登录注册
请使用微信扫一扫
关注公众号完成登录
三、穿梭效应的解决策略
穿梭效应是导致Li-S电池电化学性能恶化的主要因素,因此,抑制聚硫化物的穿梭效应是提高Li-S电池性能的关键,本文将从正极、电解质、隔膜和锂负极4个方面来阐述如何抑制穿梭效应。
1.从正极阻止聚硫化物的溶解扩散
穿梭效应是由Li-S电池硫正极的中间产物聚硫化物在正负极间的往复迁移所引起,所以,正极是穿梭效应产生的源头。研究表明,在正极材料中加入碳、纳米金属氧化物、聚合物和二元金属硫化物等物质与单质硫复合,可提高正极材料导电性,并能通过自身的孔隙或表面官能团吸附中间产物聚硫化物,抑制其在电解液中的溶解和扩散,减缓穿梭效应。
(1)硫与碳材料复合
碳材料具有电导性好、比表面积大、且与硫单质之间有很好的亲和力等优点,可为硫提供导电网络,减少绝缘产物Li2S2和Li2S的堆积以及缓解体积膨胀应力,能形成有效的物理吸附,减缓穿梭效应。常用的碳材料有:碳纳米管(CNT)、介孔碳(MC)、碳球和石墨烯等。
①CNT
CNT具有中空多孔管状结构及良好的导电性能,借助多壁碳纳米管(MWCNTs)的毛细作用可以提高正极材料载硫量,并吸附聚硫化物,抑制穿梭效应。
Wang等采用碳化法制备了多壁碳纳米管@介孔碳基体,将活性硫包覆到基体中得到了MWCNT@Meso-C/S复合正极材料,0.5C下,电池初始放电容量高达1114mAh/g,100次循环后,库仑效率接近100%,电池的活性物质利用率高,电池循环稳定性好。Zhang等采用溶剂热法合成了MWCNT包覆沸石咪唑酯骨架(ZIF8)的MWCNT@ZIF8复合材料,高温碳化后与硫复合制得MWCNT@MesoC/S正极材料。0.5C下,Li-S电池的首次放电比容量超过1110mAh/g,循环100次后库仑效率接近100%,循环性能极佳。
②MC
介孔碳MC具有导电性好、比表面积大和孔容丰富等优点,能有效提高Li-S电池的活性物质利用率,抑制聚硫化物的溶解扩散,减缓穿梭效应,改善电极材料的电化学性能。研究表明,MC具有3种孔径,其中的大孔能够提高载硫量,有利于电解液渗入,确保对正极材料的充分浸润,并能缓解体积胀缩效应;而微孔和中孔则有利于电子和离子的传输,并能有效地吸附单质硫S8及其中间产物聚硫化锂,减轻Li-S电池的穿梭效应。
Xue等以生物质废芒果皮为原料,通过氢氧化钾(KOH)活化法合成了介孔碳,具有超高比表面积(>3000m2/g)和孔容(>1.4cm3/g),与单质硫复合后得到C/S正极材料(硫含量65%),电池在0.5C下循环500次后,依然能保持509mAh/g的放电容量。Nazar课题组以CMK-3介孔碳作为载硫体,制备了S/CMK-3复合正极材料(如图3所示)。
CMK-3介孔碳是一种碳纳米棒相互连接而成的三维有序排列的介孔结构碳材料,该结构能够提供丰富的离子和电子通路,其中碳棒之间有3nm的间隙,能够通过毛细作用吸收活性物质,对活性物质及聚硫化物起到一定的物理限域作用,并具有充足的空间减轻充放电过程中的正极体积胀缩效应。研究表明,Li-S电池在70%的硫含量下仍能实现高达1320mAh/g的可逆比容量,循环20次后放电比容量仍保持在1000mAh/g。
③碳球
