登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
锂离子电池内部的反应过程主要由电子传递、Li+在电解液内扩散、Li+在电极表面发生电荷交换,Li+在正负极活性物质内部扩散等过程构成,不同过程对于电流和电压变化的响应速度不同,我们称之为弛豫时间。电子传递和Li+在电解液内扩散的响应速度较快,弛豫时间较短,其行为更类似于纯电阻,而电荷交换过程响应速度稍慢,弛豫时间稍长,而Li+在正负极活性物质中扩散过程的响应速度最慢,弛豫时间最长,因此只有在极低的频率下才能体现出来。根据锂离子电池的这一特性,人们设计了交流阻抗测试设备,给锂离子电池施加一个从高到低逐渐降低频率的交流电压信号,根据获得的电流反馈信号对锂离子电池内部的反应过程进行分析,是研究锂离子电池反应的强有力工具。
(来源:微信公众号“新能源Leader”作者:凭栏眺)
近日,德国亚琛工业大学的Pouyan Shafiei Sabet(第一作者、通讯作者)和Dirk Uwe Sauer两人对高能量密度锂离子电池(NCM/石墨体系)的交流阻抗图谱进行了深入的分析,明确了全电池交流阻抗图谱的反应过程对应的正负极反应,对于锂离子电池反应机理的研究具有重要的意义。
实验中采用的锂离子电池来自韩国电池生产商EIG的软包结构电池,其正极为NMC442,负极为石墨,电池容量为20Ah,能量密度为174Wh/kg,电极有效面积为8725.8cm2。
1.交流阻抗图谱分析
1.1全电池阻抗图谱
下图a为全电池的电压曲线和对应的正极、负极的电压曲线,从图中能够看到在全电池处于0%SoC状态时,负极处于0%SoC,而正极SoC状态仍然较高,这主要是因为锂离子电池在首次化成的过程中负极成膜过程消耗了部分活性锂。而在全电池100%SoC状态时,负极的实际状态要低于100%SoC,这主要是因为负极在设计中一般是过量的。下图b和c为全电池的交流阻抗图谱,从图b中能够看到在中频区域至少包含一个反应过程(图中的一个压缩半圆),但是根据弛豫时间分析(下图c),中频区域的压缩半圆实际上是由两个过程共同构成:第一部分是在较高频率(36-76Hz)的过程F1;第二部分是较低频率(2-14Hz)的过程F2,但是这两个过程对应的正负极反应还需要进一步分析。
1.2扣式半电池阻抗图谱
为了将全电池交流阻抗图谱中的F1和F2反应过程对应到正负极具体的反应,Pouyan Shafiei Sabet将全电池中的正负极分别进行解剖,然后制作为扣式电池进行交流阻抗测试(结果如下图所示)。
正极
正极的交流阻抗图谱和弛豫时间如下图a和b所示,根据正极的弛豫时间曲线可以看到正极主要包含两个过程:533-926Hz的C1过程和0.1-9Hz的C2过程,其中C2过程的频率和行为都与电池中的F2过程十分接近,其频率都会随着SoC的增加而提高,因此全电池中的F2过程对应的应为层状正极材料(NCM/NCA)的电荷交换过程。
正极的C1过程的频率在SoC变化过程中变化不大,但是其高度随着SoC的增加而降低,因此该过程可能与半电池中的Li负极或者正极表面的界面膜有关。
负极
我们从负极的弛豫时间(下图d)可以看到负极的交流阻抗图谱也分为两个过程:分别是118-174Hz的A1过程和2.2Hz的A2过程,其中A2过程是石墨负极的电荷交换过程,A1过程的频率与全电池的F1过程最为接近,但是经过分析我们发现全电池中的F1过程并不是负极的A1过程,因为A1过程的频率为118-174Hz,而F1过程的频率为36-78Hz,两者差距过大,因此A1更可能是Li金属对电极的反应过程。
对称结构电池
