登录注册
请使用微信扫一扫
关注公众号完成登录
智能紧固件及紧固工具调查报告结论中有价值信息可以提炼如下:
调查报告结论中有价值信息可以提炼如下:
首先从5条结论中可以总结出,风机塔筒倒塌的原因其实只有一条,那就是安装塔筒和塔筒之间连接螺栓时的预紧力不足。本人没有接触过此塔筒倒塌事故调查的原始资料,但是忧郁风力发电机受力情况特别复杂,此实例可以作为一个应用VDI2230导则进行螺栓设计计算的绝佳范例。并可通过对调查结论的更深一步挖掘,作为巩固VDI2230知识的好的素材。本文首先从风力发电机塔筒螺栓的受力分析出发,导出风力塔筒螺栓计算导则,然后再对上述5条瑞典风机倒塌的调查结论进行深入挖掘,以巩固和应用VDI2230知识点。
二、风力发电机塔筒螺栓计算导则
在根据VDI2230设计塔筒螺栓排布和计算螺栓安全系数时候,首先要对螺栓的载荷进行分析和分类。首先,风机在风力的作用下,整个风机包括塔筒会承受剪力,而风机的其它部位如塔筒承载面非常大,而螺栓抵抗剪力的面积非常小,只有100个螺栓直径那么大,远远小于塔筒实体面积,因此,剪力也可能导致螺栓失效。根据VDI2230-2可以推导出,用于抵抗风对风机的剪力而需要的螺栓的预紧力是相同的。但是,一般在设计风机的时候,都是计算出此横向力的作用,再根据VDI2230-1中第R2步计算出由此需要螺栓产生的拉力,然后根据VDI230-1标准计算流程进行后续计算。
最终得到需要的螺栓预紧力,而且可以根据VDI2230-1中第R12步计算出个螺栓抵抗风力剪切作用的安全系数。因此,如果螺栓在安装的时候被按照设计值进行有效预紧的话,螺栓收到风力作用而被剪切断裂这种可能性是不存在的。对于抵抗塔筒连接失效、发生横向移动的安全系数,以及螺栓抗剪切的安全系数,要着重校核最上段塔筒的法兰面上的螺栓,原因是:由于塔筒的重力作用,越靠近地面的塔筒的法兰面受到上邻塔筒法兰面的压力越大,因此相接触的法兰面之间的摩擦力也越大,摩擦力发挥抵抗塔筒横向位置的作用就越大,对螺栓预紧力的要求就越小。所以最上层塔筒法兰面之间的螺栓是抵抗此载荷的最薄弱环节。但必须强调,并不是说因此就可以以最上层塔筒法兰面之间的螺栓为最危险螺栓进行校核。因为螺栓不仅仅承受此横向风力,还有其它载荷作用。对于工作载荷。也需要对载荷来源和性质进行分析和分类:1、首先,风力发电机在发电状态,除了受到风力的作用和自身重力的作用,还有机舱中由于平衡电磁力矩导致的齿轮箱或是永磁发电机的扭力臂对主机架的力矩,而此力矩最终要由塔筒法兰面上的螺栓来承担。而承担此力矩的一整圈螺栓发挥的作用不尽相同,根据VDI2230-2可以推导出,与此瞬时风向垂直方向布置的两个螺栓此时承受的力最大,此塔筒法兰上其余螺栓的螺栓所承受的力按靠近此两个螺栓的距离远近而逐渐降低。这是风机在工作状态由于电磁力矩引起塔筒同一个法兰面上螺栓受载不均,但是在不同的法兰面上,同一方位的螺栓理论上受到由于电磁力矩产生的螺栓载荷相同。但由于风向不是固定的,因此,同一法兰面上整圈的螺栓都有机会成为受载最大者。所以,在计算螺栓外载荷时,需要首先假设任意一个风向,然后根据VDI2230-2计算出受载最大螺栓的载荷值,然后将其赋予各个螺栓作为工作载荷分量之一,记为。
如果忽略每层塔筒法兰面螺栓个数的差异和分布圆直径的差异,可以认为所有塔筒螺栓收到的值相同。但如果精确计算,就要考虑每层塔筒法兰面螺栓个数的差异和分布圆直径的差异进行详细计算。
2、其次,由于塔筒非常高,从几十米高到上百米高,因此风作用于风机上产生非常大的弯矩,也引起同一塔筒法兰面上的螺栓受载不等。根据VDI 2230-2可以推导出,与风向同方向布置的两个螺栓受到的力最大,此塔筒法兰上其余螺栓的螺栓所承受的力按靠近此两个螺栓的距离远近而逐渐降低。这是风机在工作状态由于塔筒高度产生的弯矩力矩引起塔筒法兰螺栓受载不均。同样,但由于风向不是固定的,因此,同一法兰面上整圈的螺栓都有机会成为受载最大者,因此在计算螺栓外载荷时,需要首先假设任意一个风向,然后根据VDI2230-2计算出受载最大螺栓的载荷值,然后将其赋予各个螺栓作为工作载荷的另外一个分量。
