登录注册
请使用微信扫一扫
关注公众号完成登录
图2 氦制冷的氢液化系统
为了获得透平膨胀机的大冷量、减少系统复杂性,透平膨胀机需运行在大膨胀比工况,这就意味着透平中的工质流动与能量转换复杂。另外,氢、氦的物性与普通工质有着迥然区别,这就使透平的转速超高,需采用氢、氦气体轴承,这就对高速转子系统的稳定性带来了更高的要求。要获得优异的透平膨胀机性能,不仅需要对冷端的低温膨胀特性进行深入研究,也需要充分关注制动端的离心压缩特性和整机的匹配,且在热力学设计与分析的同时,尚需考虑转子的气动与机械性能。大冷量氢、氦透平膨胀机的研制是目前氢液化系统的难点和急需解决的问题。
氢液化流程中,氢的正仲转换器也是一个重要的设备。根据氢的物理特性,随着温度的降低和氢的液化,正氢会逐步转变成仲氢,并放出大量的热量。若液氢产品中存在未转换完成的正氢,后的正-仲转化热会导致液氢产品气化。所以,液化后液氢中仲氢含量需大于95%。
正仲转换器通常布置在多个低温换热器后,随着技术的发展,也有氢液化系统,如Linde在德国Leuna的装置中正仲转换器全部置于换热器内部。
3.2 国内外液氢产能对比
国外的氢液化技术发展较早,技术已很成熟。国内起步较晚,与国外存在较大的差距。从液氢产能上来看,北美占了全球液氢产能总量的85%以上。美国本土已有15座以上的液氢工厂,液氢产能达326d/t,居于全球首位,加拿大还有80d/t的液氢产能也为美国所用。美国液氢产能的10%左右的液氢用于氢燃料电池的应用。近年来,美国开始了新一轮的液化氢工厂建设,以扩大液氢产能,预计2021年美国本土的液氢产量将超过500d/t。欧洲4座液氢工厂液氢产能为24d/t。亚洲有16座液氢工厂,总产能38.3d/t,其中日本占了三分之二。
中国液氢工厂有陕西兴平、海南文昌、北京101所和西昌基地等,主要服务于航天发射,总产能仅有4d/t,最大的海南文昌液氢工厂产能也仅2d/t。目前中国民用液氢市场基本空白,根据科技部2020年“可再生能源与氢能技术”重点研发专项指南,中国急需研制液化能力≥5d/t且氢气液化能耗≤13kWh/kgLH2的单套装备,指标与国外主流大型氢液化装置性能基本一致,以期尽快缩短我国产品成本、质量和制造水平与世界发达国家的差距。
作为液氢生产大国的美国一直以来对中国都采取“严格禁运,严禁交流”的策略,同时还限制其同盟国的公司,例如法液空、林德公司等向中国出售设备和技术。这些都使得我国获取氢液化设备的成本高昂,在进行价格谈判时处于被动地位。在设备的建造周期、设备可获得性上存在不确定性。同时进口设备还存在维修维护费用高等问题。在技术封锁下,中国尚未具备独立研发大规模氢液化装置的能力,严重限制了我国氢能产业的发展,是目前亟待解决的问题。
3.3国内氢液化装置发展方向
氢液化技术成熟的发达国家正通过创新氢液化流程和提高设备工艺及效率的方法,提高氢液化装置的效率和降低能耗。一些采用高性能换热器、膨胀机和新型混合制冷剂的氢液化创新概念流程的能耗最低已至4.41kWh/kgLH2。国内虽然于上个世纪末自主开发了氦膨胀机制冷的小型氢液化装置,但系统能耗、产品质量和制造水平和美国等发达国家比还存在很大的差距。作为液氢供应链的基础保障,突破技术壁垒,掌握独立研发大规模氢液化装置的能力迫在眉睫。国内的大型氢液化装置主要需要突破低温氢工况材料选用,氢、氦透平膨胀机研制和正仲氢转化催化剂等技术难题。
目前,国内对正仲氢转化催化剂的研究已经取得一定的成绩,北京航天试验技术研究所自制的正仲氢转化催化剂性能已达到国外水平。国内也在开始拓展液氢的民用市场,年产30000t液氢项目正拟投建。