扣式电池中不仅包含被测试电极,还包含锂金属对电极,因此扣式电池的交流阻抗中还会有一部分反应金属锂对电极特性的过程,因此作者采用两片金属Li组成对称结构电池分析Li金属电极的反应过程。下图为对称结构的Li金属电池(两片同样的Li金属电极)的交流阻抗图,从下图d能够看到Li金属电极的交流阻抗包含一个过程:L1过程,其频率范围为159-335Hz,高度为4.4-48Ωs,与负极半电池的A1过程(频率范围118-174Hz,高度为118-174Ωs)高度一致,表明负极扣式半电池的A1过程实际上是反应锂金属对电极的反应过程。
1.3微分回归法
前面我们已经发现全电池的F2过程实际上反应的是正极的C2电荷交换过程,但是我们还没有找到全电池中F1过程所代表的反应,为此作者采用微粉回归分析的方法对锂离子电池的交流阻抗图谱进行了分析。这里微分回归方法分析的主要是等效电路中的R1和时间常数t1,R2和时间常数t2,从下图能够看到R1和t1的行为从70%SoC后就开始发生了明显的改变,而这恰好是石墨负极从2相,向2-1混合相转变的过程(如下图c所示),从下图c我们可以看到R1的导数在此时发生了明显的改变,因此可以得出结论全电池F1过程(36-76Hz)主要反应的是负极的SEI膜特性。
上面我们通过正负极扣式半电池、Li对称电池和微分回归法分析表明全电池中的F1过程(36-76Hz)反应的为负极的SEI膜,而F2过程(2-14Hz)反应的为NCM正极的电荷交换过程,接下来我们就尝试利用交流阻抗图谱对寿命末期的锂离子电池进行分析,找出其寿命衰降的主要原因。
2.应用
下图为一个在80%SoC状态下存储了4年的锂离子电池的交流阻抗图谱,从下图a能够看到存储后的电池经历了严重的活性Li的损失,存储后的电池完全放电状态正极只能嵌入56%的Li,但是新鲜的电池完全放电时正极能够嵌入74%的Li。从下图c能够看到老化电池的F1过程的频率范围为330-409Hz,相比于新鲜电池(36-76Hz),老化后的电池在F1过程的频率范围显著提高,同时高度也增大了将近4倍,这一现象可以通过SEI膜来解释,如果我们用RC电路来模拟SEI膜过程,则其时间常数可以定义为下式,由于电容C的值与电极表面积和电极距离相关,因此随着SEI膜的增厚,电容的距离d(电解液到电极的距离)会出现明显的增加,因此导致电容值C下降,因此时间常数降低,导致F1过程向更高频率迁移,因此F1过程的变化表明负极SEI膜存储过程中出现了明显的增厚,从而消耗了较多的活性Li。
下图a和b为老化电池的正极半电池的交流阻抗图谱和弛豫时间图谱,从图中能够看到C2过程的频率范围几乎没有发生改变,这也表明在长期存储过程中正极的电荷交换阻抗几乎没有发生显著的改变。
下图c和d为老化电池的负极半电池的交流阻抗图谱和弛豫时间图谱,从图中能够注意到存储老化后的电池除了原有的反应过程外还增加了一个新的过程A0(7625-10150Hz),该过程可能与制作扣式电池过程中引起的SEI膜变厚有关。
下图为存储老化前后的正负极电极的SEM图片,从图中能够看到正极在存储后形貌基本上没有发生显著的改变,但是负极在存储后表面沉积了大量的电解液分解产物,石墨颗粒被电解液分解产物所覆盖,这与我们前面的分析是相一致的。
Pouyan ShafieiSabet等人的工作表明虽然全电池的交流阻抗图谱看上去是由一个半圆构成,但是实际上该半圆是由两个过程构成:反应负极SEI膜的F1过程和反应正极电荷交换阻抗的F2过程,通过分析锂离子电池的交流阻抗图谱,我们能够实现在不破坏锂离子电池的前提下分析锂离子电池的衰降原因。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
12月16日,甘肃省工信厅公示2024年省级专项(第二批)资金拟支持产业项目。其中包括国网甘肃省电力公司电力消防安全防护系统研发及应用、兰州金川金科资源循环科技有限公司5kt/a废旧锂离子电池资源循环利用项目、嘉峪关宏晟电热有限责任公司酒钢集团智慧电网及新能源就地消纳示范项目智慧能源管控中心
