登录注册
请使用微信扫一扫
关注公众号完成登录
0 引言
电动汽车与电网彼此天然连通,既是电能消费终端,又是位于电网末梢的储能单元。大量电动汽车可作为分布式储能为电力系统提供规模可观的灵活性资源,进而有效提升电力系统对波动性可再生能源的消纳能力。
近年来全球电动汽车市场快速成长,产业规模日益扩大。2018年全球电动乘用车保有量超过500万辆[1]。其中,中国电动汽车市场增速尤为突出。2018年中国新能源汽车销量达到125.6万辆,相比2015年提高近 3倍[2]。数量规模的增长为电动汽车参与电力系统储能提供了条件。截至2018年底,全国电动汽车动力电池累计产量超过2亿kWh,而同期全国电化学储能累计装机量仅为100万kW,按储能平均放电4 h计算,则动力电池存量规模高达电化学储能的50倍。当前锂离子电池能量密度、循环寿命等关键参数呈现快速进步的趋势,其成本仍有较大下降空间,特别是未来电动汽车数量将保持增长,其参与电力系统储能的潜力有望持续扩大。
随着车辆数不断增长,电动汽车储能已被政府提上议事日程。国家发改委《关于创新和完善促进绿色发展价格机制的意见》[3]已明确提出鼓励电动汽车提供储能服务并通过峰谷价差获得收益,电动汽车正越来越多地通过电力需求响应等方式与电网形成互动。
然而,现有电动汽车与电网互动的研究往往是针对特定案例的互动方式优化,对全国电动汽车储能潜力的定量评估研究较少。Dallinger等考虑了用户随机性下的电动汽车为电网运行提供备用的可行性,发现车网互动可以在不影响电池寿命的前提下,为系统提供可靠的备用容量[4]。Han等研究发现对电动汽车的充放电功率、时间进行集中优化控制,可平抑风电、太阳能发电波动,提高可再生能源利用率[5]。与此同时,部分研究聚焦电动汽车储能经济性。Kempton等人分析了电动汽车作为分布式储能的可行性,发现通过协调控制充放电过程,电动汽车可向电力系统提供高价值调节服务[6]。随着中国近年来电动汽车快速普及,电动汽车储能也成为研究焦点。自然资源保护协会(Natural Resource Defense Council,NRDC)根据上海市电力系统调峰需求与电动汽车用户出行特点,分别从电动汽车充电需求及负荷特性、电动汽车充放电调节潜力及经济性等方面进行了分析[7]。此后,NRDC又针对电动汽车有序充电、车网互动、电池更换和退役电池储能4种方式,分析了电动汽车储能应用潜力和经济性[8]。文献[9]也结合中国电动汽车数量规模预测,对电动汽车通过车网互动所能提供的储能规模潜力进行了评估。然而,以往研究一般集中在经济性调度模型的优化,缺少电动汽车储能规模的整体评估。此外,有限的电动汽车储能研究往往基于车辆技术参数展开,而较少考虑电动汽车用车/停车行为的影响[10-12]。因此,本文将基于中国未来电动汽车发展预测,结合各类车型出行及停车行为特征,评估电动汽车储能的应用潜力。研究将聚焦电动汽车储能与大规模可再生能源之间的协同效果,并对比电动汽车储能与固定式储能在电力系统中的定位差异,为后续战略规划及政策制定提供参考。
除电池容量、充电设备功率外,电动汽车出行强度、停车时长、充电桩数量普及率等因素都直接对电动汽车储能实际效果产生约束。因此,本文尝试将上述因素纳入研究过程,定量评估电动汽车储能在电力系统中的应用潜力与价值。
1 电动汽车储能规模潜力
电动汽车数量、动力电池特性、用户用车行为等因素都将直接影响电动汽车的储能潜力。本章将首先对电动汽车数量规模和电池特性进行预测,进而结合用户行为评估电动汽车有序充电和车电互联的实际储能效果。
1.1 电动汽车数量规模
数量规模是电动汽车储能的首要影响因素。各国对电动汽车数量的预测研究也较多,其中中国汽车工程学会《节能与新能源汽车技术路线图》的研究较具代表性,其预测到2030年全国新能源汽车销量占比将达到40%~50%,保有量将达到8000万辆[13],但该研究并未公布具体车型分布。由于各类车型的储能能力有较大差异,本文采用国家发改委能源研究所的保有量及分车型电池平均容量预测(表1),即到2030年全国电动汽车保有量达到8640万辆,其中电动乘用车占比93%[14]。
表1 2030年电动汽车数量规模预测
Table 1 2030 EV stock and battery size fore
1.2 电动汽车储能潜力评估
在不同车网互动模式下,电动汽车的储能潜力存在差异。本文聚焦有序充电和车电互联(vehicle to grid,V2G)两类车网互动方式,评估电动汽车储能技术潜力及关键影响因素。
1.2.1 有序充电
电动汽车有序充电是指根据电力系统的运行状态,以经济性最优或对电网影响最小等作为优化目标,综合考虑电池性能约束与用户充电需求,调整电动汽车充电时间和充电功率。