但氢、氦透平膨胀机作为氢气液化循环中的核心部件尚无国产化商品,它是系统冷量的主要提供者,其热力性能、力学性能的优劣对装置的经济性和长期运转的可靠性至关重要,是系统中技术含量高、研制难度大的部件。目前,西安交通大学和北京航天试验研究所正在合作开展大型氢液化装置和高效氢、氦透平膨胀机的研发工作。4、液氢的储运
4.1液氢的储存
4.1.1储氢方式对比
储氢是利用氢能的关键,也是全世界努力研究的难题。衡量储氢有两个指标,体积密度(kgH2/m3)和储氢质量百分比(wt%)。体积密度为单位体积系统内储存氢气的质量;储氢质量百分比为系统储存氢气的质量与系统质量的比值。目前已经具备大规模应用水平的储氢方式主要是高压压缩储存和液氢储存。固态储氢的能量虽然高于液态氢,但保障其吸氢和解氢特性还需要大量的研究和开发,暂时无法投入大规模使用。
对比气氢和液氢存储,从表1中可以看到即使氢气压力高达700bar,6kg的氢气还需要一个150L左右的储氢罐,而-253℃的液氢密度可以达到71g/L。所以气态存储需要压缩到高压,将氢气加压到45MPa时,其储氢质量百分比只有4wt%,达不到美国能源部(DOE)的指标,所以一般气氢存储的压力为70MPa。
从储氢密度上来说,液氢存储具有绝对的优势,而液氢存储主要问题在于是冷量损失,储氢容器必须有良好的绝热。同时压缩氢气需要20%的氢气能量,液化氢气则需要高达40%。
表1 不同压力下气氢和液氢密度
4.1.2液氢储存的技术难点和发展方向
液氢存储的主要难点在于以下几个方面:-总能量中30%—40%被用在氢液化上;-储罐的高额费用;-安全性问题;-蒸发损失(取决于罐子的尺寸),目前一般为0.1—1%每天。目前氢液化的耗电量在10—13kWh/kgH2的水平,考虑到氢液化以及存储主要是为液氢输运服务,液氢氢能供应链的主要成本节约在于液氢输运,所以在此不讨论氢液化的成本问题。对于液氢存储来说,储罐的绝热和泄漏是主要问题。随着我国航天工业的发展,我国在液氢贮罐制造技术取得了一定的成绩,成功地研制出各类大、中、小型液氢贮罐,并在大量工业实践的基础上,制定了相关的液氢贮罐的行业标准(JB/TQ324-83)。我国已经完全具备了生产液氢贮罐的生产能力。对比国外技术,我国现有生产技术完全可以保证液氢的蒸发率,但贮罐重量过重。在今后的研究中应进一步提高绝热效果,改进绝热层制作工艺,采用新材料、复合材料制造贮罐,将贮罐的体积和重量大大减少。除了传统的液氢储罐被动绝热的方法,像ZBO主动制冷和Cryo-compressed等存储方式都是具有发展前景的液氢存储方式。ZBO存储技术是使低温液体始终处于过冷状态,无液体蒸发,目前主要运用在航天长期在轨推进剂存储上。如图3所示,ZBO存储技术主要包括主动热转移和被动热防护技术两方面。主动热转移技术是利用低温贮箱和制冷机的耦合,移出漏入低温系统的热量,以实现低温推进剂的零蒸发;被动热防护技术是通过改进低温贮箱的绝热形式,被动地减小低温贮箱的漏热,从而提高贮箱的绝热效果。
图3 ZBO存储技术原理图
Cryo-compressed技术结合了高压和低温存储。通过在20K时将LH2从1bar时的70g/L,压缩到240bar时的87g/L。从而提高液氢的体积密度,并减少蒸发损失,可有效延长液氢在绝热压力容器中的休眠期。低温压缩罐(276bar,20K)预计可以达到5.8wt%。
4.2液氢的输运
