登录注册
请使用微信扫一扫
关注公众号完成登录
图1. Ru–Cu–G 复合材料
a) SEM, b) TEM, c) HRTEM, d) SAED图;
e) Cu-G,f) Ru-G和g) Ru-Cu-G黑色粉末
要点解读:
图1a是Ru-Cu-G的SEM图像,其中Ru-Cu-G整体表现出石墨烯形态且最外层暴露出明显的颗粒。通过TEM图像观察到Ru-Cu纳米颗粒之间没有发生团聚,分别高度分散在石墨烯上(图1b,c)。Ru-Cu-G的选区电子衍射(SAED)图显示Ru和Cu的典型多晶衍射环(图1d)。Cu-G,Ru-G和Ru-Cu-G黑色粉末的外观也有很大差异。 Cu-G就像具有金黄色Cu粉末的蓬松棉花(图1e),Ru-G厚而坚固,具有不太明显的蓬松形状(图1f)。 Ru-Cu-G与Cu-G具有相同的外观但无Cu粉的金色(图1g)。
图2. Cu-G,Ru-G和Ru-Cu-G煅烧前后变化的示意图
要点解读:
Ru的存在促进了Cu的分散并减缓了晶体的生长速度。同样,Ru具有合适的晶面和高分散度与Cu交织。由于Ru和Cu之间的协同效应,纳米颗粒高度分散并紧密结合在石墨烯上。在每个纳米片的任何角落,可以通过“锚定模型”清楚地识别单个颗粒而没有发生聚集。图2中显示了Ru-Cu-G煅烧前后结构变化的图示,与Ru-G和Cu-G相比较; Ru和Cu之间的紧密相关性使得结构稳定。
图3. 煅烧前后 (a, b) Cu-G和 (c, d) Ru-Cu-G的Cu 2p光谱
煅烧前后(e, f) Ru-G和(g, h) Ru-Cu-G的Ru 3d光谱。
要点解读:
从高分辨率Cu 2p光谱中,我们可以看到在煅烧之前完全产生金属Cu颗粒,并且在煅烧后Cu-G中电子结合能没有变化(图3a, b)。相反,Ru-Cu-G中Cu的表面在煅烧前含有氧基团(图3c),煅烧后,表面上的氧基团显著减少,并且由于电子吸收的衰减,相应的结合能降低(图3d)。Ru-G的高分辨率Ru 3d光谱也显示出相同的趋势(图3e, f)。特别是,与Ru-G相比,Ru-Cu-G的Ru 3d结合能红移约0.4eV,直接表明电荷在煅烧前流向表面Ru层(图3g)。具体而言,Ru-Cu-G中Ru 3d的结合能在煅烧后保持不变(图3h),这并不代表金属Ru保留下来了,因为3d3/2和3d5/2峰位置均位于284.6和280.4 eV分别对应于Ru和Ru/RuOx。
图4. 在 (a) 200 mA g-1, (b) 400 mA g-1的电流密度下,限制容量为1000 mAh g-1,Ru-Cu-G正极的循环稳定性。
要点解读:
图4a显示了Li-CO2电池的典型电压曲线,Ru-Cu-G正极以200 mA g-1的电流密度,固定容量为1000 mAh g-1循环,通过不同速率下的循环响应来进行进一步测试。如图4b所示,即使在400 mA g-1的较高电流密度下,也可进行100次循环(低过电位<1.56 V),进一步证实了具有Ru-Cu-G正极的Li-CO2电池的优异稳定性,与迄今为止文献报道的其他正极材料相比,具有更低的过电位和更优异的循环性能。
图5. 在第1次和第10次循环后 (a) Ru-Cu-G,(b) Cu-G和 (c) Ru-G正极的XRD图,Li2CO3的信号标记为#
要点解读:
为了检测首次循环后的放电产物,进行XRD分析主要放电产物Li2CO3的形成及其在后续充电后的分解过程(图5a)。在首次循环后可以清楚地观察到Cu和Ru的峰,表明放电产物没有覆盖Ru-Cu-G。由于Cu-G中的微米尺寸颗粒,可以清楚地看到Cu的特征峰(图5b),而Ru的特征峰是完全看不到的(图5c)。然而,在以Ru-Cu-G作为正极的第10次放电之后没有产生明显的Li2CO3,这可能与Li2CO3的低含量或结晶度有关。