电动汽车可根据电力系统调节需求调整车辆的充电行为。电动汽车充电负荷具有与其他用电负荷不同的特性,通过对充电行为加以引导,可以起到灵活负荷的作用。虽然在有序充电下电动汽车无法向电网或负荷直接放电,但有序充电可促进电网削峰填谷,实现“虚拟储能”的作用。
电动汽车有序充电的规模潜力可从可调节容量及可充电电量两个维度衡量。可调节容量为接入电网电动汽车的最大充电功率,可充电电量为电动汽车道路出行所需的充电电量,而电动汽车充电电量又取决于车辆行驶里程、能效及充电效率等因素。在有序充电下,车辆的充电电量可根据电网需求在停车时段内分配,进而帮助电网调峰、提升配网运行可靠性和提升电力系统运行经济性。各国对电动汽车有序充电已有较多研究,现有研究表明:电动汽车具有较强的需求响应能力,若对充电行为进行有序引导,大部分原本出现在午后至晚间的充电负荷可转移至凌晨时段,削峰填谷效果明显[15-17]。
有序充电是目前技术较为成熟的电动汽车储能方式,适于在全电动车型领域推广。对于私家车、公务车队等出行强度小、停车时间较长的用车部门,参与有序充电的优势在于充电调节灵活度高;对于公交、出租及物流车队等运营强度高、运营时间规律的用车部门,参与有序充电的优势更多在于车辆充电量较大且集中管控难度相对较低。目前中国一些地区已经开始针对住宅小区开展电动汽车有序充电工程示范。
为量化估算电动汽车储能能力,本文基于各类车型可用停车时间来评估电动汽车充电的灵活调节潜力。所谓可用停车时间即除去车辆行驶时间、刚性(车用电量)充电时间之外的时间长度,如图1所示。可用停车时间比例越高,则意味着电动汽车进行有序充电的潜力越大。
图1 有序充电潜力评估示意图
Fig.1 Key factors on smart ging potential
因此,某车型n单辆电动汽车日均有序充电潜力可表示为:
式中:SCn为车型n日均有序充电潜力,kWh;En为车型n日均充电电量,kWh;T为计量周期,24 h;dt,n为车型n日均行驶时长,h;ct,n为车型n日均充电时长,h。
1.2.2 V2G
V2G是指将电动汽车作为分布式储能单元,通过与电网的双向互动实现储能的作用,即电动汽车以充放电的形式参与电力系统调节。国外在电动汽车与电网的互动方面研究起步较早,而目前关于V2G的研究主要集中在电动汽车与电网互动方式、控制策略、成本效益分析及硬件研发等方面。
V2G车辆车载电池平均每天完成一次深度充放电,则其储能潜力同时取决于车辆充放电灵活度和可用电池容量,其中车辆充放电灵活度即电动汽车额定充放电功率与可用停车时间之积;可用电池容量即该车型车载电池额定容量与日均车用充电量之差。两者较小值即为该类车型车网互动潜力(图2)。
图2 V2G潜力评估示意图
Fig.2 Key factors on vehicle to grid potential
因此,某车型n单辆电动汽车日均车网互动潜力可表示为:
式中:V2Gn为车型n日均车电互动潜力,kWh;Pn为车型n日均额定充放电功率,kW;Cn为车型n车载电池容量,kWh。
计算过程所涉及的关键参数包括电池容量、车辆出行强度、充放电功率等关键参数,如表2所示。
表2 各类车型关键参数假设
Table 2 Key parameters by vehicle types
图3为电动汽车有序充电和V2G的日均调节能力估算结果。由于车载电池容量远高于车用日均充电量,则V2G日均调节能力也明显更高。到2030年,V2G日均调节能力为2653 GWh,是有序充电的5.9倍。分车型看,乘用车凭借93%的车辆数占比提供了77%的电动汽车储能规模。
需要注意的是,电动汽车储能存在时间周期限制,即一次长距离出行可打断电动汽车的储能周期。本文假设电动汽车储能的可调节周期为单次充电可满足的车辆出行天数。有序充电储能周期Tsc,n和V2G储能周期TV2G,n的计算公式分别为:
图3 电动汽车储能日均调节能力
Fig.3 Average daily regulation capacity by EV types
图4列举了有序充电和V2G下,各类车型的储能可调节周期。可见由于出行强度较低,电动乘用车的储能周期最长(接近2周)。其他车型的储能周期一般在1周以内。若采用V2G方式,由于充放电强度增大,储能周期普遍在日内。总体而言,电动汽车储能可满足日内调节需求。虽然有序充电的调节周期相对更长,但要满足周以上的调节,电动汽车储能存在一定障碍。
图4 各类电动汽车储能可调节周期
Fig.4 Maximum regulation duration by EV types
1.3 电动汽车储能消纳可再生能源作用
电动汽车储能可以提供电力系统调峰、调频等服务,提升电力系统安全经济运行能力,而是否能够满足未来高渗透率可再生能源电力系统灵活性调节的需要,是衡量电动汽车储能作用的直观指标。