北极星储能网获悉,近日,中国电子质量管理协会发布了团体标准T/CQAE12002-2024《温室气体产品碳足迹量化方法与要求锂离子电池》,该标准起草单位包含华为数字能源、宁德时代、海辰储能、宁德新能源、中创新航、国轩高科、珠海冠宇、欣旺达、派能科技、德赛电池、比亚迪、卫蓝新能源、蜂巢能源、中电新
北极星电池网获悉,12月12日,为准确识别存量电动自行车用锂离子电池导致的安全隐患,减少电动自行车火灾事故的发生,国家工信部、国家市场监管总局、以及国家消防救援局联合印发《电动自行车用锂离子电池健康评估工作指引》。文件指出:外观有明显破损、无标签标识、超过48V电压或使用梯次利用的锂离
北极星储能网获悉,12月13日,工信部公示了《拟推荐工业产品碳足迹核算规则团体标准推荐清单(第一批)公示》,其中包含《温室气体产品碳足迹量化方法与要求锂离子电池》、《温室气体产品碳足迹量化方法与要求工业硅》等共15个制造行业列入列入。原文如下:拟推荐工业产品碳足迹核算规则团体标准推荐清
作者:于东兴1,2,3,李煌4,霍明帅1,李志昕1,李强5单位:1.应急管理部天津消防研究所;2.工业与公共建筑火灾防控技术应急管理部重点实验室;3.天津市消防安全技术重点实验室;4.中国科学技术大学火灾科学国家重点实验室;5.安徽科盾新能安防科技有限公司引用:于东兴,李煌,霍明帅,等.锂离子电池储能系统
北极星储能网获悉,根据工信部网站信息,2024年1-10月,我国锂离子电池(下称“锂电池”)产业延续增长态势。根据锂电池行业规范公告企业信息和行业协会测算,1-10月全国锂电池总产量890GWh,同比增长16%。根据国家统计局数据显示,1-10月我国锂电池制造行业利润同比增长39.4%。电池环节,1-10月储能型
据CNBC报道,储热可能为可再生能源存储提供一种更便宜且可扩展的替代锂离子技术方案。“间歇性的风能和太阳能正在成为人类已知最便宜的能源形式,现在各种各样的能源存储方式被用来利用这些能源,以驱动交通和电力网络,”RondoEnergy的创始人兼首席创新官JohnODonnell说。“储热是一种全新的存储能源
北极星储能网获悉,中国电子工业标准化技术协会根据工信部下达的标准制修订计划,对电子行业《锂离子电池编码规则》推荐性国家标准报批公示,公示截止日期为2024年12月11日。该标准由中华人民共和国工业和信息化部提出,归口于中国电子技术标准化研究院,由比亚迪、宁德时代、亿纬锂能、海博思创等18家
作者:李义函,卢世刚,王晶,查汪珺,戴正航,郭奕彤,杨泽茜单位:上海大学引用:李义函,卢世刚,王晶,等.磷酸铁锂锂离子电池低温不可逆析锂及其对电池性能衰减的影响[J].储能科学与技术,2024,13(10):3656-3665.DOI:10.19799/j.cnki.2095-4239.2024.0285本文亮点:1.建立了总析锂量和可逆析锂量、不可逆析
北极星储能网获悉,11月28日,深圳市地方标准批准发布公告(总第169号)发布,其中包括《锂离子电池储能系统安全评估规范》及解读。文件规定了锂离子电池储能系统安全评估的一般要求、评估内容和评估报告。本文件适用于单台储能设备额定容量在(20~300)kWh的用户侧锂离子电池储能系统安全评估。锂离
北极星储能网获悉,11月28日,深圳市地方标准批准发布公告(总第169号)发布,其中包括《用户侧锂离子电池储能设备验收规范》及解读。本文件规定了接入配电网的用户侧锂离子电池储能设备验收的总体要求、验收要求和检测方法。本文件适用于额定功率50kW或额定容量50kWh及以上的锂离子电池储能设备的现场
北极星储能网获悉,12月16日消息,特斯拉北美X账号宣布,位于美国得克萨斯州的大型锂精炼厂正式进入运营,距离其破土动工仅一年半时间。据了解,2023年5月,特斯拉在官网宣布锂精炼厂破土动工,并透露公司将向该厂投资超10亿美元。