碳球的高密度有助于提高硫正极的体积比能量,微球结构能限制聚硫化物的迁移。Lou课题组采用硬模板法合成了一种中空的纳米双层核壳(DHCS)结构。这种中空的碳球结构具有巨大的比表面积以及丰富的孔容,能够提高载硫量,为正极体积胀缩效应提供充足的空间,同时能吸附活性物质及聚硫化物,起到了一定的物理限域作用,抑制穿梭效应,减少正极活性物质的损失。0.1C下,电池初始放电比容量为1020mAh/g,循环100周容量保持在690mAh/g左右。Xu等设计了介孔氮掺杂蛋黄壳碳球(NYSC)作为新型硫包覆材料,如图4所示。这种独特的结构设计能充分发挥化学吸附和物理吸附的协同作用。内部介孔“卵黄”作为储硫体,外“壳”起到物理屏障的作用,抑制聚硫化物的溶解,同时,碳晶格中掺杂的氮原子可以改变电子分布,引入更多的缺陷和活性中心,提高活性物质的利用率和电导率,从而提高Li-S电池的电化学性能,0.2C下,电池获得了接近1330mAh/g的高放电比容量,此外,电池的循环性能也很优异。
④石墨烯
石墨烯这种二维导电材料,具有优异的导电性和超高的理论比表面积。Tang等采用氧化钙(CaO)模板法制备了石墨烯,并将其与硫复合制备了石墨烯/S正极材料,电池在5C高倍率下,放电比容量超过650mAh/g。Zhang等成功合成了多孔三维还原石墨烯氧化物(3-RGO),其独特的三维结构使得其比表面积很高,并能很好地储存聚硫化物,减轻穿梭效应。与硫复合后制备了3D-S-RGO复合正极材料(硫含量75.8%),电池在0.2C时首次放电容量为1140mAh/g,200次循环后仍保持790mAh/g的高放电容量。
(2)硫和纳米金属氧化物复合纳米金属氧化物(氧化硅、氧化铝、氧化矾及过渡金属氧化物等)具有比表面积大和吸附性强等优点,其表面的含氧基团与聚硫化物之间能形成较强的化学吸附作用,使得穿梭效应减弱;此外,某些特殊的金属氧化物还能对硫正极的电化学反应起催化作用,提高正极活性物质利用率。
Zeng等制备了具有高锂离子电导率的S/Li4Ti5O12正极材料。纳米Li4Ti5O12作为载硫体和快Li+导体,能够有效地吸附聚硫化物并提高正极的Li+扩散系数。电池在0.5C下循环700次后保持616mAh/g的稳定放电容量,且每循环仅0.0196%的容量损失(从第2次循环至第700次循环),实验表明Li4Ti5O12能减轻穿梭效应,且可提高Li+电导率,获得性能优异的Li-S电池。Ma等制备了一种空心结构金属氧化物(Co3O4,Mn2O3,NiO)亚微球,将其作为聚硫化物的固定剂,与单质硫和碳材料复合得到Li-S电池正极材料。其中S/C/Co3O4正极材料性能最佳,电池在550次循环中每循环容量衰减仅为0.066%,实验研究表明,氧化钴(Co3O4)独特的空心结构及其电催化特性是改善电池性能的关键因素。
(3)硫和聚合物复合
高分子导电聚合物具有良好的导电性和高比表面积,研究发现聚吡咯(PPy)、聚噻吩(PTh)、聚苯胺(PANI)等与硫复合后能使穿梭效应得到抑制,提高Li-S电池正极的导电性和稳定性。Ma等将PPy涂覆在立方介孔碳/硫(CMK-8/S)的表面来提高正极材料性能,0.2C下,电池循环100次后,放电比容量达860mAh/g,实验表明穿梭效应得到了有效抑制,锂离子的传输速率提高,电池性能得到了改善。Ding等设计了聚苯胺@球形有序介孔碳/硫纳米复合正极材料(PANI@S-OMC/S)。PANI提高了PANI@S-OMC/S电极的导电性,从而改善了电子的传输速率,PANI壳层在聚硫化锂与电解质之间形成了物理屏障,阻止了聚硫化锂的扩散,此外,介孔碳作为储硫体,也能捕获长链聚硫化物,防止它们溶解在电解液中。电池在0.1C下,获得了高达1626mAh/g的首次放电比容量,且循环100次后仍保持1338mAh/g,库仑效率达到98%,电池性能十分优异。