近年来由于技术日趋成熟,可再生能源发电成本快速下降,装机规模不断增长。截至2018年底,全国风电、太阳能光伏发电合计装机达到3.6亿kW,占全国发电总装机容量接近20%。国内多家研究机构也对未来中国可再生能源发展规模进行了预测。本文采用国家可再生能源中心“既定政策情景”的预测,即到2030年全国风电和光伏发电的装机将分别达到4.9亿kW和10.4亿kW[18]。
风电、光伏发电等可再生能源的波动性体现在不同时间尺度。例如风电的波动集中在季节性差异,而光伏发电的波动集中在日内变化。煤电、天然气发电、需求响应等调峰因素也将影响可再生能源消纳效果,为聚焦电动汽车储能的调节效果评估,本文仅考虑电动汽车灵活性资源对风电、光伏发电波动性的调平效果。由于电动汽车储能主要提供日内、周内储能调节资源,首先从日内、周内两个时间维度评估2030年可再生能源的波动水平,其中日内波动量为每小时风电、光伏发电合计出力与日平均值的差值求和,而周内波动为每日风电、光伏发电合计出力与周平均值的差值求和,再基于冬季、夏季两个典型周的计算结果推算全年波动量,即
式中:VH、VD分别为可再生能源全年日内、周内波动量;VH,winter、VD,winter分别为冬季可再生能源日内、周内波动量;VH,summer、VD,summer分别为夏季可再生能源日内、周内波动量;Pw,i、Pw,j分别为小时i、日j风电发电电量;Ps,i、Ps,j分别为小时i、日j光伏发电电量;分别为平均每小时、每日可再生能源平均发电电量。
计算得到冬季、夏季可再生能源日内波动电量分别为1403 GWh/d和1744 GWh/d,全年日内波动电量为574 TWh;冬季、夏季可再生能源周内波动量分别为202 GWh/d和480 GWh/d,全年周内波动量为 124 TWh;全年日内、周内波动量合计为698 TWh。对比1.2节电动汽车储能潜力分析结果,则2030年8640万辆电动汽车若通过有序充电方式参与电网储能,可满足15亿kW风电、光伏发电装机33.8%日内、周内波动性发电调节需求;若采用车网互动的方式,该比例将达到179.2%。可见,电动汽车储能潜力完全满足甚至超过因大规模可再生能源并网产生的新增短周期电力平衡需求。
2 电动汽车储能经济性
电动汽车储能的市场应用前景同时受到电动汽车储能成本与政策环境两方面因素影响。不同的应用场景将决定电动汽车储能的收益,而电动汽车储能成本相对固定。比如有序充电的成本取决于用户对改变充电行为的接受度和智能充电设施投资成本,而V2G储能方式的成本主要由电池成本决定,其在各类应用场景中的经济性水平也取决于电池成本下降速度。
2.1 电动汽车储能成本
电动汽车与电网互动系统的硬件成本主要来自于车端或充电桩和电网端增加的控制和功率互动装置成本,从各国有关研究来看,有序充电互动对每个终端的合理成本增幅可控制在1000元以内。国际清洁交通组织(International Council on Clean Transportation,ICCT)汇总了近期国外机构锂电池包成本下降预测,业内普遍认为到2020年单位kWh锂电池包成本将降低至150~200美元/kWh(1050~1400元/kWh),到2030年进一步降低至70~100美元/kWh(500~700元/kWh),相比2017年提出100美元/kWh的成本下限预测又有下降[19]。
电动汽车通过V2G也可实现与有序充电类似的峰谷价差套利效果,但相比有序充电,V2G在充电桩端和车载电池端的成本都将明显提升。考虑到当前动力电池的续航及循环寿命,目前电动汽车V2G的经济性仍然偏低。
2.2 电动汽车储能效益
2.2.1 有序充电
低谷充电是电动汽车储能最为直接的商业应用场景。电动汽车储能的收益主要体现为与电网互动带来的系统成本降低或者用户充电费用的节省,但要实现与电网的互动也会在用户侧带来一定投资成本。以居民小区有序用电的互动平台以及专业运营商来看,有序充电的主要收益近中期来自于以下3个方面。
1)降低配电网改造和报装成本。目前这部分成本虽然很多时候由电网企业承担,但随着责权利对等的价格机制逐步理顺,这部分成本将逐步由专业化运营商或者用户承担,通过有序充电带来的配电成本下降比例有望超过30%。
2)低谷电价充电套利。电动汽车可通过在电价低谷阶段充电降低充电成本。比如浙江省不满1 kV “一户一表”居民峰谷差价约为0.28元/kWh,上海市“一户一表”居民峰谷差价达到0.31~0.49元/kWh。随着居民负荷增加以及电价机制逐步理顺,居民峰谷差价将逐步和工商业电价峰谷差靠近。
3)电力市场交易。通过互动平台作为集聚商,小区有序用电还可以参与系统调峰以及分布式发电交易获取其他收益。
对于日均行驶里程40 km的电动私家车用户,车辆百km电耗15 kWh,年均充电量约2738 kWh。目前国内多地居民用户可自愿选择峰谷电价,峰谷电价差集中在0.2~0.3元/kWh之间,当居民用电峰谷差价为 0.3元/kWh,若有序用电可将用户高峰/低谷充电电量比从80%:20%转变为40%:60%,则有序充电年度峰谷差收益为263元,折现率8%下动态回收期5.2年,内部收益率达到22%,经济性相当显著。从目前各地居民用户峰谷电价看,上海、安徽、浙江等省市电动乘用车有序充电经济性相对更高。