早在上个世纪,国外发达国家如美国日本法国就已经在航天领域大规模使用液氢,其中美国还率先在民用领域使用。这些国家对液氢输运的统一集中生产液氢,和气氢输运的就地分散生产液氢进行了充分的调研,最终都选择了液氢输运的方式。主要原因在于液氢的能量密度远大于气氢,所以液氢需要的公路运力远小于气氢。当时日本的液氢和气氢对公路车运力要求为1∶6,而美国则是1∶20。液氢的体积密度是70.8kg·m-3,体积能量密度达到8.5MJ·L-1,是气氢15MPa运输压力下的6.5倍。因此将氢气深冷至20K液化后,再利用槽罐车或者管道运输可大大提高运输效率。槽罐车的容量大约为65m3,每次可净运输约4000kg氢气。计算分析表明在上海地区加氢站的大规模氢气运输采用管道输运、长管气氢拖车输运和液氢输运的成本分别为:6元/kg、2.3元/kg和0.4元/kg。虽然在目前,由于没有先进的大规模氢液化工厂,气氢运输在总成本上尚占据优势。但随着燃料电池汽车的数量逐渐增长到万辆级、十万辆级,氢气的日消耗量也逐渐增长到30t和300t,加氢站将达到上百座的数量级,这时部分加氢站的输气量也将较大。同时,氢液化工厂具有规模性后,会大大降低液氢的获取成本,采用液氢输送优势就会很明显。目前,美日等发达国家已经将液氢的储运成本降低到高压气氢的八分之一左右,可以说液氢储运是未来大规模发展氢能的一项基础性研究。
液氢输运除了运输效率上的绝对优势之外,在销售计量上也比气氢更有优势。液氢可以直接称重计量,误差在1%;而高压氢气的压差法计量,至少有3%的误差。在大规模的交易中,计量的精准性将变得非常敏感。
在我国尚未发展大规模管道输送液氢的情况下,低温槽罐车是液氢的输运主要载体。车用储罐除了文中提到的绝热、泄漏问题外,还要考虑隔振、抗冲击等安全问题。设计出安全可靠的液氢槽罐车对于液氢运输具有重要意义,也是实现液氢模式的氢能供应链低成本化的关键环节。
5、气化加注
5.1 液氢气化
目前的燃料电池汽车用氢主要还是以高压气氢的形式装载,所以运输至加氢站的液氢需要经过气化和加压后,才可以进行加注。气化过程需要在气化器中进行,液氢与液化天然气都是低温液体,而LNG的气化器技术已经有广泛的应用,因此,结合LNG气化器技术,分析液氢可能采取的气化方式。
气化器是通过提供热量使低温液体气化的装置,LNG气化器主要有四种类型:开架式气化器(ORV)、浸没燃烧式气化器(SCV)、中间介质气化器(IFV)和空温式气化器(AVV),主要区别在于采用的热源不同。
开架式气化器采用水源作为热源,是LNG终端站的主要气化方式,受益于沿海分布或直接建造在海上的位置特点,海水便于获取且廉价,具有成本低、资源充足的特点。浸没燃烧式气化器采用燃气作为热源,可燃气燃烧后加热水槽,低温液体经水槽受热气化。浸没燃烧式气化器设计结构紧凑,可以快速启动,适用于应急和调峰场合,但也存在控制、维护成本高的缺点。
中间介质气化器是通过中间传热介质换热,实际是一个蒸发冷凝器,常见的介质有丙烷、异丁烷、氨、氟利昂等。介质先与热源换热,再与低温液体换热。
但对于需要大规模分布在全国的氢加注站,若以淡水代替海水为热源,成本将会有很大的提升。采用成本更低的空气作为热源的空温式气化器(AVV)也是未来液氢气化器的一种思路。利用空气自然对流直接或间接地加热低温液体,制造和运行成本较低。缺点是对环境温度很敏感,易结冰。
与天然气相比,氢气的物性更加特殊:(1)液氢极低的沸点导致需要的热量很高;(2)液氢气化为同温度下的气体,其体积约增大53倍,会出现严重的两相流问题;(3)氢气和空气混合的燃烧爆炸范围很广,要严格防止泄漏并注意防爆;(4)氢脆以及氢气的强渗透性对材料也提出了更高的要求。
