北极星

搜索历史清空

  • 水处理
您的位置:电力火电火电动态评论正文

【深度】全球供热现状及对我国的启示

2019-02-13 17:36来源:能源研究俱乐部作者:杨永明关键词:清洁供暖可再生能源电力热电联产收藏点赞

投稿

我要投稿

(二)

德国

1.能源概况

德国自然资源贫乏,在原料供应和能源方面很大程度上依赖进口。上世纪70年代,德国能源进口量占能源需求总量的50%左右,现在则已超过70%。1973年发生的世界第一次石油危机使德国人深切体验到本国对化石资源的依赖。危机过后,德国相继通过了一系列法律并实施了大量能效措施,制定了到2020年将一次能源消费量降低20%的目标,并在2014年12月通过了相应的《国家能效行动计划》。

提高能效与发展可再生能源共同构成了德国能源转型的两大支柱,并取得了可观的成效。德国能源生产率在1990~2015年间提高了63%,每吉焦耳能量的产值从128.8欧元增至205.5欧元;能源需求自1990年起开始回落,国内生产总值却大幅增加(见图13);工业所需的能源减少了10%以上,其经济生产力却翻了一番。

14.jpg

资料来源:德国外交部

图13 德国经济增长和能源消耗变化趋势

2.供热历史与现状

德国的供热分为集中供热和独立供热。德国集中供热系统是在二战后发展起来的。受当时不同政治制度的影响,西德的热电厂把提高效率放在首位,集中供暖占供热系统的9%,居住密度比较高的高层住宅基本都采用集中供暖;东德继承了前苏联的发展思路,大力发展集中供热,并把减少投资放在首位,集中供暖占供热系统的30%。如今德国集中供热仅占全部供热系统的12%左右,虽然占比不大,却很发达。集中供暖的热源为区域能源网络的热电厂和调峰锅炉、独立供暖锅炉。其中热电联产占集中供暖系统的60%,把通过吸收太阳能得到的热量作为调峰锅炉和独立供暖锅炉的热量补充。

德国是欧洲热电联产装机容量最大的国家。世界第一次石油危机爆发之前,德国热电联产全部使用煤炭,危机爆发后,德国开始探索天然气和生物质能作为热电联产的来源。目前,德国主要采用天然气和燃油,配合少量的电、煤炭和可再生能源进行热电联产。热力生产企业往往非常注重生产效率。首先是控制锅炉大小,现代的锅炉可以精确控制燃料和空气的混合比例,使燃料充分燃烧,减少因燃烧不完全而产生的有害气体;其次还要改良控制系统,通过合理设计烟道、回收预热等措施,以提高能源利用效率。

如今,德国集中供热系统依旧发达,但家庭独立供热的比例正在逐年上升。在德国,一户或几户使用一个锅炉进行供热,城市里许多楼房的地下室设有天然气锅炉,负责全楼的供暖和热水供应。德国大多数家庭采用天然气、燃油等方式供热,还有少量住宅用电或煤等方式采暖。近年来,太阳能、风能等可再生能源逐渐应用到独立供热领域,化石能源在建筑热源中的占比正在削减。2015年,德国既有建筑热源中天然气占80%,燃油占11%,其余种类相加不足一成;而新建建筑热源结构最主要的变化在于天然气消费比例大幅降低,降至51%,燃油比例降至2%,代替天然气和燃油的是地源热泵以及集中供暖,占比分别达到30%和8%。

供热计量方面,两德统一后,从1991年开始德国对既有住宅建筑开展大范围的综合改造,其目的之一就是降低建筑能耗,如改造楼内采暖系统、安装新的散热器和自动温控阀进行温度调节、增加电子式热分配器进行供热计量。1994年德国集中供暖开始全面实现分户热计量收费。实施供热计量的住宅,供暖和热水供应能耗大幅减少。

3.经验总结

在德国,供热板块占终端能源消费的一半,而国内总共约4000万个家庭用于采暖和热水的能源又占供热板块的三分之二左右。如何提高热能生产效率,增加建筑保温,一直备受关注。从国家的法律条例、供暖设备到房屋结构设计,再到普通民众的生活习惯,节能、环保的观念贯穿始终。

