登录注册
请使用微信扫一扫
关注公众号完成登录
中国科学技术大学王青松
王青松:非常感谢中关村储能联盟给我这样一个很好的机会,和大家一起分享锂电池储能和安全方面的心得体会和一些工作进展,我今天向大家分享的是关于锂离子电池热失控传播及阻隔机制研究的工作,这部分工作是我课题组刚刚毕业的一个博士生李煌博士共同完成的,所以说也是我们团队一起来完成的一个工作。首先从研究背景方面进行一个简单的概述,我们知道锂电池除了在储能上用的很多,在其他的领域,比如便携式设备,手机、笔记本电脑、航空航天、舰船等等也用得越来越广泛,当然储能是我们应用比较广泛的方面,但是由于锂电池的火灾事故经常发生,在储能领域我们知道的韩国储能电站火灾事故有20多起,极大地阻碍了其整个行业的发展。
锂离子电池的主体成分有正极材料、负极材料、电解液、隔膜。其中比较容易着火的就是电解液,因为电解液都是用的一些有机的碳酸酯类材料,所以存在很多安全隐患,但是要是站在整个系统的角度来说的话,都是单个电芯的着火在逐步的扩大和蔓延,从一个电芯着火之后,通过对流或者是热传导和火焰直接加热的作用,热失控向整个电池组发生传递,最后造成不可控火灾爆炸的事故。像右边这个图,上面有很多事故之后的照片,也能看出有的地方烧的非常厉害,有的地方只是过了一下火没有完全烧,说明在里面存在热失控传播的过程。造成热失控传播的原因是很多电池拼在一起,一个电池失控产生的能量和热量通过多种方式向周围进行传递,如果没有得到有效的阻隔,它就会造成整个电池模组的失控,这中间会产生很多有毒有害的气体,造成不可控的损失。我们做了大量的实验,也是发生模组级失控传递的过程,最终造成事故的扩大。
就国内外的研究现状来说的话,国外早期也做了一些研究,但大多针对的是像18650这种小型电池。最近我们课题组就大容量锂离子电池的安全性做了大量的研究工作,电池容量从30AH到50AH,到300AH的都有。从我们研究的目标来说,首先要知道电池材料的稳定性是怎样的,这样就可以了解内部材料的产热规律,第二个就是看一下单个电芯的热失控特征是什么样的,得到热失控的演化过程以及热失控传播的机制。最后通过仿真的方式来模拟一下热失控传播的过程。
研究路线从电池材料的产热规律着手,主要包括正极、负极、电解液、隔膜等,这个就可以为下一步实验和建模提供一些关键的参数,例如反应动力学的参数和整个电芯失控的特征行为,再到整个模组能量迁移,温度变化,传播行为的特征,最后采取相应的阻隔手段,看看能不能有效把这个电池热失控给阻隔住,这是我们总体采取的路线。
在第一部分材料热稳定性方面,我们使用量热的分析手段,研究了电池的隔膜、电解液、负极材料和正极材料的分解反应,通过这些可以得到每个热反应过程的的触发温度和总放热量,为后期热失控的建模提供一些关键参数。可以看到热反应触发的温度是负极材料小于电解液和正极材料,而放热量是电解液产生的最多。此外,我们还对添加电解液负荷的正、负极体系,还有单一的正极和负极分开的时候的总产热量特征开展研究,得到每一个反应峰的过程,进一步得到不同阶段的主导反应过程。这里分析了一下磷酸铁锂和NCM两种材料的,其他材料的体系也可以对它进行分析,通过这种方式可以得到一些主要的化学反应的过程和产热量之间的关系,也为后续的分析提供相应的基础。
之后是单个电芯的热失控研究,我们采用绝热加速量热仪的方式,使电池保持一个相对绝热的过程,就是和外界没有能量和热量的交换,因此造成电池热失控的热量完全来自于电池自身热反应产生的热量,这样可以把电池自身产生的热量量化的比较清楚,这样我们测试了38AH方形三元电池和2AH的18650三元电池的失控过程。可以看到在早期对它进行加热的时候,电池温度逐步升高到一定程度时,其内部热反应被触发,电池开始自加热阶段。可以看到在温升过程中有一个小的波动,温度稍微下降了一点,这是因为电池的安全阀打开带走大量的热量。根据这些特征行为我们可以划分电池失控过程的四个阶段,第一阶段从室温开始到96oC,在EV-ARC加热作用下,电池逐步升温的过程,在这个过程中电池内部热反应并未被触发。第二个阶段从96oC开始到134oC,在该过程中由于隔膜熔融,电池开始发生一些微短路,引起电池温度的升高,电池自加热的速率开始增大,。在第三个阶段中,电池温度更高,内部产热速率更快,当达到160oC左右的时候,电池被触发热失控,最后阶段就是热失控发生的过程。