2.2.2 V2G
电动汽车通过V2G也可实现与有序充电类似的峰谷价差套利效果,但相比有序充电,V2G在充电桩端和车载电池端的成本都将明显提升。考虑到当前动力电池的续航及循环寿命,电动汽车V2G的经济性仍然偏低。但随着动力电池性能提升和成本下降,V2G的经济性也将相应提高。如图5所示,虚线部分是基于2015—2018年免购置税车型车载电池容量数据、循环寿命假设及出行强度假设得到的动力电池满足道路交通出行后的剩余充放电能力(kWh/辆)。其中,横轴代表车辆全生命周期30万km出行里程所对应的电池剩余充放电能力为0。可见2018年后新售电动汽车将开始具有交通出行外剩余的充放电能力。到2025年新车的剩余充放电能力将有望超过3万kWh/辆。若按0.3元峰谷价差计算,则届时V2G车辆全生命周期峰谷调节收益将接近1万元。
图5 电动汽车动力电池剩余充放电能力预测
Fig.5 EV residual disging capacity fore
3 电动汽车储能前景探讨
3.1 战略定位
随着电动汽车普及和其车网互动能力的不断加强,应首先明确电动汽车储能在未来能源系统中的功能定位。相比固定式储能电站,电动汽车储能具有显著的规模优势。理论上,基于动力电池剩余充放电能力的电动汽车储能的经济性也高于固定储能电站。但电动汽车储能同时存在地理分布、车辆属性等方面的局限性。
首先,电动汽车一般位于低压用户侧,在缓解电网输配电阻塞、降低发电侧新能源弃电等方面的价值相对有限。相比之下,固定储能可根据需要分布于发电侧和系统侧,地理布置的灵活度更高。第二,电动汽车提供的储能服务基于电动汽车车主行为,个体用车行为的变化将直接影响车辆储能效果,单辆电动汽车储能服务的规律性、可靠性、可控性偏低。相反,固定储能往往针对电力系统具体场景定制设计,其运行也较少受到人为因素干扰。第三,电动汽车储能本质采用锂离子电池技术,且车辆属性明显,意味着其更适合提供小时级或日内短周期的充放电服务。而抽水蓄能、压缩空气、氢能等固定储能方式单位能量存储成本更低,更能够适应高渗透率可再生能源电力系统下季节性调峰需求。
基于以上考虑,电动汽车储能更适应用户侧分时电价管理、降低容量/需量电费、以及参与电能量现货市场和调频市场等提升电力系统运行效率、降低系统供电成本的经济性应用场景。在一定条件下,电动汽车也可起到一定的日间调峰和缓解部分输配电线路阻塞的作用。但在黑启动、备用电源、无功支撑等保障电力系统安全,以及季节性调峰方面,电动汽车储能的局限性相对较大。图6对电动汽车V2G对各类电力系统应用的适应性进行了定性归纳,其中浅蓝色部分代表电动汽车储能适应性较高的应用场景。相比V2G,电动汽车有序充电虽能通过改变充电时间实现负荷转移的“虚拟储能”效果,从而达到与V2G类似的电力系统应用价值,但认定有序充电原始负荷基线具有一定难度,其对聚合服务商的组织能力有更高要求。
图6 电动汽车储能应用场景示意图
Fig.6 EV energy storage applications in the power system
3.2 政策建议
随着中国电动汽车数量规模的不断扩大,挖掘电动汽车储能潜力对中国电力系统转型具有重要战略意义。但目前电动汽车的储能应用还存在技术和政策障碍。技术层面,电池技术的不断进步正使电动汽车储能具备技术经济可行性,未来的难点更多集中在如何加快配电网升级,使其能够适应电动汽车实时充放电转换和功率波动。政策层面,首先应落实峰谷分时充电电价,同步探索实时充放电价格机制,并保证价格信号能够充分传导至桩端;其次应明确电动汽车等负荷侧灵活性资源在电力市场中的地位,完善辅助服务市场规则,合理降低其在功率、放电时长等方面的技术门槛;第三,应加快储能市场交易机制研究,通过机制创新优化电动汽车储能调度策略;最后,作为分散于用户侧的灵活性资源,基于先进信息和通信技术的聚合模式创新也是实现电动汽车储能的必要条件。
参考文献
[1] International Energy Agency.Global EV outlook 2019: scaling-up the transition to electric mobility[R/OL].(2019)[2019-10-08].https://webstore.iea.org/download/direct/2807?fileName=Global_EV_Outlook_2019.pdf.
[2] 工业和信息化部.2018年汽车工业经济运行情况[EB/OL].(2019-01-16)[2019-10-08]./newweb/n1146312/n1146904/n1648362/n1648363/c6600517/content.html.