当然上述对工作载荷的分析和推导进行了部分简化,因为除了如上所述之外,还有机舱和叶轮重心位置产生的弯矩,机舱偏航动作时作用于塔筒法兰的横向的力,等等,由于篇幅所限,无法完全展开分析。后续有兴趣的读者可以和我联系,共同详细探讨。
再完成对载荷的分析和分类之后,就可以根据VDI2230-1中的标准步骤进行计算了。关键是把载荷考虑全面,核心是把所需要的夹紧力和工作载荷进行区分和归类,前提是正确地把外载荷合理地根据VDI2230-2分配到单一螺栓上。这些工作完成后,再根据VDI2230-1计算最终得到的不仅仅是螺栓的各项安全系数,还得到螺栓需要的预紧力数值或是预紧力矩数值。
三、瑞典风力发电机倒塌调查报告解读
此调查报告给出的5条结论,其实最关键技术性结论只有第1条,因为风力作用,螺栓法兰失效。其根源是螺栓在安装时候实际预紧没有达到设计给定的预紧力数值。此结论说明,风机设计人员还是严格按照VDI2230导则进行详细并精确的计算了。但是在安装塔筒预紧螺栓的过程中,没有做到位。从而说明只有设计人员懂VDI2230还是远远不够,安装操作人员也需要部分的了解VDI2230的内容。(因为VDI2230不仅仅设计到螺栓的计算,还有安装方法等方面的内容指导)
关于第2条和第3,没有预紧力的监测手段和要求。这也是明显地违背VDI2230的。因为塔筒螺栓是风机所有零部件中最重要的,整个风机的安危都系于每个塔筒螺栓的可靠连接。如此重要的螺栓安全等级为最高级,那么预紧工具当然至少是力矩扳手了,很多风机企业都采用螺栓拉伸器,甚至更精密的预紧工具。调查报告提到没有必要的预紧力监测手段和要求,显然是有违VDI2230-1中表A8的。
至于第4条,安装人员经验不足,紧固方法不合理。VDI2230-1中也有关于安装方法的论述,建议风场安装人员部分的学习这些内容。第5条,雨天安装导致螺栓摩擦系数发生变化,导致预紧力降低。这一条只提到是摩擦系数发生变化。我们可以进一步解读出报告指的是摩擦系数变化其实是指变大,而且我们还能够跟第5条推断出安装人员当时才是的是保证预紧力矩的安装方法,如数显的力矩扳手等工具。
比如报告说因为摩擦系数变化导致预紧力降低。因为如果说明安装的时候,工人是采用螺栓拉伸器等工具或是监测螺栓伸长量的方式来安装螺栓,那么最终预紧力是与模型系数无关的。如果采用保证力矩的预紧方式,我们可以根据导则中的公式可以看出,如果摩擦系数变大,但是由于安装人员只保证预紧力矩为给定值,那么实际得到的预紧力值是比计算得到的要小,也就是预紧力降低。
从上述分析可以看出,学好VDI2230不仅可以设计螺栓分布,计算螺栓安全系数和预紧力,还可以有效地进行故障分析。VDI2230是处理有关螺栓问题的绝佳的工具。总之,螺栓是应用最为广泛的零件,没有之一,因此在机械领域里是最为重要的。我在我的个人专著《人类历史上十大机械零件》中对螺栓有着大篇幅的阐述(此书已付梓,还未取得ISBN,不久将与读者见面)。
五、风电行业-德国VDI2230高级专项培训
为了帮助风电行业工程师们系统的和专业的学习德国VDI2230导则,解决VDI2230在风电行业应用的难点和痛点。2019年9月20日-22日,我将仿真秀知识服务平台联合打造了国内唯一,精品线下课程《德国螺栓VDI 2230 详解与实例解析》。本次线下培训是国内第一次系统全面(线下课会系统地给学员理清VDI2230的篇章结构和各部分之间的逻辑关系)、深入(现场给学员推演VDI2230中直接给出而无推导过程的公式)的高级培训。
增值服务
1、本次培训将带多个张老师本人之前亲自成功解决的实际案例、赠计算程序(线上赠送EXCEL程序,线下课程赠送加强版的excel程序);
2、讲解VDI2230使用中极易出错而不易发现的关键点以及导致本身如何正确使用,以德国专家为依托(对于特别极高难度的问题,如果本人无法回答,会求助德国VDI专家协助解决);