2.改进电解质体系
研究表明,改进电解质体系可以降低聚硫化物溶解度,有望解决穿梭效应。传统的碳酸酯类和醚/聚醚类电解液不能阻止聚硫化物的溶解和扩散。有研究表明,在电解液中加入锂盐添加剂,可降低电解液的Li+溶剂化能力,从而抑制聚硫化物在电解液中的溶解,提高电池循环性能。但是仍然不能避免聚硫化锂少量溶解在这类电解液中,穿梭效应并没有被彻底消除。固体电解质具有单一锂离子传导特性,可完全避免聚硫化锂在电解液中的溶解。Ni等设计了一种高Li+电导率的氟化锂/石墨烯氧化物(LiF/GO)固体电解质,电池在400次循环中,每循环容量衰减仅0.043%,循环性能优异,通过电化学阻抗谱分析和锂枝晶的表征证实了锂负极表面没有发现固体Li2S2/Li2S的绝缘层,表明这种固体电解质能有效地抑制穿梭效应,改善Li-S电池的循环性能。但固态电解质会降低离子电导率,这对中等或高电流密度下的性能有负面影响,且与正负极之间的相容性较差,界面阻抗较大,需对二者之间的界面进行改性。
最近发现,离子液体电解质对聚硫化物的溶解度比一般的有机电解质要低得多,而且还有抑制锂枝晶生长的作用,同时能保持相对较高的离子电导率。此外,凝胶电解质也被证明能改善Li-S电池的性能。为解决Li-S电池的穿梭效应,还需不断研究探索更加合适的电解质体系。
3.改进隔膜阻止聚硫化物穿梭
隔膜是Li-S电池的基本组成部分之一,它是一种多孔膜(如聚乙烯、聚丙烯、玻璃纤维等),仅为电子绝缘体,不影响离子穿过膜的传输,但聚硫化物可以通过膜自由扩散,并与负极反应,这会导致电池性能的退化。因此,可采用隔膜改性的方法来阻止聚硫化物穿过隔膜,与金属锂接触反应,从而抑制穿梭效应,改善Li-S电池的性能。Zhang等研究了一种在Celgard隔膜正极侧涂覆功能导电碳层的复合隔膜。这种功能碳涂层可作为前集流体促进电子传输,获得活性物质的高利用率,且其导电网络可捕获和沉积溶解的含硫活性物质。0.5C下,电池初始放电容量达到1070mAh/g,循环100次后,容量保持在780mAh/g左右,且库仑效率提高到近90%(原80%),表明了穿梭效应的减少。Zhang等设计了一种Li+选择性全氟磺酸膜(Nafion),其高分子侧链的磺酸基团带负电荷,允许Li+穿过隔膜而排斥带负电荷的聚硫离子,对抑制穿梭效应有着十分显著的效果,可提高Li-S电池的循环性能。
4.阻止聚硫化物与锂负极接触
高活泼性的锂负极容易与电解液发生反应,在Li的表面生成钝化膜,并易导致枝晶生长造成电池内部短路等,影响电池的安全性能;其次,在Li-S电池充放电过程中,锂负极会沉淀堆积聚硫化物或消耗大量锂,使得负极体积产生巨大的改变,破坏负极的重要结构,严重影响Li-S电池的电化学性能,使得电池的能量密度降低。
常用的解决方法有:①镀膜。使金属锂表面致密稳定。②加入各种添加剂来避免锂不良反应的发生。③采用聚合物电解质。④将金属锂和其他金属组成合金,如锂-铝合金、锂-锡合金等,能在一定程度上减缓金属锂与电解液的反应。
常用简单而有效的方法是通过功能添加剂在金属锂表面形成钝化膜,以此来阻止聚硫化物与金属锂的接触而产生化学反应,如在电解液中添加硝酸锂(LiNO3)在锂表面形成含氮-氧(N-O)化合物的SEI膜,但是这种SEI膜在电池充放电过程中会不断生成和分解,使得电池难以获得长期稳定的循环性能,且LiNO3在电压过低(<1.7V)时,会发生不可逆的电化学氧化还原反应。