根据这些研究结果,对电池内部失控的原因过程可以做一个简单的分析,因为在电池负极表面有一个附着的SEI膜,在90oC左右时,SEI膜开始分解,分解之后就会导致电池负极失去保护导致电池负极与电解液发生反应,发出热量造成温度升高,逐渐使内部隔膜发生熔融,造成电池的内短路,进而释放大量的热量并产生一定量的气体,造成电池安全阀破裂。这些反应产生的热量会造成电池内部温度升高,温度的升高又进一步加速这些反应的进行,形成热量的正反馈的过程,最终在某一个临界点时引发电池失控。我们可以对不同SOC电池的内部短路温度还有热失控触发温度做一些动力学相关的参数的比较,从而评价不同的电池体系它的安全性的水平。对于同一个电池体系,可以看到内短路温度也是随着SOC的升高在逐步的降低,。
有单个电芯的研究之后才能更好的分析电池模组热失控传播的过程。我们做了1×1、1×3、1×5和3×3的结构,1×1结构是两个并排在一起,1×3由一个热失控电池触发后面电池失控,还有3×3的方式是由1个热失控电池触发周围电池热失控,同时我们考虑了SOC、电池型号、电池间距和加热功率等因素对热失控传播的影响。对于1×1结构的电池组,在早期的阶段,电池被加热之后,其内部自反应逐渐被触发,到第二个阶段电池安全阀开始打开,并释放出一定量的烟气,后面产气的逐渐的增大,到后期达到一定程度的时候会进入完全失控的状态,最后电池的失控温度可以达到700~800oC,并且伴随有比较强烈的射流火的现象,此外,我们可以看到随着SOC的增大,安全阀的开启温度呈现出一定下降的趋势,但不是特别明显。还有随着SOC的增高,电池热失控时释放的能量以及峰值温度变得越来越高,热失控的剧烈程度也就愈加严重。
对于1×1结构的电池体系,我们可以分析空气对流和热辐射对下一节电池传热量的多少,上图可以看到在早期传热主要以空气对流进行,随着温度的升高,电池间温差逐渐明显,到后期辐射传热逐步增大。在增大电池间距之后,这个比例稍微有一点改变,可以看出间距增大之后主要起作用的就是辐射,也就是下边这个蓝色所占的比重。对3×3结构,用的和电池尺寸完全一样的加热管替代热失控触发电池,也就是0号电池,,它对周边的1号和2号电池进行加热并引发其失控,这两节电池的失控释放更多热量,后面就会引起3到5号电池逐步呈在台阶式的失控传播过程,最后是6到8电池失控,对电池模组来说,基本上在这种实验工况下都会发现热失控的蔓延,最终引起整个模组的热失控。后期也做了4×4的模组,也是越往后蔓延越快。
我们对方形电池也做了热失控传播的实验和建模研究,在电池前壁面、后壁面、上壁面和侧壁面上都布置热电偶来测试温度的变化规律。左边用300W的加热片加热1号电池,后面再看1号到5号电池会不会发生失控的传播。可以看到1号电池被触发热失控之后,发生膨胀和气体的释放,后面进入一个剧烈射流火火的阶段,再往后进入相对稳定燃烧的阶段。之后热失控逐步的向后面几个电池传递,在没有采取阻隔措施的情况下,1号、2号、3号、4号、5号都发生了失控,可以看出来电池前后壁面的温度变化是非常有规律性的,呈现出台阶式的逐步传递过程,其中温度稍微平的那一段是电池内部的温度传递的过程。此外,我们可以看到电池前、后壁面温度突升之间存在一个时间差,这是热失控在电芯内部扩散的过程,也就是电池前壁面附近的电芯局部高温区域被触发热失控之后逐步传到电池整体的过程,这个时间过程大致有一个统计的规律,就是电池内部热扩散的时间。这个时间对100%SOC的电池,基本上是10秒钟,对于50%SOC的电池,这个传递时间更长一些,有39秒。