3、为每位线下课学员解决不超过2个企业案例;作为对VDI2230的补充,线下课会详细讲解VDI中不涉及的;
4、另外两本德国教科书(其中一本是G·Niemann的名著,另外一本暂时保密,亚马孙上售价1800元人民币,网络上无电子版下载)中关于螺栓的计算和被夹紧件的结构优化设计的内容。作为线下学员福利,学员可以从小助手处获取宝贵资料。
培训大纲
培训费用
2000元/人/天,共3天,对外统一报价:6000元/人;
9月5日前报名且缴费,立减1000元,即5000元/人;
9月10日前报名缴费的用户,立减500元,即5500元/人;
住宿可统一安排,费用自理。
所有报名学员,可获得一张仿真秀平台线上课程5折优惠券,还可以加入讲师的VIP群进行技术交流群,课后解决个性化问题。本次培训费用含培训费,发票、证书费、资料费和午餐费,不含住宿费。
讲师介绍
螺栓设计老张,仿真秀专栏作者,著名齿轮箱设计研发专家。硕士毕业后,从事机械设计研发工作13年。师从德国齿轮箱研发大师Hans-Jügen和Michael Bachmann,为其三个关门弟子之一。在深得日耳曼人精益求精的钻研精神同时也传承着中国知识分子的家国情怀。曾旅居德国,游历欧洲,涉猎古今,放眼世界。以复兴民族文化为己任,弘扬西方文明为使命。不辞鄙薄,砥砺而行。苟利国家生死以,岂因祸福避趋之?案例:曾在德国一家3万人的机械行业知名工作4年,其中在德国巴登符腾堡州此公司总部工作2年。获得德国专家颁发的优秀证书。擅长螺栓计算VDI 2230,过盈压配DIN 7190, NX(UG)+Teamcenter软件,轨道交通齿轮箱设计。曾成功设计过多款高铁、地铁齿轮箱,曾为企业制定设计导则,曾为企业解决螺栓失效问题。
因为风力作用,螺栓法兰失效。其根源是螺栓在安装时候实际预紧没有达到设计给定的预紧力数值。
没有螺栓预紧力的监测手段和要求。
力矩工具没有维护到位。
螺栓紧固工人经验不足,紧固方法不合理。
雨天安装导致螺栓摩擦系数发生变化,导致预紧力降低。
上述内容是网上看到的一片文章的摘抄。作者在这里不想评论此文章内容详实与否,在此仅仅就其5条结论对此风机塔筒螺栓失效原因进行分析。
首先从5条结论中可以总结出,风机塔筒倒塌的原因其实只有一条,那就是安装塔筒和塔筒之间连接螺栓时的预紧力不足。本人没有接触过此塔筒倒塌事故调查的原始资料,但是忧郁风力发电机受力情况特别复杂,此实例可以作为一个应用VDI2230导则进行螺栓设计计算的绝佳范例。并可通过对调查结论的更深一步挖掘,作为巩固VDI2230知识的好的素材。本文首先从风力发电机塔筒螺栓的受力分析出发,导出风力塔筒螺栓计算导则,然后再对上述5条瑞典风机倒塌的调查结论进行深入挖掘,以巩固和应用VDI2230知识点。
二、风力发电机塔筒螺栓计算导则
在根据VDI2230设计塔筒螺栓排布和计算螺栓安全系数时候,首先要对螺栓的载荷进行分析和分类。首先,风机在风力的作用下,整个风机包括塔筒会承受剪力,而风机的其它部位如塔筒承载面非常大,而螺栓抵抗剪力的面积非常小,只有100个螺栓直径那么大,远远小于塔筒实体面积,因此,剪力也可能导致螺栓失效。根据VDI2230-2可以推导出,用于抵抗风对风机的剪力而需要的螺栓的预紧力是相同的。但是,一般在设计风机的时候,都是计算出此横向力的作用,再根据VDI2230-1中第R2步计算出由此需要螺栓产生的拉力,然后根据VDI230-1标准计算流程进行后续计算。
