北极星

搜索历史清空

  • 水处理
您的位置:电力风电海上风电技术正文

干货 | 海上漂浮式风机关键技术研究进展

2020-07-21 09:24来源:南方能源建设作者:陈嘉豪 裴爱国 马兆荣 庞程燕关键词:漂浮式风电海上风电风电技术收藏点赞

投稿

我要投稿

浮体的系泊线需要通过锚固装置与海床进行连接。根据锚固装置的形式和力学特性,可大致将其划分为以下几类[17](如图5所示)。

5.jpg

图5 锚固装置常见形式[19]

抓力锚(拖曳嵌入式锚):是目前使用最广泛的一种锚固结构,其部分或全部嵌入海底,主要靠锚的前部结构与土壤的摩擦力来抵抗外力,能承受较大的水平力,但垂向力承受能力不强, 常与悬链线系泊的锚链搭配使用。

重力锚:主要通过压载与海床表面的摩擦力来抵抗锚链的水平张力,通过压载重量来抵抗锚链的垂向张力。随着锚链的垂向张力水平要求的提高,设计的重力锚需要更大的压载体积,而且水平张力通常难以单纯通过压载和海床之间的摩擦力进行平衡。其性能与海床息息相关,限制了其使用范围。

桩锚:通过向海床打入桩基,通过桩基与土壤之间的作用力来提供锚链的水平张力和垂向张力。但是在深水区域作业时,施工费用较高。

吸力锚:类似于桩锚,但中空的钢筒结构的直径要大的多。通过安装于钢筒顶部的人工泵使钢筒内外出现压力差,当钢筒内压力小于钢筒外时,钢筒随即被吸入海底,然后将泵撤走。其能承受系泊线的水平张力和垂向张力。

为了改善系泊线的动力性能,有时需要增设块重和浮力器件进行调节。块重的形式有集中式和分布式。通常而言,安装集中式块重的锚泊的静态响应较佳,而安装分布式的块重的锚泊的动力响应较佳。锚泊线上的浮力器件有:浮筒、浮球和浮箱等。在悬链线锚泊上设置浮力器件可以有效地降低锚泊线的动张力,但通常会降低锚泊的水平刚度。在张力腿上设置浮力器件可抵消锚泊自重,使其成为完全的张力部件。

对于漂浮式风机系泊系统研究,Philippe等人[20]发现在风浪不共线时,漂浮式风机平台的某些运动会对系泊疲劳产生潜在的影响。Karimirad等人[21]对悬链线系泊的立柱型浮式风机进行动力学分析,发现悬链线的惯性和阻尼对锚链的张力会有明显的影响。Yilmaz[22]研究表明系泊阻尼能有效地减少浮体的动力响应,甚至可以减小纵荡响应约40%。宋宪仓等人[23]对半潜型海上浮式平台的耦合运动进行动力学分析,发现二阶差频力对结构物的运动及系泊张力有着明显的影响。

动态海缆

海上风机需要通过海底电缆送出电能。相比固定式风机而言,浮式风机由于支撑平台运动具有一定范围,因此电缆近端需要采用动态海缆技术[24],并且需要利用浮力单元将海缆悬挂,呈现“S”形态,以使得海缆在一定的摆动范围内可随平台运动,起到缓冲的作用,如图6所示。动态海缆跟随浮体运动的过程中,会受到相对运动的海流作用,因此承受较大的弯矩、剪切和扭矩的综合作用,受力特性复杂。

目前,学术界和工业界对于浮式风机的动态海缆研究缺乏系统性和深入性。在浮式风机一体化计算过程中,绝大多数采用分离的做法,即浮体运动不考虑海缆的存在,忽略海缆与浮体之间的耦合约束。海缆的设计存在极限长度和极限弯曲角度限制,这对浮体的运动,尤其是极端工况下的运动提出了限制性需求。

6.png

图6 浮式风机动态海缆连接形式[24]

1.3 水动力特性研究

与固定式的海上风机相似,浮式风机服役的海洋环境中同时受到风、浪、流等环境载荷的作用。但浮式风机支撑平台的结构尺寸相比于固定式风机更大,因此其水动力荷载不能完全采用Morison经验公式进行简化计算,而需要采用势流理论甚至计算流体力学的方法。

对于立柱型浮式风机,其重心设计低于浮心,浮体具有自稳特性,水线面较小,因此所受到的波浪荷载也较小。但由于顶部风轮高程较高,在额定风速下,风倾力矩容易导致较大的平台纵摇。通过合理的设计,其平台运动固有周期可以避开一阶波浪力周期范围,也对二阶波浪力不敏感。立柱型浮式平台不同方向的运动之间会有耦合响应。相关的数值和试验研究[25-26]发现当立柱型浮式平台的垂荡周期大约为纵摇周期2倍关系时,会出现明显的垂荡-纵摇耦合效应,继而诱发较大的垂向运动,影响立柱型浮式平台的性能,这种现象称为“Mathieu instability (马修不稳定)”,设计时需要格外注意。另外,由于立柱型浮式风机通常由单立柱构成,因此在海流载荷的作用下容易在立柱主体两侧产生交替性漩涡,使得结构物出现周期性的脉动压力,继而引发涡激运动[27]。由于涡激运动共振时存在“锁频”(Lock-in)现象,其共振的流速范围可能较大,对立柱型浮式风机设计而言,需要格外注意。