以3号和4号电池之间的热失控传播过程为例,我们对热失控传播的机制进行一个理论上的分析,首先3号电池发生失控,其温度迅速到达峰值,并剧烈加热4号电池,造成4号电池表面温度的迅速升高。当4号电池内部电芯温度逐步升高到热失控触发温度之后,4号电池首先发生局部热失控,并迅速扩展到整体。对于100%SOC的电池模组,从前一节电池热失控开始到引发下一节电池热失控的过程平均需要时间在87秒左右,50%SOC的电池组会更久一些,是307秒。
这是热失控传播机制,后面对热失控传播动力模型进行了简单的建模和分析,电池内部产生的热量就是来源于我们在第一部分做的相应的热分析的测试结果,得到的热量参数就可以输入到电池热失控模型里面,我们对前面的38AH的锂离子电池热失控做了建模研究。这里面比较关键的参数也是通过实验的方式得到的,如:SEI膜分解、负极电解液触发的反应温度,还有电能转化为热能关键的温度,还有正极和电解液的反应温度,还有正极和电解液再次反应的温度,还有电解液的分解过程等等,这些都是基于前面的实验结果得到的。同时我们通过实验的关键参数数据,对模型进行一个验证,可以看到红色的这个线是模拟的,蓝色是实验温升的曲线,从这上面比较来看,早期升温的过程基本上是保持在完全一致的,后期在温度升高到前面,稍微有一点点差异,而这可能与电池膨胀以及热失控过程太过迅速有关,不影响整个热失控触发的过程,我们认为模拟结果还是比较合理的。
后面对热失控的传播进行了简单的建模研究,同时也分析了一下隔热材料、释放的能量、环境温度和电池间距对热失控传播的影响规律。这里面用到的一些控制方程有温升速率和电池热守恒的方程,还有电池环境之间热量的交换,电池自身放热包括了比较多,如SEI膜、正、负极和电解液分解等,电池间传热方式包括对流、辐射和热传导,如果两个电池没有接触就没有热传导的过程,还有电池和环境的散热过程。通过一些主要热守恒方程之后,模拟得到结果与实验结果进行对比,这是电池之间没有隔热层的实验结果,可以看到实验值和模型失控触发温度还是比较接近的,实验在287oC,模拟出来在293oC,有十几度的差距,添加隔热层之后,实验结果和模型的结果也是有十几摄氏度的差值,我们认为在这个范围内,这个模拟虽然说有一定的温度差,但是还是可以接受的。后面可以模拟不同电池内部的扩散时间还有温度的分布,从1号到5号的结果来看,还是比较接近的,如1号电池,实验中电池内部的传热时间是10秒,而模拟结果是9秒,还是非常接近的,总体来说还是可以接受的。
后面是电池和环境温度对热失控传播的影响,还有变化的趋势和规律,都可以基于这些模型进行一个统一的分析。也就是说当电池间距增大的时候,电池之间的热失控传递的时间基本上也是呈现一个线性增大的过程,这个和我们常规的认识还是保持比较一致的,当电池间距增大到10mm的时候,基本上能够阻隔了电池热失控的传播过程,而这个只是基于我们这个电池的尺寸,对于其他电池的材料体系可能需要使用不同的相关的参数,才能得到相应的一些结果。所以说安全间距是10mm,并不一定适用于所有的电池体系。
我们也做了电池热失控阻隔的情况,这个主要是电动汽车上他们需要5分钟不出现明火,也对它的阻隔的效果进行一个简单的安全等级的划分,我们认为如果没有发生传播,也没有发生内短路的危险就认为它是安全的,相应的对于发生传播的,还有发生内短路危险,认为它是危险的,这样就可以模拟不同的情况下,不同的材料体系在使用的时候,达到的效果,但是这个是我们自己划分的一个方式,不一定完全适用,这个可以和大家进行讨论。
以上时是我们前期做的一些的工作,从电池的热失控的机制入手,研究了一些热失控传播的过程,最后也进行了热失控传播和阻隔的建模方面的工作,时间关系我就介绍这么多。其实我们做的还是相对比较理想的状态,没有考虑火焰对下一节电池的影响,后期我们也会再把这方面的内容补上。