图6.Ru-Cu-G正极的SEM和TEM图像
(a, b)第1次放电后; (c, d) 第1次充电; (e, f) 第10次放电; (g, h) 第10次充电
要点解读:
为了进一步研究Ru-Cu-G正极在Li-CO2电池中的循环稳定性,在第1次和第10次循环后表征其形态变化。从第一个循环的开始 (图6a, c) 到第10个循环的结束 (图6e, g),Ru-Cu-G仍然保持3D多孔结构而没有放电产物的累积。另外,Ru和Cu纳米颗粒完全分散在石墨烯上而没有发生聚集。通过TEM实现了对放电产物的进一步分析(图6b,d,f,h)。放电产物不会消失,而是在颗粒周围生长形成超小的薄膜。Ru和Cu之间的协同效应在这种放电产物的生长模式中起重要作用。
图7. (a) Ru-G,Cu-G和 (b) Ru-Cu-G上电化学过程产生Li2CO3的示意图
要点解读:
图7进一步展示了超小放电产物的电化学生长机理示意图。第一步是将CO2与正极表面结合,均匀地吸附在Ru和Cu周围。Ru和Cu之间的相互作用增强了与Li2CO3的结合,避免了在基质上聚集,从而提高了分散性,进一步有利于Li-CO2电池的高效再充电性能。
图8.Ru-Cu-G正极的Cu 2p XPS:
(a) 第1次放电后,(c)第1次充电,(e) 第10次充电,
Ru-Cu-G正极的Ru 3d XPS: (b) 第1次放电后 (d)第1次充电,(f) 第10次充电
要点解读:
首次放电过程后,CO2接受电子成为草酸根离子,随着屏蔽效应的增强Cu和Ru的外电子云密度改变,使电子的结合能在Cu 2p(952.2和932.2 eV,图8a)和Ru 3d处(284.2和280.0eV,图8b)恢复到初始状态。在随后的充电过程中,Ru-Cu-G中Cu 2p的表面状态表现出很小的变化,因为初始状态没有出现CuO在943.1, 942.7和954.0eV特征峰值(图8c)。Ru-Cu-G中的Ru 3d几乎不变,分别为280.0和284.2eV(图8d)。为了获得更详细的信息,记录了第10次充电的XPS(图8e,f)。随着循环的进行,CuO膜仍然缓慢地覆盖Cu的表面。同样,在高分辨率Ru 3d光谱中,可以清楚地观察到除了Ru-Cu-G和Ru-G的特征峰之外,在高电子结合能的位置出现新的峰。Ru和Cu之间的协同效应引起金属原子周围电子云密度的变化,导致电化学过程中电子结合能相互影响。
结论与展望
成功地制备了高度共分散在石墨烯上的钌-铜纳米颗粒作为Li-CO2电池的高效空气正极材料。具有Ru-Cu-G正极的Li-CO2电池具有超低的过电位,可以在200或400 mA g-1下以1000 mAh g-1的固定容量运行100个循环。更重要的是,Ru和Cu纳米粒子在长时间循环后可以完全固定在石墨烯基质上而不会团聚,这对于Li-CO2电池的稳定运行至关重要。由于Ru和Cu之间的协同作用,Ru-Cu-G不仅可以调节放电产物的生长,而且通过改变Ru和Cu之间表面的电子云密度作用于Li-CO2电池。此外,Ru-Cu-G对于设计其他金属空气电池正极也具有一定的启示意义。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
中国三元材料将有望通过韩企于2025-2027年在全球市场放量,尤其是在北美市场。近期,韩国电池厂接连与中国三元材料企业签发订单。结合行业动向,中国三元材料将有望通过韩企于2025-2027年在全球市场放量,尤其是在北美市场。3月10日,当升科技宣布与LG新能源(LGES)签订长期供货协议,约定2025-2027年