除此之外,对金属锂进行表面修饰预处理也是一个可行的重要思路。Wen等采用原位生长法在金属锂表面覆盖了一层氮化锂(Li3N),能阻止锂与电解液直接接触,此外,Li3N具有优异Li+导电性,能实现金属锂与电解液之间的Li+迁移,0.5C下,电池循环500次后,仍保持780mAh/g的放电比容量,库仑效率超过92%。Lee等发现在锂负极表面包覆具有锂离子传导性固态聚合物电解质膜,可以阻止聚硫化物与锂负极的直接接触,减轻锂负极在充放电过程中的腐蚀,从而增强Li-S电池循环性能,与未包覆的锂负极相比,50次循环后,包覆的锂负极表面更加光滑且致密。
四、结语
Li-S电池已成为最有前途的下一代储能系统之一,然而,穿梭效应会显著降低电池的循环性能,阻碍Li-S电池实际应用。近年来,研究人员针对如何消除Li-S电池的穿梭效应来提高电池循环性能做了大量研究工作。为了防止聚硫化物在有机电解质中的扩散迁移,最有效的方法之一是将硫限制在多孔骨架里,如碳纳米管、介孔碳、碳球等碳材料与硫复合或包覆。也可通过纳米金属氧化物的吸附和导电聚合物包覆来抑制聚硫化物的溶解扩散,但穿梭效应尚未得到完全解决。在正极材料研究方面,大多数方法是采用物理或化学方法来限制聚硫化物,并不能很好地实现聚硫化物的重复使用,尤其在高载硫量和电池超长循环下,这种方法就会显著暴露其缺陷,不能有效提高电池的电化学性能,因此,还需探寻一种更有效的方法,不仅能对聚硫化物起到限域作用,还能提高长链聚硫化物向短链锂硫化物(Li2S2和Li2S)的转化效率,改善电化学反应活性。此外,还可通过改进电解质体系、改进隔膜阻挡效果和保护锂负极这3种思路来探索解决穿梭效应的方法。
目前,大量的研究工作主要关注于正极材料的改性,要实现Li-S电池的商业化,还需从以下几个方面展开研究:①负极材料的开发:如锂表面粗糙化、压制锂枝晶生长、隔离锂与电解液等。②电解质体系的改进:如采用全固态电解质或离子电解液、多种电解液配合使用、提高锂盐浓度等。③隔膜材料的开发:如采用新型离子选择性隔膜、隔膜表面涂覆改性、隔膜表面官能团化等。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
近日,江苏省张家港保税区管理委员会就天齐锂业新能源材料(苏州)有限公司年产26000吨电池级碳酸锂项目环评进行公示,标志着项目迎来新进展。项目由天齐锂业全资子公司——天齐锂业新能源材料(苏州)有限公司进行建设,选址江苏省苏州市张家港保税区扬子江国际化学工业园。目前,该主要项目为年产3万
北极星储能网获悉,瑞泰新材3月22日在互动平台回复投资者称,在新型电池材料方面持续性地进行了相关研发与积累,在固态电池、锂硫电池以及钠离子电池等新型电池方面皆有相应布局。公司与国内外多家固态锂离子电池相关企业均有合作,公司生产的双三氟甲基磺酰亚胺锂(LiTFSI)已批量应用于固态锂离子电
作者:周洪1,2(),俞海龙3,王丽平4,黄学杰3()单位:1.中国科学院武汉文献情报中心;2.中国科学院大学经济与管理学院信息资源管理系;3.中国科学院物理研究所;4.电子科技大学材料与能源学院引用:周洪,俞海龙,王丽平,等.基于BERTopic主题模型的锂电池前沿监测及主题分析研究[J].储能科学与技术,2025,14(