最终得到需要的螺栓预紧力,而且可以根据VDI2230-1中第R12步计算出个螺栓抵抗风力剪切作用的安全系数。因此,如果螺栓在安装的时候被按照设计值进行有效预紧的话,螺栓收到风力作用而被剪切断裂这种可能性是不存在的。对于抵抗塔筒连接失效、发生横向移动的安全系数,以及螺栓抗剪切的安全系数,要着重校核最上段塔筒的法兰面上的螺栓,原因是:由于塔筒的重力作用,越靠近地面的塔筒的法兰面受到上邻塔筒法兰面的压力越大,因此相接触的法兰面之间的摩擦力也越大,摩擦力发挥抵抗塔筒横向位置的作用就越大,对螺栓预紧力的要求就越小。所以最上层塔筒法兰面之间的螺栓是抵抗此载荷的最薄弱环节。但必须强调,并不是说因此就可以以最上层塔筒法兰面之间的螺栓为最危险螺栓进行校核。因为螺栓不仅仅承受此横向风力,还有其它载荷作用。对于工作载荷。也需要对载荷来源和性质进行分析和分类:1、首先,风力发电机在发电状态,除了受到风力的作用和自身重力的作用,还有机舱中由于平衡电磁力矩导致的齿轮箱或是永磁发电机的扭力臂对主机架的力矩,而此力矩最终要由塔筒法兰面上的螺栓来承担。而承担此力矩的一整圈螺栓发挥的作用不尽相同,根据VDI2230-2可以推导出,与此瞬时风向垂直方向布置的两个螺栓此时承受的力最大,此塔筒法兰上其余螺栓的螺栓所承受的力按靠近此两个螺栓的距离远近而逐渐降低。这是风机在工作状态由于电磁力矩引起塔筒同一个法兰面上螺栓受载不均,但是在不同的法兰面上,同一方位的螺栓理论上受到由于电磁力矩产生的螺栓载荷相同。但由于风向不是固定的,因此,同一法兰面上整圈的螺栓都有机会成为受载最大者。所以,在计算螺栓外载荷时,需要首先假设任意一个风向,然后根据VDI2230-2计算出受载最大螺栓的载荷值,然后将其赋予各个螺栓作为工作载荷分量之一,记为。
如果忽略每层塔筒法兰面螺栓个数的差异和分布圆直径的差异,可以认为所有塔筒螺栓收到的值相同。但如果精确计算,就要考虑每层塔筒法兰面螺栓个数的差异和分布圆直径的差异进行详细计算。
2、其次,由于塔筒非常高,从几十米高到上百米高,因此风作用于风机上产生非常大的弯矩,也引起同一塔筒法兰面上的螺栓受载不等。根据VDI 2230-2可以推导出,与风向同方向布置的两个螺栓受到的力最大,此塔筒法兰上其余螺栓的螺栓所承受的力按靠近此两个螺栓的距离远近而逐渐降低。这是风机在工作状态由于塔筒高度产生的弯矩力矩引起塔筒法兰螺栓受载不均。同样,但由于风向不是固定的,因此,同一法兰面上整圈的螺栓都有机会成为受载最大者,因此在计算螺栓外载荷时,需要首先假设任意一个风向,然后根据VDI2230-2计算出受载最大螺栓的载荷值,然后将其赋予各个螺栓作为工作载荷的另外一个分量。
当然上述对工作载荷的分析和推导进行了部分简化,因为除了如上所述之外,还有机舱和叶轮重心位置产生的弯矩,机舱偏航动作时作用于塔筒法兰的横向的力,等等,由于篇幅所限,无法完全展开分析。后续有兴趣的读者可以和我联系,共同详细探讨。
再完成对载荷的分析和分类之后,就可以根据VDI2230-1中的标准步骤进行计算了。关键是把载荷考虑全面,核心是把所需要的夹紧力和工作载荷进行区分和归类,前提是正确地把外载荷合理地根据VDI2230-2分配到单一螺栓上。这些工作完成后,再根据VDI2230-1计算最终得到的不仅仅是螺栓的各项安全系数,还得到螺栓需要的预紧力数值或是预紧力矩数值。
三、瑞典风力发电机倒塌调查报告解读
此调查报告给出的5条结论,其实最关键技术性结论只有第1条,因为风力作用,螺栓法兰失效。其根源是螺栓在安装时候实际预紧没有达到设计给定的预紧力数值。此结论说明,风机设计人员还是严格按照VDI2230导则进行详细并精确的计算了。但是在安装塔筒预紧螺栓的过程中,没有做到位。从而说明只有设计人员懂VDI2230还是远远不够,安装操作人员也需要部分的了解VDI2230的内容。(因为VDI2230不仅仅设计到螺栓的计算,还有安装方法等方面的内容指导)
关于第2条和第3,没有预紧力的监测手段和要求。这也是明显地违背VDI2230的。因为塔筒螺栓是风机所有零部件中最重要的,整个风机的安危都系于每个塔筒螺栓的可靠连接。如此重要的螺栓安全等级为最高级,那么预紧工具当然至少是力矩扳手了,很多风机企业都采用螺栓拉伸器,甚至更精密的预紧工具。调查报告提到没有必要的预紧力监测手段和要求,显然是有违VDI2230-1中表A8的。