北极星储能网获悉,12月16日,江西赣锋锂业集团股份有限公司(以下简称“赣锋锂业”)公告,公司全资子公司GFLInternationalCo.,Ltd(以下简称“赣锋国际”)旗下非洲马里Goulamina锂辉石项目一期于2024年12月15日在当地举办了投产仪式,标志着Goulamina锂辉石项目一期正式投产。赣锋锂业表示,Goulam
北极星储能网获悉,12月15日晚间,万润新能发布公告,为优化资产配置,聚焦主营业务,公司拟将全资子公司万润矿业100%的股权,以3.15亿元转让给深圳市中渚矿业投资合伙企业(有限合伙)(以下简称“深圳中渚”)。截至目前,万润新能持有万润矿业100%股权,万润矿业注册资本为3.98亿元,实收资本为3.1
北极星储能网获悉,欣旺达12月12日晚间公告,子公司欣旺达动力与厦钨新能签署《固态电池战略合作框架协议》。双方围绕各自发展战略,就固态电池用系列新能源电池材料研发、量产、市场开发等开展广泛深入的合作,建立战略合作伙伴关系。合作内容包括四部分,分别为固态电池用正极材料的开发、固态电池用
为推进落实公司的战略规划,进一步提升公司关键原料供应保障能力,增强公司综合竞争力和持续发展能力。12月10日,五矿新能公告,公司拟使用自有资金通过甘交所集团以公开摘牌方式参与金川集团镍钴有限公司(以下简称:金川镍钴)的增资扩股项目,此次投资价格不低于8.89元/股,认购金额不超过5亿元。据了
北极星储能网获悉,12月4日,江西省赣州市行政审批局发布《一创新材信丰年产8000吨电池级碳酸锂正极材料改扩建项目环境影响评价文件拟批准公示》。据了解,项目属于改扩建,位于江西信丰高新技术产业园区。项目总投资20000万元,其中环保投资200万元。项目拟对厂区进行改扩建,将5个生产车间改建为电池
北极星储能网获悉,12月9日,杉杉股份发布《关于资产处置的公告》称,拟出售位于浙江宁波海曙区部分建设用地使用权及地上的全部资产,交易价格约8.76亿元。据悉,杉杉股份此次出售的资产,位于宁波市海曙区古林镇云林中路238、杉海路80、云林中路218号的面积为208467.82㎡的建设用地使用权及地上的全部
北极星储能网获悉,根据Mysteel的调查,中国11月碳酸锂产量总计为66,750吨,环比增长13.2%,本次调研新增4家工厂样本。而旧调查样本报告显示,总产量为62,800吨,环比增长6.4%。这一增长主要是由于需求增加,提高了生产热情。在华北工厂分包订单的支持下,整体开工率相对较高。Mysteel预计,12月中国碳
北极星电池网获悉,近日,中伟股份与振华新材联合斩获1000吨钠电材料订单,这是中伟股份首个千吨级钠电材料订单,也是行业内为数不多的千吨级钠电材料订单之一。据悉,中伟股份2021年成立钠电研发部开始从事钠电材料研发,2023年3月首期年产8000吨钠电项目正式投产,直到今年8月,中伟股份完成了首批钠
北极星储能网获悉,12月5日晚间发布公告称,江西赣锋锂业集团股份有限公司于2024年12月5日召开的第五届董事会第八十六次会议审议通过了《关于与马里政府签署股权转让协议的议案》,同意全资子公司赣锋国际有限公司、LithiumduMaliSA与马里共和国签署《股权转让协议》。公司将LMSA35%的股权转让给马里政
北极星储能网获悉,12月4日发布投资者关系活动记录表,对于钠电正极材料价格,同兴环保表示,在碳酸锂7万元/吨的极低价格情况下,磷酸铁锂材料价格也在4-5万元/吨,而我司钠电聚阴离子正极材料价格能够做到2-3万元/吨,公司钠电正极材料依然具有显著成本优势。详情如下:1、公司CCUS业务的未来将有什么
