》的通知,方案提出,强化煤炭总量控制。严格落实《宁波市煤炭消费减量替代工作方案》,重点削减非电力行业用煤。深入实施煤电机组“三改联动”,对5000吨标煤以上的重点用能企业实施化石能源消费预算管理。全区原则上
澳大利亚能源市场运营商(AEMO)近期在国家电力市场(NEM)成功实施了频率性能支付(FPP)改革。这项于2025年6月8日生效的新机制,被AEMO视为NEM的重要里程碑。FPP采用双面激励机制,根据参与者对系统频率的实时影响给予奖励或惩罚。改革的核心变化改革包含两大关键变化。首要变化是废除了“肇因者付费
在降低工业能耗和提升可持续性要求日益严格的背景下,运营商是否应重新关注泵的能源效率?对此,苏尔寿中国区服务事业部总经理周敏先生进行了深入探讨。在全球范围内,能源密集型工业部门的产量不断增长。受此驱动,全球能源消耗持续攀升,这使得提升能效的紧迫性日益凸显。国际能源署(IEA)指出,通
中国电煤采购价格指数(CECI)编制办公室发布的《CECI指数分析周报》(2025年第24期)显示,CECI沿海指数中高热值煤种现货成交价格分别较上期上涨2元/吨、5元/吨。曹妃甸指数小幅上涨后企稳。进口指数现货成交价窄幅震荡。CECI采购经理人连续4期处于扩张区间,分项指数中,除航运分指数处于收缩区间外
随着新型电力系统建设的加速推进,数智技术与电力技术的融合赋能愈发凸显,智能化转型升级已成为燃煤电厂发展的重要方向。作为集团公司“十四五”期间首个百万千瓦级燃煤智慧电厂项目,新余第二发电公司围绕“无人干预,少人值守”目标,构建起覆盖设备全生命周期的智慧管理体系,将电厂由传统的工业生
近日,浙江省多部委联合印发《浙江省海上风电安全应急管理指导意见》,详情如下:省自然资源厅、省生态环境厅、省建设厅、省交通运输厅、省海洋经济厅、省国资委,省气象局,宁波、温州、嘉兴、舟山、台州市发展改革委(能源局)、应急局,浙江海事局所属各分支局:为贯彻落实省政府关于海上风电“加强
北极星太阳能光伏网获悉,7月17日,望海街道丹佛斯第二园区二号厂房光伏项目获得浙江嘉兴市海盐县人民政府望海街道办事处批复建设。据了解,望海街道丹佛斯第二园区二号厂房光伏项目建设在丹佛斯二号厂房屋面上,组件铺设面积为22451㎡,光伏功率为4.49MW。该项目实施单位为海盐县北部新城开发有限公司
近日,中国能建中电工程浙江院中标平阳润洋新能源有限公司浙江温州平阳1号海上风电项目EPC总承包工程标段三。该项目拟安装38台单机容量16.2兆瓦风电机组,采用500千伏海上升压站,风电场由8回66千伏海底电缆汇流至海上升压站,经500/66千伏变压器升压至500千伏后通过1回500千伏三芯海底电缆敷设至瑞安
北极星电力网整理了31个地方2025年6月的发电量数据,包括火电、水电、核电、风电、光伏。1、北京市2025年6月,北京市总发电量34.5亿千瓦时,同比增长0.6%;其中,火电发电量33亿千瓦时,同比增长-1.3%;水力发电量1.1亿千瓦时,同比增长99.6%;风力发电量0.1亿千瓦时,同比增长31.9%;太阳能发电量0.26
众所周知,电灯的发明彻底改变了人们的生活方式,但电灯的背后却隐藏着一场激烈的世纪电流之战。这场战争的主角,爱迪生和特斯拉为“直流电还是交流电更适合输电”吵得不可开交,他们一个坚持直流,一个力推交流。结果呢?这场大战以交流电胜出告终,但直流也没下岗,爱迪生成为电灯之父,直流、交流各
近日,中国电力企业联合会(中电联)公布2024年度电力行业光伏发电运行指标对标结果,正泰新能源瓯泰光伏电站获华东地区浙江省AAAA级光伏电站,正泰长源光伏电站获东北地区吉林省AAA级光伏电站,正泰酬勤湖光伏电站获华北地区内蒙自治区AAA级光伏电站。此次评选,全国各发电集团(投资公司)共上报2048
7月16日,中国电力企业联合会电动交通与储能分会发布《电化学储能行业发展报告2025》(简称《报告》)。其中显示,2024年电化学储能运行效率与商业价值实现“双突破”,平均转换效率达88.75%。《报告》分析了9个省份独立储能运营模式,以江苏为例,“充放电价差+顶峰补贴+容量租赁+储能补贴”模式,50M
北极星储能网获悉,7月17日消息,浙江绍兴强化电力气象精准服务保障迎峰度夏安全运行,聚焦新型储能供给侧结构性改革,深度挖掘气象“数据要素×”潜能,联合电力部门研发日照时长和辐射强度预测产品,助力光伏发电资源最大化利用。近期,创新推出光伏资源优化互补预测专业气象服务,为电力部门提供次
北极星售电网获悉,7月17日,浙江电力交易中心发布热点问答(第四期)|中长期交易。详情如下:
7月11日,浙江湖州德清莫干110千伏输变电工程核准获批。一、为提高供电能力,提升区域供电可靠性,完善网架结构,拟安排建设湖州德清莫干110千伏输变电工程。依据《行政许可法》、《企业投资项目核准和备案管理条例》,同意湖州德清莫干110千伏输变电工程(项目代码为:2205-330521-04-01-640607)。项
北极星售电网获悉,7月17日,国家能源局发布2024年度中国电力市场发展报告。报告提出,各类经营主体数量稳步增加,市场参与度不断提升。2024年全国电力市场经营主体数量81.6万家,同比增长8.9%。其中,发电企业3.5万家,电力用户77.7万家,售电公司4409家。发电侧燃煤机组全部进入市场,超过半数的新
日前,河南省发展和改革委员会发布关于南阳白河2x1000MW煤电项目核准的批复,该项目建设地点位于南阳市宛城区黄台岗镇。项目新建2台100万千瓦高效超超临界燃煤发电机组。详情如下:河南省发展和改革委员会关于南阳白河2x1000MW煤电项目核准的批复南阳市发展改革委:报来的《关于呈报南阳白河电厂(2×1
7月11日,河南濮阳市台前县政府发布豫能台前2×100万千瓦超超临界火电机组项目环境影响评价公众参与第一次信息公示,项目总投资85亿元,主要建设2×3188t/h超超临界燃煤锅炉+2×1000MW超超临界凝汽式汽轮机等,详情如下:豫能台前2×100万千瓦超超临界火电机组项目环境影响评价公众参与第一次信息公示
近日,江苏省发改委发布关于大唐南京发电厂大唐南电二期2×745MW燃气轮机创新发展示范项目1号机组节能报告的审查意见。该项目为扩建项目,建设地点位于南京市栖霞区龙潭街道马渡村大唐南京发电厂内,总占地面积14.50公顷、建筑面积32742m2,与“大唐南电二期燃气轮机创新发展示范补单项目”共用。项目
华电丹东金山热电二期1×660MW热电联产扩建工程设备监造服务招标公告(招标编号:CHDTDZ058/19-QT-511)一、招标条件华电丹东金山热电二期1×660MW热电联产扩建工程设备监造服务项目已批准,招标人为丹东金山热电有限公司,项目资金为自筹。本项目已具备招标条件,现进行公开招标。二、项目规模和招标
国家能源集团2025年第二批给煤机集中采购公开招标项目招标公告1.招标条件本招标项目名称为:国家能源集团2025年第二批给煤机集中采购公开招标,项目招标编号为:CEZB250206422,招标人为国能(北京)国际经贸有限公司,项目单位为:国能滇南开远发电有限公司、国能(江苏淮安)能源发展有限公司,资金
大唐浙江分公司大唐台州头门港电厂(2×660MW)建筑工程第三方检测服务招标项目(二次)招标公告
7月15日,国能谏壁八期2×100万千瓦扩建项目顺利通过国家能源集团投资决策。项目预计今年年底开工,承担省内清洁高效保障性调节性电源建设任务。建成后,谏壁电厂装机容量将达到4660MW,年发电量将超230亿千瓦时,改善和增强江苏电网系统调节能力,夯实能源保供基础,为区域经济高质量发展提供有力支撑
国家能源集团近日发布江苏公司淮安公司2×20MW机组主体工程建安施工工程公开招标项目中标候选人公示。项目名称:江苏公司淮安公司2×20MW机组主体工程建安施工工程公开招标招标编号及包号:CEZB250604051001第一中标候选人中国能源建设集团江苏省电力建设第三工程有限公司,投标报价18573.1004万元。第
北极星电力网整理了2025年6月火电项目动态,共54个项目取得重要进展。本月,共有6×1000+2×660MW项目核准,4个项目开工,6个项目并网,9个项目机组投产。江苏省核准了3个煤电项目,四川省核准一个煤电项目。位于江苏扬州的国信扬电三期2×100万千瓦扩建项目将建设2台100万千瓦超超临界二次再热燃煤发
对光伏人来说,2025年又是一个让人心惊肉跳的5·31。2018年的5·31,因为累计20年待支付光伏发电补贴费用超过1万亿元,中央政府对光伏新建项目急刹车。在政策的影响下,光伏装机容量装机大跌、产业链大量企业倒逼,投资商资金链断裂。这段光伏项目业主和光伏产业链上生产企业遭受灭顶之灾的历史,让广
华电潍坊发电有限公司4号机组切缸改造招标公告(招标编号:CHDTDZ128/17-QT-137)一、招标条件华电潍坊发电有限公司4号机组切缸改造项目已批准,招标人为华电潍坊发电有限公司,项目资金为项目资本金。本项目已具备招标条件,现进行公开招标。二、项目规模和招标范围2.1招标采购项目地址:山东省潍坊市
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!