正极材料竞争升级,锰、硫技术路线谁能突围?2025年,固态电池产业正在经历更为深刻的变革。固态电池技术的推进、规模化制造需求的提升,以及终端市场对高性能电池的需求不断增长,共同驱动着以锰系、硫系为代表的新型正极材料体系加速成型,传统锂电池正极材料体系迎来重大革新。当前,9系高镍三元材
北极星储能网获悉,近日一则报道引起讨论,北京大学材料科学与工程学院庞全全团队开发了一种新型玻璃相硫化物固态电解质材料,并采用该材料研制出具有优异快充性能和超长循环寿命的全固态锂硫电池,该项研究成果已于1月16日发表在国际学术期刊《自然》,固态电池又迎来一轮热度。据统计,2025年以来,
据了解,近日,北京大学材料科学与工程学院庞全全团队开发了一种新型玻璃相硫化物固态电解质材料,并采用该材料研制出具有优异快充性能和超长循环寿命的全固态锂硫电池。该研究为发展高比能、高安全、低成本的下一代动力电池提供了一套新的技术方案。16日,相关研究成果在国际学术期刊《自然》上发表。
北极星储能网获悉,近日,北京大学材料科学与工程学院庞全全团队开发了一种新型玻璃相硫化物固态电解质材料,并采用该材料研制出具有优异快充性能和超长循环寿命的全固态锂硫电池。该研究为发展高比能、高安全、低成本的下一代动力电池提供了一套新的技术方案。该项研究成果已于1月16日发表在国际学术
北极星储能网获悉,12月2日,全球第四大车企Stellantis集团官微宣布,董事长接受了唐唯实(CarlosTavares)辞去其Stellantis集团首席执行官职务的请求,该辞呈立即生效。据悉,唐唯实曾先后在雷诺、日产、标致雪铁龙等多家知名车企任职。2013年,唐唯实在掌管PSA集团期间,主导了PSA(标致雪铁龙集团)和
北极星储能网获悉,8月28日,中国科学院青岛生物能源与过程研究所发布全固态电池高容量正极材料取得重要进展。资料显示,硫化物全固态电池具有高能量密度、快速充放电、低温性能优异以及高安全性、长寿命等优点,解决了液态锂电池能量密度低、易燃易爆等一系列问题,展现了其在电动汽车和其他领域的应
5月29日,中国能建2024年电化学储能产业发展论坛暨储能新产品发布会在武汉成功举办。本次论坛由中国能源建设集团有限公司(简称“中国能建”)主办,由中国能建集团装备有限公司(简称“中能装备”)、中能建储能科技(武汉)有限公司(简称“中储科技”)承办。来自业内专家学者和集团内部先进企业的
天力锂能4月16日在投资者互动平台表示,公司2023年研发投入占比接近往年水平,暂未研发锂硫电池。
在新能源行业,从来没有一种电池能解决所有问题。大储追求低度电成本和长循环寿命;工商储注重模块化灵活配置,同时兼顾高安全性和经济性;动力电池聚焦快充、高能量密度和超长循环——不同的场景,对电池性能的要求不甚相同。如果试图用单一技术路线满足所有需求,就像用同一把钥匙开所有的锁,结果只
北极星储能网获悉,近日,府谷能源所属新元公司火电厂电池储能调频项目顺利实现并网,标志着公司风光火储、源网荷储“两个一体化”产业格局加速形成,不仅是在新型储能领域取得的重大突破,而且实现了国内高倍率含钠离子电池在燃煤火电厂机组辅助调频领域的开创性应用。该项目建设规模10MW/5MWh,采用
北极星储能网获悉,近日,深圳市证券交易所发布公告,终止对东莞市朗泰通科技股份有限公司(以下简称朗泰通科技)首次公开发行股票并在创业板上市的审核。根据公告内容,终止审核的决定是基于朗泰通科技主动提交的撤回上市申请文件,以及保荐机构国金证券股份有限公司相应提交的撤回申请报告。据招股书