[3] 国家发展和改革委员会.关于创新和完善促进绿色发展价格机制的意见[EB/OL].(2018-06-21)[2019-10-08]./xxgk/zcfb/ghxwj/201806/t20180629_960951.html.
[4] DALLINGER D, KRAMPE D, WIETSCHEL M.Vehicleto-grid regulation reserves based on a dynamic simulation of mobility behavior[J].IEEE Transactions on Smart Grid, 2011, 2(2): 302-313.
[5] HAN S, HAN S, SEZAKI K.Development of an optimal vehicle-to-grid aggregator for frequency regulation[J].IEEE Transactions on Smart Grid, 2010, 1(1): 65-72.
[6] KEMPTON W, TOMIĆ J.Vehicle-to-grid power fundamentals: calculating capacity and net revenue[J].Journal of Power Sources, 2005, 144(1): 268-279.
[7] 自然资源保护协会.电动汽车在上海市电力系统中的应用潜力研究[R/OL].(2016-09)[2019-10-08].http://nrdc.cn/information/informationinfo?id=63&cook=2.
[8] 自然资源保护协会.电动汽车储能技术潜力及经济性研究[R/OL].(2018-02)[2019-10-08].http://nrdc.cn/information/informationinfo?id=184&cook=2.
[9] 刘坚,胡泽春.电动汽车作为电力系统储能应用潜力研究[J].中国能源,2013,35(7):32-37.
LIU Jian, HU Zechun.Potential research of taking EVs as energy storage for the power system[J].Energy of China, 2013, 35(7): 32-37(in Chinese).
[10] ZHOU C K, QIAN K J, ALLAN M, et al.Modeling of the cost of EV battery wear due to V2G application in power systems[J].IEEE Transactions on Energy Conversion, 2011, 26(4): 1041-1050.
[11] BASHASH S, MOURA S J, FORMAN J C, et al.Plug-in hybrid electric vehicle ge pattern optimization for energy cost and battery longevity[J].Journal of Power Sources, 2011, 196(1): 541-549.
[12] LUNZ B, YAN Z X, GERSCHLER J B, et al.Influence of plug-in hybrid electric vehicle ging strategies on ging and battery degradation costs[J].Energy Policy, 2012, 46: 511-519.
[13] 节能与新能源汽车技术路线图战略咨询委员会,中国汽车工程学会.节能与新能源汽车技术路线图[M].北京:机械工业出版社,2016.
[14] 国家可再生能源中心.中国可再生能源展望2018[R/OL].(2018-10)[2019-10-08]./cbw/zh/2018-10-22-541.html.
[15] 胡泽春,宋永华,徐智威,等.电动汽车接入电网的影响与利用[J].中国电机工程学报,2012,32(4):1-10.
HU Zechun, SONG Yonghua, XU Zhiwei, et al.Impacts and utilization of electric vehicles integration into power systems[J].Proceedings of the CSEE, 2012, 32(4): 1-10(in Chinese).