至于第4条,安装人员经验不足,紧固方法不合理。VDI2230-1中也有关于安装方法的论述,建议风场安装人员部分的学习这些内容。第5条,雨天安装导致螺栓摩擦系数发生变化,导致预紧力降低。这一条只提到是摩擦系数发生变化。我们可以进一步解读出报告指的是摩擦系数变化其实是指变大,而且我们还能够跟第5条推断出安装人员当时才是的是保证预紧力矩的安装方法,如数显的力矩扳手等工具。比如报告说因为摩擦系数变化导致预紧力降低。因为如果说明安装的时候,工人是采用螺栓拉伸器等工具或是监测螺栓伸长量的方式来安装螺栓,那么最终预紧力是与模型系数无关的。如果采用保证力矩的预紧方式,我们可以根据导则中的公式可以看出,如果摩擦系数变大,但是由于安装人员只保证预紧力矩为给定值,那么实际得到的预紧力值是比计算得到的要小,也就是预紧力降低。
从上述分析可以看出,学好VDI2230不仅可以设计螺栓分布,计算螺栓安全系数和预紧力,还可以有效地进行故障分析。VDI2230是处理有关螺栓问题的绝佳的工具。总之,螺栓是应用最为广泛的零件,没有之一,因此在机械领域里是最为重要的。我在我的个人专著《人类历史上十大机械零件》中对螺栓有着大篇幅的阐述(此书已付梓,还未取得ISBN,不久将与读者见面)。
五、风电行业-德国VDI2230高级专项培训为了帮助风电行业工程师们系统的和专业的学习德国VDI2230导则,解决VDI2230在风电行业应用的难点和痛点。2019年9月20日-22日,我将仿真秀知识服务平台联合打造了国内唯一,精品线下课程《德国螺栓VDI 2230 详解与实例解析》。本次线下培训是国内第一次系统全面(线下课会系统地给学员理清VDI2230的篇章结构和各部分之间的逻辑关系)、深入(现场给学员推演VDI2230中直接给出而无推导过程的公式)的高级培训。
增值服务
1、本次培训将带多个张老师本人之前亲自成功解决的实际案例、赠计算程序(线上赠送EXCEL程序,线下课程赠送加强版的excel程序);
2、讲解VDI2230使用中极易出错而不易发现的关键点以及导致本身如何正确使用,以德国专家为依托(对于特别极高难度的问题,如果本人无法回答,会求助德国VDI专家协助解决);
3、为每位线下课学员解决不超过2个企业案例;作为对VDI2230的补充,线下课会详细讲解VDI中不涉及的;
4、另外两本德国教科书(其中一本是G·Niemann的名著,另外一本暂时保密,亚马孙上售价1800元人民币,网络上无电子版下载)中关于螺栓的计算和被夹紧件的结构优化设计的内容。作为线下学员福利,学员可以从小助手处获取宝贵资料。
培训大纲培训费用
2000元/人/天,共3天,对外统一报价:6000元/人;
9月5日前报名且缴费,立减1000元,即5000元/人;
9月10日前报名缴费的用户,立减500元,即5500元/人;
住宿可统一安排,费用自理。
所有报名学员,可获得一张仿真秀平台线上课程5折优惠券,还可以加入讲师的VIP群进行技术交流群,课后解决个性化问题。本次培训费用含培训费,发票、证书费、资料费和午餐费,不含住宿费。
讲师介绍
螺栓设计老张,仿真秀专栏作者,著名齿轮箱设计研发专家。硕士毕业后,从事机械设计研发工作13年。师从德国齿轮箱研发大师Hans-Jügen和Michael Bachmann,为其三个关门弟子之一。在深得日耳曼人精益求精的钻研精神同时也传承着中国知识分子的家国情怀。曾旅居德国,游历欧洲,涉猎古今,放眼世界。以复兴民族文化为己任,弘扬西方文明为使命。不辞鄙薄,砥砺而行。苟利国家生死以,岂因祸福避趋之?案例:曾在德国一家3万人的机械行业知名工作4年,其中在德国巴登符腾堡州此公司总部工作2年。获得德国专家颁发的优秀证书。擅长螺栓计算VDI 2230,过盈压配DIN 7190, NX(UG)+Teamcenter软件,轨道交通齿轮箱设计。曾成功设计过多款高铁、地铁齿轮箱,曾为企业制定设计导则,曾为企业解决螺栓失效问题。四、报名方式学好螺栓的计算,作为机械工程师便无知识的死角。一花独秀不是春,百花齐放春满园。作者不才,希望有更多机械设计从业者参与到这个课题中,共同努力,为彻底提高中国产品的质量和技术含量,为推动民族文明的进步尽绵薄之力。