中/高镍电池“技术池”正泛起层层涟漪,变数中蕴藏新的发展格局。进入3月以来,中/高镍正极材料采购大单频现,反映出中/高镍电池的市场需求持续增长趋势下,上游材料市场形成强烈共振,这也成为行业关注的一大焦点。中/高镍正极材料采购大单频现3月10日晚,当升科技发布公告称,该公司及其子公司与韩国
北极星储能网获悉,3月10日富临精工公告称,控股子公司江西升华与宁德时代签署《战略合作协议》,双方就磷酸铁锂正极材料产品研发、产能投建等开展长期深度合作,同时江西升华拟以增资扩股的方式引入战略投资者宁德时代。根据合作协议,江西升华与宁德时代将在磷酸铁锂材料产品研发、产能投建、国际化
北极星储能网获悉,3月10日,当升科技发布公告称与LG新能源签订11万吨锂电正极材料订单,按照当前市场价格估算,协议总金额预计人民币140亿元。本次签订的协议为锂电正极材料长期供货协议。根据协议约定,LGES预计在2025年至2027年向当升科技采购110,000吨高镍及中镍等多型号锂电正极材料,协议约定的
北极星储能网获悉,3月5日,国内最大的镍钴金属生产商金川集团镍钴股份有限公司(简称“金川镍钴”)向提交IPO辅导备案资料、启动上市,这也意味着锂电材料上市企业军团或将再迎来国企猛将。据悉,金川镍钴成立于2013年5月2日,为甘肃省国有企业,是甘肃省国有资产投资集团成员。2023年12月金川镍钴重
钴,这个曾被戏称为“钴奶奶”的矿产资源,再次用剧烈的价格波动,彰显其在新能源产业中的重要地位。行业数据显示,3月7日国内硫酸钴均价为3.67万元/吨,相较2月25日2.665万元/吨的价格,短短数日累计涨幅超37%,最高涨幅近50%。突如一记惊雷,在新能源产业界炸响。相关信息显示,本轮钴盐价格飙涨,主
3月10日,云南省工业和信息化厅关于申报2025年省级工业和信息化领域专项资金的通知(云工信规划【2025】63号)。其中提到,支持以铝和铜为主的有色金属精深加工项目、以铟、锗、铂族金属、钛、镓为主的稀贵金属新材料项目、发挥磷和锂资源优势的新能源电池产业深度延链项目、中药材精深加工项目、智能
北极星储能网获悉,3月5日,LG化学宣布在韩国首次实现量产的无前驱体正极材料,加速布局新一代电池材料市场。据了解,LG化学的LPF正极材料不需要单独制造前驱体,将定制设计的金属直接烧制形成正极材料,采用该方式生产的正极材料可改善低温功率等性能,能够大幅减少开发新前驱体所需的时间成本。LG化
北极星储能网获悉,3月3日,某锂电头部企业发布一则《告知函》,称由于全球最大的钴矿产地刚果金爆发内战,导致全球钴矿供应紧张,钴价大幅上涨。受此影响,所有正极材料供应商已停止报价,短期内无法下单采购正极材料,锂电池行业正面临成本上升和供应链中断的挑战。所有新订单均需重新确认价格,建议
北极星储能网获悉,3月4日,万润新能披露公司投资者关系活动记录表(2025年2月),万润新能表示,公司作为头部正极材料供应商,紧跟固态电池行业发展需求和战略客户量产节奏,已在固态电池环节价值量较高的正极材料和电解质领域进行发力布局。详情如下:一、公司情况介绍万润新能致力于成为全球领先的创
电池技术的创新关键在材料。近年来,中国锂电正极材料企业在三元材料、磷酸铁锂和磷酸锰铁锂、富锂锰基材料、钠离子电池正极材料的开发及产业化层面,已经走在全球前列。近日,在日本东京电池展(BATTERYJAPAN2025)期间,当升科技董事长陈彦彬应邀作题为《高能量密度锂电正极材料的进展、挑战与机遇》
继订单调价后,赣锋锂电又一则消息引起广泛关注。赣锋锂业3月13日公告,赣锋锂电拟用自有资金以定向减资回购的方式,回购部分股东持有的赣锋锂电股份。本次赣锋锂电实施定向减资回购的股份数量拟不超过4.99亿股,对应的回购资金约16.00亿元。01对赌“败了”的锂王细究下来,赣锋锂电此举与公司上市遇阻