对于半潜型浮式风机,其六自由度运动的耐波性适中,通过合理的浮式支撑平台设计,能使得平台运动固有频率避开一阶波浪力峰值频率范围,因此半潜型浮式风机适用的海域和水深范围较广。由于通常的半潜型浮式风机设计中,重心位于浮心之上,且间距并不大,稳性校核时具有极限倾斜角限制。其纵荡/横荡运动固有频率取决于系泊刚度,通常较小,因此可能对二阶差频波浪力敏感[28-29]。同时,差频波浪力会产生定常的平均波浪拖曳力,使得浮体受到非周期的拖曳载荷作用,继而发生平均位置的偏移,这些都需要格外注意。

对于张力腿型浮式风机,该类型平台通过系泊垂向张力平衡浮体的超额浮力。因此,具有较好的垂向运动性能。但是在水平方向,如纵荡、横荡和首摇运动较为柔软,在受到风轮气动推力荷载时,水平运动幅度可能较大,继而会导致各个张力腿受力不均匀而产生耦合垂向运动[30]。另外,由于张力腿型浮式风机的垂向运动固有频率高于一阶波浪力频率区域,但容易发生波浪二阶和频的高频共振。Bae等人[31]对其提出的张力腿型浮式风机进行二阶和频波浪力的分析,发现二阶力和频波浪力对该浮式风机的运动起到明显的影响,尤其在恶劣海况下。

为了优化浮式风机的水动力性能,可通过平台形式优化、吃水调整、锚链调整外,还可通过设置垂荡板等阻尼结构增加运动阻尼,优化水动力响应性能。Rho等人[32]通过缩尺比的立柱型平台模型试验证明,垂荡板具有抑制运动共振响应的特点,在垂荡固有周期附近的减幅作用甚至可达到50%。

海上漂浮式风机的水动力计算主要借鉴于海洋工程结构物水动力计算方法,有:半经验方法,如莫里森法(Morison) ;势流计算方法,如弗汝德-克雷洛夫(Froude-Krylov)力计算方法、边界元法和三维面元法;计算流体动力学方法等。

1.4 气动力特性研究

与传统的固定式海上风机相比,漂浮式风机的平台基础约束较弱,导致风轮的气动载荷存在明显的非线性特征。单个海上漂浮式风机的气动特性研究可大致划分为以下三方面:一是,浮式平台基础对顶部风轮的气动性能的影响;二是,风轮气动载荷对平台基础运动的影响;三是,气动载荷与结构振动等动力响应的耦合,即气弹性问题。

对于浮式平台基础运动对风轮气动特性影响的研究。Tran等人[33]使用CFD方法模拟海上漂浮式风机的纵荡和首摇运动过程中的流场变化,发现在风机纵摇的过程中,作用于旋转状态的桨叶的气动载荷明显发生改变,叶尖存在涡脱落。Farrugia等人[34]也同样发现海上漂浮式风机气动载荷的波动与平台的纵荡/纵摇运动有关,气动载荷的波动程度和平台运动速度幅度呈线性关系。另外,由于海上漂浮式风机工作的海域中,常受到波浪的作用导致平台发生运动,因此基础平台的运动不可避免包含波浪频率成分,继而导致浮式风机的气动载荷和功率波动明显包含了波浪频率成分。

7.png

图7 浮式风机受力运动[35]

气动载荷对浮式风机运动的影响主要可以分为气动激励载荷和气动阻尼载荷。气动激励载荷,如气动推力使得浮式风机的支撑平台发生较大的纵荡和纵摇运动,如图7所示;气动扭矩使得浮式风机发生横摇和首摇运动;Duan等人[36]对模型试验结果进行频域分析,发现激发的浮式风机的平台基础运动带有湍流风的低频成分;气动阻尼力定义为气动载荷作用力变化与受载结构物运动变化关系的描述。Karimirad等人[37]通过数值计算发现,海上浮式风机的气动阻尼力对其机舱纵荡运动有着显著的影响,并且气动阻尼效应在某些工况下甚至比水动力阻尼的作用效果还明显,这一发现使得通常被忽略的气动阻尼问题受到了广泛的关注。Larsen等人[38]发现传统的固定式风机的控制器并不完全适用于海上浮式风机,如果按照固定式风机的控制器参数,海上浮式风机的气动阻尼甚至会出现“负阻尼”效应,这有可能会导致平台运动不断加剧。

气弹性问题一直都是风力设备研究的重点考虑因素,相比于固定式风机,浮式风机的平台运动更明显,导致气动载荷波动更大,结构惯性载荷更大,导致更加明显的桨叶和塔筒结构振动,甚至引发平台基础的高频运动。Chen等人[39]发现,海上漂浮式的风轮气动特性、桨叶振动与平台运动存在耦合效应,影响结构的振动状态,引起平台呈现高频振动。

投稿与新闻线索:陈女士 微信/手机:13693626116 邮箱:chenchen#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

漂浮式风电查看更多>海上风电查看更多>风电技术查看更多>