报名方式
联系人:周经理
手机:15712959596
QQ:2564691554
邮箱:zhouyanjia@bjxmail.com
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
第1号台风“蝴蝶”对海上风电场设备及人员安全带来了严峻挑战。三峡新能源海上风电运维江苏有限公司广东、福建区域各项目部闻“风”而动,暂停所有海上作业,对风机基础、叶片及海缆路由开展巡视检查,同步强化海上升压站防风紧固措施,筑牢海上风电设备“防风屏障”。福建区域于6月11日12时顺利完成60
北极星风力发电网获悉:近日,法国及地中海地区首个浮式海上风电项目——ProvenceGrandLarge现已正式全面投运,标志着法国在海上风电尤其是浮式风电领域迈出了关键性的一步。其中,伊莱特在2021年为该项目提供数套法兰锻件。ProvenceGrandLarge项目位于法国南部罗讷河口省圣路易港外海约17公里处,安装
截止2025年4月底,全国累计风电装机容量5.4亿千瓦。从我国2000年后规模化发展风电产业以来,到“十四五”末将迎来一轮较大规模的风电设备退役潮。一组来自于中国物资再生协会风光设备循环利用专业委员会的调研数据显示,截至2024年底,风电设备累计退役规模285万千瓦;预计2025年风电设备退役规模达到3
在“双碳”目标深入推进、绿色低碳发展浪潮蓬勃兴起的当下,入驻盐城绿色低碳科创园的国家风电设备检测中心,聚焦涉网检测与质量验证核心业务,为盐城乃至全国风电产业安全高效发展提供有力技术支撑,正向着行业内重要公共服务平台标杆的目标稳步迈进。作为国内涉网检测能力领先的专业机构,中心实验室
在全球能源转型加速推进的关键时期,北京鉴衡认证中心(以下简称“鉴衡认证”)与远景能源有限公司(以下简称“远景能源”)以卓越的技术实力与协同创新精神,共同书写了叶片检测领域的新篇章。鉴衡认证的叶片检测实验室作为远景能源叶片检测实验室(RECTF)唯一的合作伙伴,双方于2025年5月下旬成功通
作为辽宁省大连市最大的传统火电厂,始建于1985年的华能大连电厂,当下正在“双碳”战略的驱动下经历一场深刻变革:一手积极布局新能源,一手加速优化升级传统能源。通过持续的技术创新与管理优化,这座传统火电厂不仅全面实现超低排放,更成功构建起多能互补的现代能源体系,成为东北老工业基地绿色转
日前,三一重能塞尔维亚Alibunar项目成功签署电力购买协议(PPA)和电力差价合约(CfD),标志着三一重能在塞尔维亚新能源领域迈出了关键一步,为后续深耕欧洲新能源市场、拓展全球业务版图提供重要支点。三一重能塞尔维亚Alibunar项目位于塞尔维亚东部,所在区域是该国风资源最丰富的地区之一。项目总
谁能想到,一颗拧在风电叶片根部的螺栓,竟差点引发一起重大设备事故——智能螺栓提前“报警”,避免了一场灾难!案例背景:山里的风电场,隐藏的风险某风电场,20台5.0MW大型风电机组日夜运转。风从峡谷呼啸而过的山脊上,一项“黑科技”正在悄然守护它们的安全——MS9000叶根智能螺栓监测系统。自202
全球新能源产业进入高速增长期,但政策不确定性、技术迭代加速、国际竞争加剧等因素导致法律风险频发。近年来,全球新能源产业呈现爆发式增长态势。然而,行业高速发展背后暗藏多重法律风险。(作者:莫泰京北京市盈科律师事务所律师)新能源行业法律风险白皮书——合规挑战与应对策略目录一、行业趋势
2025年5月16日,以“蓄势待发·聚智共建风光循环互联生态”为主题的2025中国风光设备循环利用产业年会在北京成功举办。金风科技通过深度参与行业标准建设、创新解决方案展示等举措,在本次大会上取得四项成果:正式签署《绿色退役倡议》、获授战略合作伙伴资质、入选“设备循环利用企业推荐名录”、荣