北极星储能网获悉,5月14日消息,上海电气储能科技有限公司成功中标奉贤星火综合多种新型储能技术路线对比测试示范基地(一期)10MW/40MWh全钒液流储能项目。该项目将提供国内稀缺的规模化实证场景,依托奉贤区“新能源+储能”产业集聚效应,促进全钒液流电池从材料研发、装备制造到系统集成的全产业链
全固态电池,因其超高比能、本征安全的优势,成为了突破传统液态电池技术桎梏、开启可持续能源高效运用的“金钥匙”,高能数造(西安)技术有限公司自创立伊始,便以“让电池更高能·让产品更高能”为使命,致力于开发先进的固态电池与干法电极产线整体制造解决方案,以前瞻的战略眼光和深厚的技术底蕴
近日,位于河北唐山曹妃甸工业区钢铁电力园区的中冶新材料项目二期整体已完工75%,预计2025年上半年完成施工,即将进入设备安装阶段。“中冶新材料项目”是中冶集团抓住新能源汽车行业爆发式增长的市场机遇,依托自身矿产资源优势和动力锂电池正极材料的综合技术优势打造的关键项目。项目共分两期建设
北极星储能网获悉,近日,5月12日,中美日内瓦经贸会谈联合声明:双方同意大幅降低双边关税水平。美方取消共计91%的加征关税,中方相应取消91%的反制关税;美方暂停实施24%的“对等关税”,中方也相应暂停实施24%的反制关税。消息出来后,对于出口美国的储能企业而言,总算是能松了口气。目前,中国储
5月9日,上海电气储能科技有限公司(以下简称“电气储能”)凭借深厚的技术沉淀和成熟的产业化经验,成功中标奉贤星火综合多种新型储能技术路线对比测试示范基地(一期)项目之10MW/40MWh全钒液流储能项目。该项目坐落于上海奉贤星火开发区民乐路315号,总容量40MW/160MWh,场区总占地面积约2公顷。该
北极星储能网获悉,5月13日消息,通用汽车与LG新能源将通过一项新的电池技术突破,将富锂锰基(LMR)方形电池单元商业化应用于未来通用电动卡车和全尺寸SUV。通用汽车目标成为首家在电动车上部署LMR电池的汽车制造商。由通用汽车与LG新能源合资成立的Ultiumcels公司拟于2028年前在美国启动LMR方形电池单
北极星储能网获悉,2025年5月13日,以“让数字世界坚定运行”为主题的2025全球数据中心产业论坛在沙漠之城迪拜隆重召开。论坛期间,在阿里云、中国移动、中国联通、中国电信的支持下,华为联合国际电信联盟(ITU)发布《数据中心锂离子电池安全应用白皮书》,白皮书从七大维度全方位、系统性阐述如何提
据日本NHK电视台报道,日产汽车公司由于业绩持续恶化,已决定在日本国内外追加裁员超过1万人。这次裁员同样是日产汽车改善经营状况计划的一部分。就在5月9日,日产汽车还宣布,将放弃在日本西南部的九州岛投资约1533亿日元(约74.6亿元人民币)建造电动汽车电池工厂的计划。基于这一计划,日产汽车、丰
北极星储能网获悉,5月19日,五矿新能在投资者互动平台上表示,公司专注于高效电池材料的研究、生产与销售,拥有锂电多元材料前驱体和正极材料、磷酸铁锂正极材料完整产品体系。根据国家战略导向、行业客户需求和企业发展需要,在新能源汽车动力电池、3C数码电池、储能电池等领域提供高性能、高性价比
北极星储能网获悉,5月19日,天力锂能集团股份有限公司发布股东减持股份的预披露公告。持有天力锂能集团股份有限公司股份7,692,307股,占公司总股本比例6.48%的股东安徽高新投新材料产业基金合伙企业计划自本公告披露之日起15个交易日后的未来3个月内以集中竞价方式、大宗交易方式减持本公司股份不超过