(1)完善节能法律法规

德国很早就发现建筑物拥有巨大的节能潜力。早在1976年,当时的德国政府就从石油危机中汲取教训,推出了第一部《节能法》和紧随其后的《保温条例》。这些法规不断得到发展,同时根据技术进步加以调整。2002年生效的《节能法》就旨在规范锅炉等供暖设备的节能技术指标和建筑材料的保暖性能等。《可再生能源供热法》要求自2009年起所有新建住宅都必须使用一定比例的可再生能源来满足能源需求。为达到这一要求可以采取的措施包括用太阳能供热辅助燃气或燃油供热,或者采用热泵、颗粒燃料供热等100%可再生能源供热系统。2013年《节能法》要求自2019年起新建政府公共建筑达到近零能耗建筑标准、2021年起所有新建建筑达到近零能耗建筑标准、2050年所有存量建筑改造成近零能耗建筑。此外,德国政府还配套出台一系列措施,如国家能源效率行动计划、促进使用可再生能源的取暖设备发展计划等,旨在提高能源使用效率及其在建筑领域的应用程度。

(2)注重低能耗房屋设计 推广节能供暖设备

采用被动房超低能耗建筑技术体系和提升可再生能源使用比例是德国实现能效目标的主要技术路线。德国70%的住宅年龄超过35年,其建造时间是在第一个《保温条例》通过之前。许多建筑隔热处理不足,锅炉老旧,供暖使用的也是燃油或天燃气等化石能源。一般德国家庭的年供暖需求约为每平方米居住面积145千瓦时,相当于14.5升石油。高能效的新建筑(被动式节能住宅)仅需十分之一(见图14)。既有建筑可以通过节能改造和改用可再生能源等措施降低一次能源需要量最多可达80%。改造措施包括提高建筑围护结构的保温隔热性能、更新建筑构件、升级供热供冷系统和改进控制技术。德国仅在2015年一年就为建筑物节能改造投入了530亿欧元。德国政府通过利率优惠的贷款和补贴为这类改造措施提供支持。

15.png

资料来源:德国外交部

图14 德国不同类型住宅年度供暖功耗(单位:升/平方米)

扶持政策的一大重点是更换陈旧的供暖设备和从化石能源转向使用可再生能源。1975年,德国一半以上的住宅供暖使用的是燃油,现在这一比例已不足三分之一。住宅新装供暖设备大部分使用的是天然气和可再生能源。太阳热能设施、生物质能暖气和利用环境热源的热泵已经可以覆盖供暖需求的10%以上。为加快更新速度,德国政府自2000年开始为暖气改造提供补贴。

根据德国建筑物热能需求方面的节能目标,与2008年相比,到2020年,建筑物热力需求要降低20%,可再生能源在热力需求中的占比要达到14%。2015年,德国可再生能源在热力需求中的占比已达到13.2%。2008~2016年间,德国国内与建筑物相关的终端能源消费下降了6.3%,降至3234拍焦耳(见图15),即占到其终端能源消费总量的35%。其中,建筑物采暖约占终端能源消费总量的28%,热水供应和制冷约占5%。虽然住宅面积和有效空间增加,建筑物供热的能源消耗仍然是减少的(个别年份会出现增加是由天气情况所致)。这主要是新建筑和翻新旧建筑能效标准提高的结果。德国政府还计划到2050年将建筑物对石油和天然气这两种一次能源的需要量降低80%。为达到这一目标,不仅需要大幅度提高建筑物的能效,还要增加可再生能源在供热和制冷方面的比例。

*根据德国2010年能源构想,该国2020年建筑物终端能源消费应较2008年下降20%。

16.jpg

资料来源:Working Group of Energy Balances, Anwendungsbilanzen

图15 德国建筑物终端能源消费

(3)培养民众节能意识

数十年来,德国公众逐渐培养起了对高效利用能源的意识。德国人习惯在出门前或入睡前调低暖气用量,如果家中长时间无人就直接关掉暖气阀门,以节省开支避免浪费。德国政府在引导国民节能方面也采用了多重手段,如执行热量计量,使能源消费透明化,通过查询消费账单了解用户的节能意识和用能习惯,督促用户节能,并通过配备恒温阀帮助用户节能。再如通过电价、油价调整来限制电暖气、油供暖的使用等。

(三)

俄罗斯

1.能源概况

俄罗斯领土广阔,是世界上能源资源最丰富的国家,其中石油储量位居世界第八,接近100亿吨,是全球大型的石油生产国,天然气储量位居世界第一,占比接近30%,产量居世界首位,消费量居世界第二位,而煤炭等其他资源储量也非常巨大。自前苏联时期起,能源开采业就是其国民经济命脉,在经济体制急剧转轨之后,俄经济结构并没有发生明显变化,能源依然是其经济的主心骨。