曾几何时,2MW、3MW、4MW的风电机组被视为行业的主流机型,转眼间,大兆瓦风电机组便在短短几年间迅速崛起,目前,陆上风电机组已发展至15MW,海上风电单机最大已达26MW。CWEA数据显示,截至2024年,全国新增装机风电机组平均单机容量已跃升至6046kW,同比增长8.1%。其中陆上风电机组平均单机容量为588
6月23日,由我国自主设计建造的“海洋石油511”高速风电运维船在广东阳江交付,标志着中国海油海上风电运维能力迈上新台阶。这也是中国海油首艘高速海上风电运维船。“海洋石油511”采用双体设计,可提供更好的平稳性和载重能力,船舶总长36.2米、宽10.4米,具备在2.5米有义波高下安全顶靠风机桩柱的能
近日,由北京中唐电工程咨询有限公司自主研发的“智检1号”——多技术融合风机塔筒涂层下缺陷智能检测机器人系统,经过中科合创(北京)科技成果评价中心的严格鉴定,荣获国内领先水平的鉴定结果。这一成果不仅是对该公司技术实力的高度认可,更是风机塔筒检测领域的一项重大突破。中科合创(北京)科
平原广袤,风拂绿野,安徽亳州道仁风电项目建设已进入收官阶段。项目总计72台风机,采用混塔和桁架塔的差异化配置。其中,桁架塔配备的齿条升降机,成为了解决桁架塔登高难题的关键设备。桁架塔具有运输安装便捷、地形适应能力强等显著优势。但其底部一百余米的开放式环境,对升降设备的运行稳定性与防
面对今年第1号台风“蝴蝶”带来的强降水冲击,中国大唐集团有限公司(以下简称“中国大唐”)在广东、广西、海南三省区迅速启动应急响应,以周密部署和科学调度筑牢能源电力安全防线,成功保障机组稳定运行与电力可靠供应。中国大唐广东分公司第一时间搭建防台风防汛应急体系,领导靠前指挥,关键岗位2
第1号台风“蝴蝶”对海上风电场设备及人员安全带来了严峻挑战。三峡新能源海上风电运维江苏有限公司广东、福建区域各项目部闻“风”而动,暂停所有海上作业,对风机基础、叶片及海缆路由开展巡视检查,同步强化海上升压站防风紧固措施,筑牢海上风电设备“防风屏障”。福建区域于6月11日12时顺利完成60
近日,金风科技在甘肃试验风电场顺利完成我国首个“风机大部件免主吊更换”智能设备测试,使用金风自主研发的“自提升智能设备”,完成了GWH204-6.7MW机组齿轮箱与发电机的高空拆装验证。依托该设备,未来风电机组大部件更换将大幅减少对大型吊装设备的依赖,预计降低大部件更换运维成本达50%。目前,
行业挑战:混塔安全和锚索张力监测当前,随着风电机组向更大容量、更高塔筒方向演进,越来越多项目采用“混凝土基座+钢制塔身”的混合塔筒结构以提升整体稳定性与经济性。在这一结构体系中,锚索系统作为连接地基与塔身的“结构筋骨”,其健康状况直接决定着整机的安全命脉。锚索实际运行中存在四大核
北极星风力发电网获悉,6月10日,国家电投集团江苏电力有限公司2025年第59批招标大丰H3#300MW海上风电项目风电机组运维服务(一年)(重新招标)招标公告。公告显示:1.招标条件招标人:国家电投集团江苏电力有限公司招标代理机构:中国电能成套设备有限公司立项情况:已立项项目资金来源:自筹资金。项目
在“双碳”目标深入推进、绿色低碳发展浪潮蓬勃兴起的当下,入驻盐城绿色低碳科创园的国家风电设备检测中心,聚焦涉网检测与质量验证核心业务,为盐城乃至全国风电产业安全高效发展提供有力技术支撑,正向着行业内重要公共服务平台标杆的目标稳步迈进。作为国内涉网检测能力领先的专业机构,中心实验室
北极星风力发电网获悉,6月11日,苍南霞关风电场改造升级及新增智能调控系统项目风力发电机组中标候选人公示。根据公示,该项目中标候选整机商为远景能源,中标报价为2.22亿元。相关招标公告显示,苍南霞关风电场位于浙江省温州市苍南县霞关镇瑶洞村北关岛上。项目采用增容模式升级改造,拟拆除苍南霞
国家电投集团系统单位全面推进班组建设各项工作,扎实落实班组“强基创优”方案,广大班组长充分发挥“兵头将尾”作用,攻坚克难、主动作为,在提升班组管理科学化、民主化、制度化、规范化方面取得了卓有成效的成绩,涌现出一批表现突出的典型。近日,国家电投集团表彰2023-2024年度示范班组、优秀班