[16] LUND H, KEMPTON W.Integration of renewable energy into the transport and electricity sectors through V2G[J].Energy Policy 2008, 36(9): 3578-3587.
[17] 赵俊华,文福拴,薛禹胜,等.计及电动汽车和风电出力不确定性的随机经济调度[J].电力系统自动化,2010,34(20):22-29.
ZHAO Junhua, WEN Fushuan, XUE Yusheng, et al.Power system stochastic economic dispatch considering uncertain outputs from plug-in electric vehicles and wind generators[J].Automation of Electric Power Systems, 2010, 34(20): 22-29(in Chinese).
[18] 国家可再生能源中心.中国可再生能源展望2018[R/OL].(2018-10)[2019-10-08]./cbw/zh/2018-10-22-541.html.
[19] The International Council on Clean Transportation.Top global EV markets and what they tell us about the transition to electric[R].Electricity, Electric Vehicles & Public Policy Oxford Institute for Energy Studies Workshop, Oct.31, 2018.
(刘坚国家发展和改革委员会能源研究所 )
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
近日,彭博新能源财经(BloombergNEF,以下简称“BNEF”)公布了2025年第二季度全球一级光伏逆变器制造商名单,固德威凭借其可靠的产品和解决方案、稳健的国际化步伐以及卓越的品牌口碑成功入选榜单。此次入选BNEFTier1榜单,不仅是对固德威过往成绩的高度认可,也彰显了其在全球光伏逆变器市场的重要
2025年6月10-13日,全球光储行业年度盛会——SNECPVES第十八届(2025)国际太阳能光伏和智慧能源储能及电池技术与装备(上海)大会暨展览会(简称2025SNECPVES国际光伏储能两会)即将震撼开幕!会议时间:2025年6月10-12日会议地点:国家会展中心上海洲际酒店(上海市诸光路1700号)展览时间:2025年6月11-
6月5日,国家电投发布《山东电力工程咨询院有限公司2025年第138批招标国家电投大连市花园口I、II海上风电项目海上主体工程施工中标结果公示》的公告。公告显示,标段1:国家电投大连市花园口I海上风电项目海上主体工程中标人为中国铁建港航局集团有限公司,中标价格为46439.6686万元。标段2:国家电投
近期,多座储能电站获最新进展,北极星储能网特将2025年6月3日-2025年6月6日期间发布的储能项目动态整理如下:180MW/720MWh!国家电投黄河水电最大储能电站并网投产!5月30日,青海海南州塔拉滩上捷报传来,黄河公司建设的贡玛储能电站正式并网,标志着公司目前最大容量集中式储能电站建成投运。至此,
6月6日,蜂巢能源第300000套堡垒越野电池在遂宁基地正式下线,这一里程碑事件彰显了中国动力电池的技术积累与产业化突破。而在落幕不久的2025环塔拉力赛中,堡垒越野电池助力坦克夺得多个分段冠军以及总冠军,正是堡垒越野电池强大的性能与高标准智能化生产的双重验证。蜂巢能源堡垒越野电池基于三大核
2025年1月20日,特朗普正式就任美国第47任总统。上任后特朗普政府大幅调整拜登政府的气候及能源政策,不仅对美国自身能源、环境、经济、社会等诸多层面造成冲击,而且在国际范围产生广泛影响。本文系统梳理本届特朗普政府自上任以来的能源政策动向及全球影响,分析我国应如何有效对冲特朗普政府能源政
北极星储能网讯:6月6日,广东湛江徐闻200MW/400MWh独立共享储能电站项目EPC总承包工程采购发布。本次招标为预招标,项目位于广东省湛江市徐闻县,招标人为湛江天转储能科技有限公司,由中国能建广东院持股90%。项目建设8套高压级联全液冷储能单元,电池采用磷酸铁锂电池,以220kV电压等级拟接入当地电
北极星储能网讯:6月4日,陕西省发展和改革委员会发布关于再次公开征求《关于调整分时电价政策有关事项的通知(征求意见稿)》意见的公告。文件明确10:00-14:00四个小时执行午间低谷电价,在国家法定假日期间执行深谷电价。另外,迎峰度夏(冬)期间工商业用电将实施尖峰电价,夏季7月、8月尖峰时段为