北极星储能网获悉,5月19日,昌意钠电(云南)储能科技有限公司年产3GWh钠离子储能电芯及1GWh钠离子电池PACK项目开工仪式在云南思茅产业园区宁洱片区举行。项目占地面积约40亩,总建筑面积15548.2平方米,主要建设1#厂房、测试区、配电房公辅设施,购置钠离子电池匀浆机、全自动装配线、Pack流水线、电
5月19日至20日,2025年菲律宾未来能源展(TheFutureEnergyShow)在马尼拉SMX会议中心举行。作为菲律宾规模最大的光伏与储能行业展会,为当地及亚太地区可再生能源企业提供了重要的交流合作平台。清源科技携地面及屋顶光伏安装解决方案、光伏车棚及户用储能解决方案闪耀亮相展位1-E15,满足客户多样化需
北极星储能网讯:5月16日,国家电投黄河水电发布了国家光伏、储能实证实验平台(大庆基地)2024年度数据成果。据悉,国家光伏、储能实证实验平台(大庆基地)位于黑龙江省大庆市,是全球首个光伏、储能户外实证实验平台,也是国家能源局批复的国内首个“国字号”实证实验平台,规划布置实证实验方案640
今年2月,国家发展改革委、国家能源局发布《关于深化新能源上网电价市场化改革促进新能源高质量发展的通知》(以下简称“136号文件”),将新能源电量全面推向市场,对中国新能源行业发展产生了深刻影响。136号文件推动新能源参与市场,不仅可以实现我国新能源产业高质量发展,而且可以推动能源转型,
一、制定背景调节能力是新型电力系统发展的必要支撑。虚拟电厂被认为是聚合调节资源、形成调节能力的有效方式;电动汽车充放电(以下简称V2G)、新型储能等是虚拟电厂重要的调节资源。为支持我市虚拟电厂资源聚合和V2G、新型储能发展,市发展改革委、市经济信息化委、市财政局研究制定了《上海市新型电
作者:叶涛1王怡君2唐子龙1潘国梁2单位:1.清华大学材料学院;2.上海国缆检测股份有限公司引用:叶涛,王怡君,唐子龙,等.全钒液流电池电解液容量衰减及草酸恢复研究[J].储能科学与技术,2025,14(3):1177-1186.DOI:10.19799/j.cnki.2095-4239.2024.0838本文亮点:1.通过dQ/dV等电化学特性曲线和化学滴定
北极星储能网获悉,5月17日,巴彦淖尔市乌拉特中旗德岭山500千伏变电站电网侧储能项目PC总承包项目中标候选人公示。本项目建设规模为100MW/400MWh。第一中标候选人为中国水利水电第四工程局有限公司、许昌许继电科储能技术有限公司,投标报价23288.4838万元,折合单价0.582元/Wh;第二中标候选人为中国
近日,国家重点研发计划“战略性科技创新合作”重点专项“钠离子储能电池热失控机理及火灾危险性评价技术合作研究”项目启动会在广州召开。本项目由南网储能公司牵头,联合中国科学技术大学、武汉大学、暨南大学、广西电网有限责任公司、香港理工大学等境内外储能安全领域的领军单位组成项目核心技术攻
北极星储能网获悉,5月17日消息,宁德时代旗下山东时代新能源科技有限公司储能及动力电池生产基地在济宁市兖州区正式投产,这是宁德时代在北方布局的首个基地,也是目前在北方产能规划最大的基地。新基地共分三期建设,此次投产的一期项目总规模为60GWh,占地800余亩,总建筑面积52万平方米,涵盖从厂
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!