同时也是做一个广告,明年8月份我们在合肥举办第二届国际锂电池火灾安全研讨会,也是相应的一些优秀论文推荐到上面出版,希望各位在座的各位同仁能够参与火灾安全会议,谢谢大家。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
绿证作为可再生能源电力消费凭证,用于可再生能源电力消费量核算、可再生能源电力消费认证等,1个绿证对应1000千瓦时可再生能源电量。国家发展改革委、财政部、国家能源局《关于做好可再生能源绿色电力证书全覆盖工作促进可再生能源电力消费的通知》(发改能源〔2023〕1044号)明确,绿证是我国可再生
近日,河北银行承德分行成功为“天启鸿源共享储能电站项目”审批项目贷款6亿元,为项目顺利投入运营提供有效资金支持,在助力地区新型电力系统建设方面迈出了坚实一步。“天启鸿源共享储能电站项目”位于围场满族蒙古族自治县半截塔镇半截塔村,建设容量为355MW/920MWh。项目建成后能为冀北电网提供充
近日,东北三省首个火电机组耦合超级电容储能调频项目在辽宁省沈抚示范区正式开工。这项由辽宁大唐国际沈东热电有限责任公司投资2751万元建设的10MW×10min超级电容储能工程,标志着区域火电灵活性改造与电网辅助服务能力迈入新阶段,为传统能源绿色转型树立创新典范。项目采用全球领先的超级电容技术
作者:陈海生1李泓2徐玉杰1徐德厚3王亮1周学志1陈满4胡东旭1林海波1,2李先锋5胡勇胜2安仲勋6刘语1肖立业7蒋凯8钟国彬9王青松10李臻11康飞宇14王选鹏15尹昭1戴兴建1林曦鹏1朱轶林1张弛1张宇鑫1刘为11岳芬11张长昆5俞振华11党荣彬2邱清泉7陈仕卿1史卓群1张华良1李浩秒8徐成8周栋14司知蠢14宋振11赵新宇16
136号文出台后,新能源全电量推向市场,不再全电量收购,不再做政策保障下的“巨婴”。这会给作为“新能源稳定器”的新型储能带来什么?近期举办的第十三届储能国际峰会暨展览会上,一场圆桌论坛汇聚了来自储能制造、储能运营、电网企业、高等院校的代表对该问题的思想碰撞。短期利空,长期利好,机遇
2025年5月29日,中国秦皇岛#x2014;#x2014;今日,全球知名的消防与安全解决方案提供商KiddeGlobalSolutions(以下简称“KGS”)以“扎根华夏厚土#x30FB;擎举消防安全新标杆”为主题,在中国秦皇岛隆重举行大中华区战略发布会。KGS携旗下三大核心子品牌#x2014;#x2014;海湾(GST)、Edwards(爱德华)、Ki
2021年,美国得克萨斯州遭遇百年一遇的极寒天气,电力系统几近崩溃,近500万人陷入无电可用的困境。这场灾难暴露了高比例新能源系统在极端天气下的脆弱性。在中国西北的风光资源富集区,另一类矛盾同样尖锐。全国新能源消纳监测预警中心数据显示,2025年一季度青海、甘肃、新疆等省的风光发电利用率在9
北极星储能网获悉,5月21日,安徽世嘉合利新能源有限公司年产5GWh储能系统建设项目研发楼顺利封顶,该项目占地128亩,位于安徽省淮南市潘集经济开发区。据了解,世嘉合利年产5GWh锂电池储能系统生产线项目位于安徽淮南,计划总投资13.6亿元,规划用地约128亩。项目建成达产后,将形成年产5GWh锂电池储
北极星储能网获悉,5月21日,安徽世嘉合利新能源有限公司年产5GWh储能系统建设项目研发楼顺利封顶。项目选址位于安徽省淮南市淮南潘集经济开发区北区(创业大道东侧、纬四路北侧)。项目占地面积约为84090.26平方米,设有2栋1层生产车间(1#生产车间、2#生产车间)、1栋研发楼(综合办公楼),购置全自
北极星储能网讯:5月16日,国家电投黄河水电发布了国家光伏、储能实证实验平台(大庆基地)2024年度数据成果。据悉,国家光伏、储能实证实验平台(大庆基地)位于黑龙江省大庆市,是全球首个光伏、储能户外实证实验平台,也是国家能源局批复的国内首个“国字号”实证实验平台,规划布置实证实验方案640