北极星储能网讯:6月4日,浙江省发改委、能源局于近日印发《2025年浙江省迎峰度夏电力需求侧管理工作实施方案》。方案提到,推动工商业用户主动开展削峰填谷,引导广大电动汽车车主推迟晚间充电时间,力争通过分时电价引导实现1GW以上削峰效果,有效降低全省基础用电负荷。鼓励虚拟电厂参与响应,规范
行业痛点直击:政策转变下,你的光储资产如何破局?394号文全面落地,新型储能如何抓住电力交易与辅助服务红利?136号文明确指引,数字化智能化如何成为资产收益核心引擎?行业困局待解:电站巡检运维效率低、光储充用系统数据孤岛严重、项目收益率波动大、绿电消纳与增值服务难落地……当政策机遇与技
“储能市场化”这一美好愿景,终于将照进现实、加速落地。但就当下而言,其实大多数储能企业并没有做好应对市场化的准备,政策的迅猛推进将倒逼储能技术快速迭代,尤其将压力传导给电池管理系统BMS。在此过程中,以协能科技为首的BMS企业,有望成为储能变革新时代的探路先锋!多次“首”创!“三代”BM
2025年5月15日,第十七届CIBF在深圳国际会展中心盛大开幕,在这个全球电池行业的顶级盛会上,作为一家专注于新能源电池技术研发与创新的企业,东驰新能源在此次展会上携其自主研发的固态电池技术及系列产品惊艳亮相,向世界展示了中国新能源企业的创新实力与发展潜力,成为了展会现场的焦点之一。展会
摘要新能源装机容量达到约8.6亿kW,电网消纳矛盾日益突出,仅靠电源侧调节难以支撑未来更大规模的新能源消纳任务。因此,如何利用价格激励使电动汽车、储能等用户侧调节资源发挥填谷能力,以满足新能源发展和新型电力系统建设的需要,已成为电网公司考虑的重点问题之一。文章选取城市公共充电站为研究
近日,先进固态电池解决方案提供商恩力动力完成数亿人民币B轮融资,由清大海峡与金石投资共同领投,老股东大兴投资旗下基金跟投。本轮资金将用于固态电池研发、市场拓展及产能建设等方面。恩力动力自主研发、生产的高比能软包电池,开发出3.5-100Ah各系列电芯产品,能量密度高达300-450Wh/kg,其电芯温
2024年10月17日,国家电网公司召开稳定工作会议,部署各级电网稳定发展要求,推动新型电力系统安全稳定发展。在当前新型电力系统逐步向县域电网尤其是向农村电网下沉、农村能源转型加快的形势下,县级供电企业如何落实稳定发展精神?又如何在保持高质量发展的同时,坚守稳的基调和激发进的动能?如何系
固态电池作为新一代储能技术,因其高能量密度、高安全性和长循环寿命等优势,正迅速崭露头角。目前,储能厂商在同质化竞争中急需寻找差异化突破点。在大容量和长寿命成为行业标配的背景下,固态电池正成为部分企业吸引终端市场和资本关注的重要亮点。近期,一批储能项目并网、开工、落地,其中就有中国
湖北随州广水100%新能源新型电力系统示范居“荆豫要冲”,扼“汉襄咽喉”,为“鄂北重镇”。随州,位于湖北省北部,是湖北省对外开放的“北大门”,也是华夏始祖炎帝神农的诞生地。这里“风光”资源丰富,是该省新能源大市。为探索新能源高质量发展与消纳路径,国网湖北电力在随州广水市建成世界首个县
11月28日,国家电网公司发文评定10个数字化配电网综合示范区和10个专项示范区。浙江宁波是数字化配电网综合示范区之一。早在去年9月,国家电网公司为促进分布式光伏、电动汽车、储能等新要素发展,满足电力优质供应、能源绿色转型、资源优化配置需要,启动了数字化配电网综合示范区建设,加速推动配网
8月,国家能源局印发《配电网高质量发展行动实施方案(2024~2027年)》(以下简称《方案》),深入推进配电网高质量发展重点任务落地见效。《方案》明确提出,要重点推进建设一批满足新型主体接入的项目,创新探索一批分布式智能电网项目。围绕建设新型能源体系和新型电力系统的总目标,传统的配电网将
锂电池的生产和迭代,离不开先进锂电设备的支持。为了不断提升锂电池的质量和性能,同时实现电池工厂的“零碳”制造,锂电设备解决方案必须“先行一步”。近年来,我国锂电设备领域持续创新升级,不仅为我国连续多年实现动力电池装机量全球第一,提供了有力的保障;同时,相关设备企业也为锂电企业研发
电力调度运行控制是电力系统稳定的中枢,在保障电网安全稳定运行、优化电力资源配置等方面发挥着重要作用。面对新型电力系统安全稳定发展需要,国家电网有限公司电网稳定工作会议暨2024年第四季度工作会议对加快构建新型调度体系作出部署,提出要发挥体制优势,加快构建安全主动防御、运行主配协同、资
9月26日,新型电力系统发展(崇礼)论坛在河北张家口举行。国网浙江省电力有限公司相关负责人受邀在论坛进行主旨发言,系统阐述浙江在推动省域新型电力系统先行示范上的典型经验和做法,受到与会嘉宾广泛好评。有读者问,何以又是浙江?(来源:微信公众号“浙电e家”作者:融媒体中心)?何以是浙江?