北极星风力发电网获悉,广东建工(原粤水电)宣布公司全资子公司广东水电二局集团有限公司的下属企业昂仁县粤水电新能源有限公司收到西藏日喀则市能源局、日喀则市行政审批和便民服务局的《关于日喀则市10万千瓦光热+10万千瓦光伏+80万千瓦风电一体化项目备案的通知》,同意该项目备案。项目总投资约54
2024年10月12日,福建省福清市海上风电产业园,东方电气集团研制的全球最大26MW级海上风力发电机组震撼下线。这台机组不仅单机容量全球最大、叶轮直径最长,且供应链完全自主可控,关键部套技术世界领先。而在2025年6月20日上午,位于福建省福清市的国家级海上风电研究与试验检测基地传来捷报,经过1个
北极星风力发电网获悉,近日,河北昌黎县人民政府发布《昌黎县2025年度风电项目入库实施主体竞争性配置结果公示》。《公示》显示,昌黎县68.75MW并网型绿电直连风力发电项目竞争性配置中标人为秦皇岛宏腾科技有限公司。昌黎绿能35.75MW风电项目竞争性配置中标人为秦皇岛欢天喜地管理有限公司。
北极星风力发电网获悉,近日,湖南省4个风电项目获核准。城步大洞口风电场项目建设地点为邵阳市城步苗族自治县,装机容量50MW,总投资3.00亿元。项目单位为湖南湘邦能源有限公司,主要控股企业为湖南省能源集团。龙山县八面山风电场项目建设地点为湘西自治州龙山县,装机容量120MW,总投资7.25亿元。项
北极星风力发电网获悉,6月23日,浙江省嘉兴市发改委发布关于印发《嘉兴市能源绿色低碳发展和保供稳价工程2025年实施计划》的通知。文件围绕风电作出如下规定:1、加快建设现代能源基础设施体系,年度能源投资80亿元以上,新开工项目15个,10月底新建项目开工率达100%;建成投产项目10个,新增电力装机
2025年将是我国海上风电产业发展的关键转折之年,逐风深海、技术创新已然成为产业高质量、可持续发展的核心驱动力。为全方位挖掘创新潜能,激发产业活力,北极星电力网、北极星风力发电网将于2025年7月2日在山东烟台举办第五届海上风电创新发展大会,大会以“逐风深蓝创新赋能”为主题,将邀请来自行业
北极星风力发电网获悉,6月24日,中碳航投新能源集团有限公司吉林洮南中深层地热供暖配套160MW风电项目风力发电机组及其附属设备(含塔筒)采购中标候选人公示。相关公示显示,该项目第一中标候选人为电气风电,投标报价为2.88亿元,折合单价(按招标容量计算)为1800元/kW。根据招标公告,中碳航投新能
北极星风力发电网获悉,6月24日,皖能新能源长丰县风电场项目EPC总承包中标候选人公示。公示显示,中标候选人第一名为中国电建集团华东勘测设计研究院有限公司(联合体成员:浙江江能建设有限公司),投标报价:58998.836581万元,折合单价约3933元/kW;中标候选人第二名为中建三局集团有限公司(联合体成
近日,巴西首个漂浮式海上风电试点项目——AuraSulWind项目正式启动,计划采用明阳智能18MW漂浮式风电机组。项目预计投资1亿美元(约合人民币7.18亿元),由日本JapanBlueEnergy(JBEnergy)牵头,联合南里奥格兰德州能源工会、港口管理局、南里奥格兰德联邦大学、明阳智能以及多家工程、环境监测和运
北极星风力发电网获悉,近日,内蒙古基础设施开发建设有限公司风光制氢绿色化工一体化一期项目和内蒙古基础设施开发建设有限公司风光制氢绿色化工一体化二期项目撤销。公告显示,内蒙古基础设施开发建设有限公司提交的内蒙古基础设施开发建设有限公司风光制氢绿色化工一体化一期项目、绿电制氢二期项目
北极星风力发电网获悉,近日,龙源电力吉林公司长春新能源氢基化工综合利用一体化项目配套75万千瓦新能源建设指标取得长春市人民政府批复,项目建成后将为吉林省绿色能源转型和氢能产业发展注入强劲动力。该公司紧贴国家新型能源发展战略,按照吉林省“氢动吉林”行动规划以及新能源产业“绿电+消纳”
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!