北极星储能网获悉,3月13日,江西赣锋锂业集团股份有限公司披露第五届董事会第九十次会议决议,通过了一系列决议。《关于公司为深圳易储提供财务资助的议案》:为满足控股子公司深圳易储能源科技有限公司(以下简称“深圳易储”)经营发展的资金需求,同意公司为深圳易储提供不超过人民币80,000万元的
北极星储能网获悉,力拓集团已完成以67亿美元收购阿卡迪姆锂业股份有限公司(“ArcadiumLithium”)的交易。此前,泽西岛皇家法院已于3月5日批准该项协议安排。力拓现已成为阿卡迪姆锂业的最终母公司,后者将更名为力拓锂业,并将整合力拓旗下Rincon锂项目。此次收购奠定了力拓在能源转型材料供应领域
3月6日,有消息显示,赣锋锂电将对所有新订单重新定价,引起了广泛关注。一则赣锋锂电发布的客户告知函显示:受刚果(金)局势影响,锂电池行业正面临成本上升和供应链中断的挑战。为保障供货稳定,自即日起,所有新订单均需重新确认价格,具体价格请和我司销售人员对接沟通。目前,赣锋锂电并未对此消
3月4日,2025“北极星杯”储能影响力企业评选结果重磅揭晓,格力钛新能源凭借在数据中心钛酸锂UPS项目上的卓越表现,成功斩获“工商业储能解决方案供应商”奖项,这无疑是对格力钛在储能领域持续深耕、卓越贡献的又一高度认可。在工商业储能这一关键领域,企业对于能源安全保障及成本精细化管控方面极
近日,研究机构EVTank联合伊维经济研究院共同发布了《中国六氟磷酸锂(LiPF₆)行业发展白皮书(2025年)》。白皮书数据显示,2024年全球六氟磷酸锂出货量达到20.8万吨,同比增长23.1%,总体市场规模为129.6亿元,同比下滑33.3%。EVTank在《中国六氟磷酸锂(LiPF₆)行业发展白皮书(2025年)》中表示
近日,研究机构EVTank联合伊维经济研究院共同发布了《中国六氟磷酸锂(LiPF#x2086;)行业发展白皮书(2025年)》。EVTank数据显示,截至2024年底,全球六氟磷酸锂实际有效产能39.0万吨,中国六氟磷酸锂实际有效产能为37.1万吨/年。EVTank之前发布的《中国六氟磷酸锂(LiPF#x2086;)行业发展白皮书(202
作者:梅悦旎,屈雯洁,程广玉,向永贵,陆海燕,邵晓丹,张益明,王可单位:空间电源全国重点实验室,上海空间电源研究所引用本文:梅悦旎,屈雯洁,程广玉,等.锂离子电池正极补锂技术研究进展[J].储能科学与技术,2025,14(1):77-89.DOI:10.19799/j.cnki.2095-4239.2024.0767本文亮点:1、本文对当前主流的正极
多个圆柱电池海外投扩产放量。近期,亿纬锂能、海四达、冠宇集团等海外圆柱电池项目接连传来消息。其中,亿纬锂能位于马来西亚的首个海外大型圆柱电池基地在2月16日正式投产,目标年产能达6.8亿只;普利特2月18日宣布,旗下控股子公司海四达将在马来西亚投建2.5GWh圆柱电池基地,投资额达7.5亿元。此外
北极星储能网获悉,2月25日,福建三明经济开发区管委会与厦门中科希弗科技有限公司签约新能源氟化碳锂电池正极材料项目。据了解,该项目计划总投资2.5亿元,拟落地于三明经开区吉口循环经济产业园,设计年产50吨氟化碳锂电池正极材料,设计年产值3.5亿元,计划于2025年3月动工建设,于9月竣工试生产,
北极星储能网在企查查获悉,近日,贝特瑞(四川)新材料科技有限公司(下文简称:贝特瑞四川新材料)发生工商变更,新增亿纬锂能为股东,注册资本由5亿元人民币增至6亿元人民币。亿纬锂能持股16.67%,贝特瑞持股83.33%。同时,贝特瑞四川新材料法定代表人及多位高管均发生变更。此前2021年1月,高端人