北极星售电网获悉,6月6日,河北省发展和改革委员会发布关于促进能源领域民营经济发展若干细化举措的通知。文件提出,支持民营企业积极投资智能微电网。深化分布式智能电网规划建设、运行控制、运营模式等与大电网责权划分的研究探索,支持民营企业投资建设分布式智能电网,与电网企业创新形成合作共赢
6月1日开始实行的江苏省分时电价新政在工商储行业掀起轩然大波,新政中工商业用户分时电价浮动计价范围,从“到户电价”缩减到“用户购电价”,尽管浮动比例提高,但到户电价峰/谷、平/谷价差缩小。同时,多省调整分时电价的信号越来越明显,依赖峰谷套利单一收益模式的工商储项目投资回报周期延长。如
北极星输配电网获悉,5月30日,国内首次基于“5G+量子”虚拟电厂精准调度的车网互动规模化实测在合肥举行。此次实测活动以合肥市政务中心国家级车网互动规模化应用试点项目为中心,覆盖社会运营场站、公交场站、公共机构场站、企业专用场站4大场景,5个重点示范站点。其中合肥市政务中心这座集“光储充
北极星输配电网整理了5月26日~5月30日的一周输配电政策动态。西安关于开展建设零碳工厂(园区)和综合能源示范项目摸底工作的通知5月30日,陕西西安市工信局发布《西安市工业和信息化局关于开展建设零碳工厂(园区)和综合能源示范项目摸底工作的通知》。为推动光伏、氢能、地热、智能微电网、新型储能
“十四五”以来,我国电力发展面临的内外部形势发生了深刻变化,电力—经济关系也呈现新的阶段性特征,新形势下中长期电力需求预测需紧密捕捉新旧动能转换特征,为电力供需分析和保供方案制定打下坚实基础。电力需求面临的新形势及新要求从全球视角来看,当前全球经济和贸易增长面临严峻挑战,技术封锁
北极星储能网获悉,5月28日,湖南省发改委正式印发《湖南省电动汽车充换电基础设施建设与运营管理办法》。其中提出,将现有充换电设施优化升级为具备与电网融合互动的充放电设施(V2G),充分利用电动汽车动力电池分布式移动储能优势,创新开展电力削峰填谷和调压调频试点示范,建设以电动汽车聚合概念
2021年,美国得克萨斯州遭遇百年一遇的极寒天气,电力系统几近崩溃,近500万人陷入无电可用的困境。这场灾难暴露了高比例新能源系统在极端天气下的脆弱性。在中国西北的风光资源富集区,另一类矛盾同样尖锐。全国新能源消纳监测预警中心数据显示,2025年一季度青海、甘肃、新疆等省的风光发电利用率在9
北极星售电网获悉,5月27日,四川成都市经济和信息化局、成都市财政局印发关于进一步增强成都市电力保障能力的若干政策措施相关奖补实施细则的通知。文件明确,事项内容:在需求侧响应、有序用电等特殊时期,对工业企业通过自有(或租用)发电机发电、自备电厂(电源)等方式,主动压减电量生产运行且
近日,多地密集出台政策,加快分布式电源、可调节负荷及负荷聚合商等电力领域新型经营主体发展。《国家能源局关于支持电力领域新型经营主体创新发展的指导意见》指出,新型经营主体是具备电力、电量调节能力且具有新技术特征、新运营模式的配电环节各类资源。其中,单一技术类新型经营主体主要包括分布
北极星输配电网整理了5月19日~5月23日的一周电网项目动态。甘肃陕西夏州—甘肃庆阳北750千伏输变电工程甘1标5月12日,陕西夏州—甘肃庆阳北750千伏输变电工程甘1标段实现全线贯通,标志着该标段进入最后的验收调试阶段。陕西夏州—甘肃庆阳北750千伏输变电工程是陇东—山东+800千伏特高压直流输电工程
北极星储能网获悉,深圳市优优绿能股份有限公司(以下简称“优优绿能”)5月26日起可申购,发行总数约1050万股,占发行后总股本的25.00%,单一账户申购上限0.25万股,市盈率15.37倍,申购价格89.60元,全部为公开发行新股。本次发行的股票拟在深交所创业板上市,民生证券为其保荐人。据招股书显示,自
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!