北极星储能网获悉,近日,宜春瑞富特新能源材料技术有限公司(简称:瑞富特新能源)年产5万吨高性能负极材料项目一期基础设施建设已全部完成,生产设备已全部到场,正进行有序安装中。据了解,瑞富特新能源年产5万吨高性能负极材料项目总投资20亿元,占地面积202亩。建设内容包括生产车间、办公楼及宿
北极星储能网获悉,12月11日,道氏技术公告,道氏技术与电子科技大学签署《项目技术委托开发合同》,道氏技术将委托电子科技大学进行超薄金属锂负极的研发,包括单面/双面锂覆铜超薄锂负极带材的开发和自支撑超薄锂负极带材的开发。此次合作旨在开发低成本、卷对卷的新型量产制备,开拓超薄锂负极在高
北极星储能网获悉,12月10日,南方公司10万吨负极材料项目负极区域建筑和安装工程顺利通过竣工验收。据悉,该项目位于甘肃省兰州市兰州新区,一期建设5万吨/年负极材料生产线、10万吨/年石墨化装置生产线,南方公司建设内容包括3栋厂房、3个门卫室、3个计量间、总图运输共10个单体及设备安装,规划用地
北极星储能网获悉,近日,金陵石化、大连院、炼销公司与广东凯金新能源科技有限公司召开负极材料创新技术战略合作专题会并签署四方协议将合作建立新能源电池负极材料创新联盟共同促进负极材料原料开发和应用。根据协议,四方将深化市场、供应链及人才交流,加快碳材料产业链“专精特新”高端化步伐,围
北极星储能网获悉,12月3日,商务部发布关于加强相关两用物项对美国出口管制的公告。规定原则上不予许可镓、锗、锑、超硬材料相关两用物项对美国出口;对石墨两用物项对美国出口,实施更严格的最终用户和最终用途审查。原文如下:关于加强相关两用物项对美国出口管制的公告商务部公告2024年第46号根据
北极星储能网获悉,11月27日,中国石油化工股份有限公司金陵分公司、中石化(大连)石油化工研究院有限公司、中国石化炼油销售有限公司与凯金新能源在江苏南京举行战略合作签约仪式,标志着各方开启深度合作。面向未来新能源发展趋势,立足新能源材料创新,凯金新能源此次牵手中石化成员,为新能源材料
北极星储能网获悉,融捷股份11月19日晚间发布公告称,根据战略规划和经营发展的需要,为进一步打通锂电材料上下游产业链,充分发挥产业链协同优势,公司拟投资1亿元设立全资子公司兰州融捷材料科技有限公司,从事锂离子电池负极材料相关业务。融捷股份表示,近年来,负极材料行业处于快速发展阶段,扩
在政策、技术和需求的多重驱动下,今年固态电池市场的热度和产业化进程进一步提升。硫化物固态电解质迎来产业化拐点、叠加以eVTOL为代表的细分领域爆发差异化应用需求,固态电池整体加速从研发迈向产业成果转化,工程化验证又推动了创新工艺、设备的研发与落地。与此同时,车企、电池企业、材料企业、
钠离子电池具有“低温性能好、高倍率、高安全”等优势,可广泛应用在电动二轮车、微型车、储能等市场。随着钠离子电池的商业化量产应用,GGII预计2024年我国钠离子电池出货量超1.5GWh,2025年出货量超4.5GWh,2030年出货量有望超30GWh。按1GWh钠离子电池消耗1500吨负极材料计算,到2030年,我国钠离子
硅基负极材料正在加速商业化应用。10月中旬,辉能科技在2024年巴黎车展上展出“100%硅负极”电池系统。根据德国莱茵实验室的数据,该电池系统在5分钟内可将电量从5%充至60%,8.5分钟充至80%。该电池能量密度达到321Wh/kg,预计年底最高可提升至355Wh/kg。硅基被业内认为是下一代理想的负极材料。据了解
北极星储能网获悉,10月14日晚间尚太科技公告,公司拟以自有资金或自筹资金在马来西亚设立全资孙公司,并投资建设马来西亚年产5万吨锂离子电池负极材料项目(下称“马来西亚项目”)。据披露,上述马来西亚全资孙公司注册资本为1000林吉特或其他等值货币(后续拟进行增资),公司性质为私人有限责任公
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!