据外媒报道,蔚山国立科学技术研究院(UNIST)和三星高级技术研究所(SamsungAdvancedInstituteofTechnology)的联合研究团队宣布,已成功开发出陶瓷基锂空气电池,使电动汽车一次充电就能行驶1000公里,并大幅延长电池使用寿命。研究团队用陶瓷材料取代锂空气电池的有机材料,从而延长电池寿命。该团
锂空气电池是储能界的圣杯,金属锂和空气正极放电时提供数十倍于锂离子电池的容量,在过去的十年时间得到广泛的关注,在众多的paper当中当然不会缺乏佼佼者。今天我们就来聊一聊那些发表在顶刊Nature,Science上的锂空气电池文章到底说了啥。(来源:微信公众号微算云平台ID:v-suan作者:一去不回头)
日媒称,日本企业陆续研发大幅提高空气电池使用寿命的技术,使用寿命是有“终极蓄电池”之称的空气电池的最大课题。富士通旗下的FDK公司开发的氢-空气燃料电池有望3年后实现实用化。日本电信电话公司(NTT)试制出使用寿命较长的锂空气电池。据《日本经济新闻》3月18日报道,空气电池不仅轻便,而且性能
近日,美国伊利诺伊大学研究人员研发了多款2D材料,用这些2D材料做锂空气电池的电极催化剂时或许能够使电动车的续航里程提升到800公里,这也将彻底解决里程焦虑问题。研究人员说,锂空气电池虽然目前还在研发实验阶段,但是这类电池的储能量却是当前锂离子电池的10倍。由于它的质量更轻,也能够使得电
二维材料构筑的催化剂可提升电动汽车的行驶里程。锂空气电池(Lithium-airbatteries)是一种用锂作负极,以空气中的氧气作正极的电池。虽然锂空气电池目前仍处于实验开发阶段,但其在能量密度方面表现出来的优势已经得到了认可,有望成为普通锂离子电池的革命性替代品。催化剂有助于提高电池内部的化学
当前基于石墨负极的锂离子电池的实际能量密度已经接近其理论值(约为350Whkg-1),因此现有锂离子电池很难满足更长续航电动汽车的发展需求。在众多其他备选负极材料中,锂金属具有诸多优势,比如:极高的比容量(3860mAhg-1),极低的标准氧化还原电位(-3.040V)和很小的密度等,所以锂金属一直被认为是最理
与传统燃油汽车相比,电动汽车有很多优势,比如不依赖有限的化石能源、不产生尾气、使用成本和维护成本低等等。但电动汽车也存在限制其发展的核心问题,那就是电池。目前市面上电动汽车使用的锂离子电池性能差强人意,充满电的续航能力一般在300-500公里,如果希望跑的更远,则需要增大电池体积和重量
基于锂氧化学的极高的能量潜力,锂空气电池成为当前最先进的锂离子电池的替代品而被提升。然而,由于环境空气中存在非O2成分,锂空气电池的实际性能仅限于几个周期且能量效率低。特别是CO2进入电池系统,在放电过程中不可避免地形成碳酸锂,这导致充电电势的严重攀升和相关电池组件的分解。【成果简介
锂空气电池是一种非常有潜力的高比容量电池技术,其利用锂金属与氧气的可逆反应,理论能量密度上限达到11000Wh/kg,远超过锂电池目前200+Wh/kg的实际能量密度,因此得到了学术界和工业界的热捧,被广泛认为是一项电池领域中未来的颠覆技术。然而锂空电池方面的研究在业内也一直存在着不少质疑之声,不
电化学储能(EES)技术在推动现代社会发挥重要作用。在各种EES技术中,金属-空气电池在高体积、重量、能量密度方面具有前景。在飞机,航天飞机,潜艇等密闭空间内,迫切需要高能量密度的便携式电池。在这种情况下,金属空气尤其是锂空气电池是非常有前景的。提高Li-CO2电化学的可逆性和能量效率将有助于
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!