2025年5月16日,国家光伏、储能实证实验平台(大庆基地)2024年度数据成果发布会在北京召开。国家光伏、储能实证实验平台(大庆基地)位于黑龙江省大庆市,是国家能源局批复的国内首个“国字号”实证实验平台,由国家电投集团黄河公司建设运营,规划布置实证实验方案640种,规模约105万千瓦。大庆基地
北极星储能网讯:7月13日,河南济源有网友在网上发布火灾图片称当地某集团公司车间疑似发生火灾。图片上现场浓烟滚滚。图源:网络济源消防随后发布通报:7月13日11时28分济源市五龙口镇莲东村豫光集团铅盐有限公司矿灯厂蓄电池组装车间内电池充放电过程中发生火灾接警后消防救援人员立即出动火灾扑救现
更高的安全水平,是储能进入交易时代的入场券。安全是储能一切价值发挥的基石。面对电力现货市场交易场景下高频调用的需求,储能电站的安全风险也随之增大,但现阶段的储能系统能否经受住高频调用的考验?海外成熟电力市场中,储能电站早已实现高频调用,因此也更早暴露出储能电站严峻的安全问题。近期
近日,林洋能源总裁陆永华率林洋能源及林洋储能核心高管团队,赴华为深圳总部及东莞松山湖研发中心,开展了为期三天的深度研修。团队聚焦“安全与质量”主题,着重与华为数字能源团队进行了深入交流。交流中,华为“以客户为中心、以奋斗者为本、长期艰苦奋斗”的核心价值观以及其构建的“价值创造、价
北极星储能网讯:连云港海事局印发《散杂货船舶载运锂电池储能系统操作指南》,本指南适用于连云港海事局辖区散杂货船舶载运锂电池储能系统。电气性能测试中要求检测电池组的电量,建议剩余电量在20%-50%。锂电池储能系统应具备条件包括,锂电池储能系统要求产品中的锂离子电池和电池组应符合联合国《
北极星储能网获悉,近期,广州供电局2025年保供电在线储能主被动安全一体化设计及智能运维技术研究中标候选人公示(招标编号:CG2700022002084229)。公示开始时间:2025-07-07公示结束时间:2025-07-10
北极星储能网讯:近年来,储能行业发展迅速,但也面临着严峻的安全挑战——国内外储能电站火灾事故频发。根据CNESADataLink全球储能数据库不完全统计,自2011年到2024年底,全球范围内发生储能事故已达120余起。在此背景下,以中国为首的储能企业积极响应行业需求,对储能系统在极端火灾场景下的性能表
7月3日,英大泰和财产保险股份有限公司储能保险共保体在京组织召开“电化学储能安全价值新生态合作推广会”。会议发布了国内首个“认证+保险+监测”电化学储能安全质量风险解决方案。在金融监管机构、电力行业协会以及60余家生态伙伴的共同见证下,英大财险与泰思储能公司就在建的独立储能电站示范项目
储能标准滞后于国际标准对我国企业出海的影响封红丽1沈春雷2周喜超2(1.国网(北京)综合能源规划设计研究院2.国网综合能源服务集团有限公司)全球能源绿色低碳转型背景下,新型储能市场迎来高速发展期。国际能源署预测,全球储能装机容量到2026年将达270吉瓦左右。对于我国新型储能产业来说,走出国门
北极星储能网获悉,7月7日,国安达在投资者关系活动记录表中表示,基于公司较强的产品竞争力、优质的售后服务、品牌信任度等,公司的储能消防业务年收入从2022年度的1,101.51万元增长到2024年度的13,304.12万元,近年来实现了较快的增速。今年,公司从技术方案、材料采购、生产过程控制等环节全面推动
近期充电宝安全问题频登热搜,背后是行业监管与产业模式的双重震荡。据中国民用航空局官网披露,6月28日实施的3C禁令已拦截多起充电宝风险,该政策源于全球民航今年15起充电宝起火事故的严峻现实。国家市场监督管理总局缺陷产品管理中心数据显示,充电宝质量国家监督抽查不合格率高达43.6%,罗马仕、安
为全面验证储能设备在极端火灾情境下的安全性,思格新能源近日完成了针对其工商业储能系统SigenStack的大规模火烧测试。在完全失去主动防护的情况下,SigenStack成功实现火势控制在单个电池PACK内部,且未造成相邻电池包及电池簇发生热失控。电池包级安全防护燃烧无蔓延,风险不外溢本次实验模拟的是储