俄罗斯大部分地区气候严寒,因此十分重视供热技术的发展,是全世界最早发展集中供热的国家之一,至今已有百余年的集中供热历史。

2.供热历史与现状

俄罗斯的供热以集中供热为主,热电厂和区域锅炉房为主要热源。前苏联的集中供热,无论是热负荷数量、热网长度、热电厂规模,还是供热综合技术等各方面,在国际上都曾占据极其重要的地位。热电联产早在前苏联的供电和供热系统中就已经大量使用,在城市和大型工业中心布设大型装机的热电厂后,热电联产的应用主要有利于在严寒气候环境下实现经济效益最大化。上世纪50年代末期,热电联产系统已在城市及工业中心全范围应用。70年代初,热电厂保证了城市和工业36%的用热需求。至90年代,供热功率超过300兆瓦的热电厂已超过80个,其中12个热电厂供热功率超过600~700兆瓦,9个超过1000兆瓦。前苏联解体后集中供热发展停滞,热电联产生产能力大幅下降,大型热电设施停止建设,设备与管网加速老化。从1995年至今,俄罗斯国内热力生产减少了25%以上,其中热电厂的热力生产减少了19%。俄罗斯国内发电量逐渐增长,但热电厂的发电量从2010年开始已经减少了4%。尽管热电厂的产量绝对水平有所下降,但对于俄罗斯来说,热电厂在国内电力生产中的占比持续维持在三分之一以上,在热力生产中的占比接近二分之一(见图16)。

17.jpg

资料来源:俄罗斯统计署

图16 俄罗斯热电厂在国内发电制热结构中的占比

截至2016年底,俄罗斯在运热电厂总计512座,与2015年相比减少了7座。供热锅炉房总计7.38万座,安装锅炉超过18.6万个,其中61.3%的锅炉使用天然气作为燃料。除了集中供热系统的锅炉房外,国内还有大约15.5万个独立的小型燃气供热锅炉(装机不超过0.001Gcal/h),这些锅炉多数安装在教育、卫生、文化机构,以及市政部门等公共场所,用于为建筑物房屋供暖和提供热水。2016年全年,俄罗斯新投运供热锅炉房6637座,其中78%为装机不超过3Gcal/h的小型锅炉房,1.5%为装机大于等于100Gcal/h的大型锅炉房。2005~2016年间,全俄热力总装机容量减少了6%。其中供热锅炉房平均装机从9.6Gcal/h降至8.0Gcal/h,降幅16.7%,这在一定程度上也反映出俄罗斯国内小装机锅炉房数量增加以及热力供应去中心化的趋势。

2016年,在俄罗斯供热系统热源结构中,天然气占比74%,是最主要的供热能源,煤炭和燃油的占比分别为21.5%和2.8%,其他燃料约1.6%(见图17)。与2012年相比,2016年燃煤锅炉数量减少了1064个,降幅4.1%;重油锅炉减少了303座,降幅11.6%;燃气锅炉增加了1892个,增幅4.4%。地区的可再生热源主要包括薪材、木屑块等。

18.png

资料来源:俄罗斯能源部

图17 俄罗斯供热热源结构

2012~2016年间,俄罗斯集中供热系统热力管网总长度及其管径分布变化较小。管线(主要是直径200~400毫米管线)长度增长了2020千米,达到17.15万千米,其中以中央联邦区热力管网最为发达,长度4.42万千米,占全俄热力管线总长度的25.7%。如果按照管线的服役年限统计,2016年,俄罗斯供热系统管线中有28.8%超年限服役,需要更换。俄罗斯当年供热管网的热损失约占全国供热总消费量的8%~9%(见表2)。

19.jpg

表2 俄罗斯热力总消费量及管网热损(单位:million Gcal)

资料来源:俄罗斯能源部

供热计量方面,俄罗斯的供热费用主要根据住房面积加上公摊面积计量。如果个人住宅有专业供暖计量设备,可按量缴费;如果没有,则按当地规定缴纳。住宅房间数量、登记住户人口数量、按全年还是供暖期缴费等也都是影响暖气费用的因素。自2012年起俄罗斯发布联邦法规实行供热计量,既有建筑实行楼栋计量按面积分摊热量,新建建筑实行分户热计量。

投稿与新闻线索:陈女士 微信/手机:13693626116 邮箱:chenchen#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

清洁供暖查看更多>可再生能源电力查看更多>热电联产查看更多>