在第十三届储能国际峰会(ESIE2025)上,固德威副总裁王英歌系统阐释企业战略,彰显新能源企业绿色转型的先锋力量。随着可再生能源在电力系统中的占比逐年提高,以新能源为主体的新型电力系统正在加速构建。近期,国家发改委、国家能源局联合发布的《关于深化新能源上网电价市场化改革促进新能源高质量
2025年4月10-12日,第十三届储能国际峰会及展览会(ESIE2025)在北京·首都国际会展中心盛大召开。本届峰会由中关村储能产业技术联盟、中国能源研究会、中国科学院工程热物理研究所主办,以“数智赋能产业变革,储能重塑能源格局”为主题,展览面积16万平米,近800家参展商,吸引近10万名国内外专业观
第十三届储能国际峰会暨展览会在北京首都国际会展中心盛大开幕,由中关村储能产业技术联盟、中国能源研究会和中国科学院工程热物理研究所主办。本届峰会以“数智赋能产业变革,储能重塑能源格局”为主题,开幕式现场汇聚了国内外政府主管部门、科研院所、电网公司、发电集团、储能产业链龙头企业等1000
近年来,美国、澳大利亚、德国等储能事故频发,储能安全成为业内关注焦点。与此同时,随着国内储能政策调整,储能正在逐步从“建而不用”困境、步入规模化调度应用,其运营效果愈加受到重视。组串式储能的卓越安全性,契合了市场对高品质储能解决方案的迫切需求,尤其凭借其全生命周期的经济效益和价值
随着全球储能市场规模不断扩大,储能系统需求向更大容量、更高效率发展,“降本增效”成为产业发展趋势,匹配超大容量电池、提升系统体积能量密度是实现极致降本的重要手段。尤其在储能行业关键变革期,电池企业更需创新升级增强竞争力,头部企业积极寻求大容量电池“更优解”。勘破迷障!探寻系统集成
在第十三届储能国际峰会暨展览会(ESIE2025)上,上海融和元储能源有限公司与中晟智慧能源科技(浙江)有限公司(以下简称中晟智慧能源)正式签署战略合作协议,并举行“核心授权经销商”授牌仪式。中晟智慧能源董事长牟昊、融和元储副总经理夏雨代表双方参与并见证签约和授牌。根据战略合作协议,双方
4月10日,第十三届储能国际峰会暨展览会(ESIE2025)在北京首都国际会展中心隆重召开,会议同期重磅发布了2024年度中国储能企业系列榜单。天合储能凭借卓越的系统集成能力与全球化市场布局,强势入围“中国储能系统集成商2024年度全球市场储能系统出货量Top10榜单”,成为本届峰会最受瞩目的新能源企业
随着136号文取消强制配储,储能行业正从政策驱动转向市场化竞争。在产能优化与技术创新成为行业生存与发展的关键之际,新政策如同一股清流,促使企业摒弃昔日以“价格战”为核心的竞争模式,转而聚焦于“价值竞争”的新赛道。高安全、长寿命的储能产品凭借卓越的性能与稳定的品质,正逐步成为市场的主
由中关村储能产业技术联盟、中国能源研究会、中国科学院工程热物理研究所主办的第十三届储能国际峰会暨展览会(ESIE2025)于4月12日在北京首都国际会展中心落下帷幕。作为储能主动安全的领创者,北京西清能源科技有限公司携多维度创新成果亮相展会,以技术实力与行业洞察,为储能安全与行业发展注入新
2025年4月10日,由中关村储能产业技术联盟、中国能源研究会、中国科学院工程热物理研究所主办的第十三届储能国际峰会暨展览会(ESIE2025)在北京·首都国际会展中心盛大召开。开幕式上,中国科学院工程热物理研究所所长、中关村储能产业技术联盟理事长陈海生先生作《中国储能技术与产业最新进展与展望
4月10-12日,储能行业一年一度的重量级盛会#x2014;#x2014;第十三届储能国际峰会暨展览会(ESIE2025)在首都国际会展中心隆重举行。展会期间,中储国能在A1展馆隆重亮相,前来洽谈、交流、合作的各界人士络绎不绝,引发高度关注。#x1F53C;中储国能展台外景本届峰会以“数智赋能产业变革储能重塑能源格局
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!