选择液氢气化器时首先要根据氢气加注站所处环境及可获得的热源选择气化器的种类,还需要考虑以下问题:(1)气化器的设备要具备良好的耐低温性能,管道接口、阀门等连接处需做特殊处理;(2)合理选择气化器的处理能力和运行参数,设置应急方案,增加适应性和可靠性;(3)在配置气化器时,可考虑不同种类气化器组合,控制运行费用和投资。
除此之外,液氢在气化过程中会释放更多的冷量,所以对液氢冷能的利用也是将来重要的发展方向。液氢冷能可以利用在发电、空气液化分离、制取液态CO2和干冰、冷冻仓库等方面,具有巨大的经济效益。
5.2压缩加注
在氢气的加注过程中最重要的两个指标是车载储氢瓶的温度和氢气的利用率。国际标准ISO15869和美国汽车工程学会标准SAEJ2601均对车载储氢瓶的工作温度做出了最高85℃的限制。氢气加注过程中,以下三种热力学现象还会导致氢气温度的迅速升高:(1)车载储氢瓶中的氢气受到压缩引起的温升是最主要的原因;(2)快速流动的氢气动能转化为内能,产生热量;(3)氢气通过节流阀,可能会因为焦-汤节流负效应导致温度升高。
研究表明,初始充气压力、温度、环境温度、加注速率以及气缸的尺寸参数都对氢气温升有重要影响。目前在控制温度方面,多采用预冷氢气的方法。氢气的加注是依靠加氢站高压容器和车载储氢瓶之间的压差推动的,随氢气的转移,前者压力不断下降,直至小于加注压力时,需要启动压缩系统或者补充氢气。加氢站在不使用压缩系统或补充氢气的情况下,连续加注的能力就反应了氢气的利用率。为提高的氢气利用率,通常采用分级优化加注策略。即加氢站的储罐根据压力分为低、中、高三个梯次,并与压缩系统和加注系统之间实行有序作业,按照低压—中压—高压的次序加注。
6、结论燃料电池的发展对减少温室气体排放量、空气污染物以及对石油的依赖有大的帮助,是人类未来发展清洁、高效的出行方式的重要选择。一个高效、可靠、低成本的氢能供应链是燃料电池产业发展的基础。以液氢为核心的“氢气制取—液氢生产—液氢储运—气化加注”氢燃料供应模式具有良好的经济性和可行性。尽管目前仍存在较多的技术问题,相信在政府、企业、高校与研究所的共同努力下,液氢的氢能供应链终将成为现实,为我国的能源可持续发展提供保障。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
北极星氢能网获悉,由航天科技集团六院101所自主研发的国内首款百公斤级车载液氢系统“赛道1000”经正式发布后,目前,已完成与一汽解放蓝途“星熠”液氢燃料电池牵引车的跑车测试,凭借其行业领先的性能指标与稳定的系统输出,在应用场景中展现出显著性能优势,标志着液氢重卡研制和示范迈入新阶段。
北极星氢能网获悉,3月12日凌晨,长征八号遥六运载火箭以“一箭十八星”的方式,在海南商业航天发射场将千帆星座第五批组网卫星送入预定轨道,发射任务取得圆满成功。作为我国新一代中型低温液体运载火箭,由中国航天科技集团一院抓总研制的长征八号遥六运载火箭的二级主动力采用液氢液氧发动机,对液
北极星氢能网获悉,近日,北京市经济和信息化局开始征集《北京市绿色能源新技术新产品首应用目录(第一批)》,本次目录产品征集主要面向电解水制氢装备、液氢装备、固态储供氢装备、氢气压缩机、高温燃料电池、氢燃机等领域。原文如下:北京市经济和信息化局关于征集《北京市绿色能源新技术新产品首应
2月19日,中石油西南分公司与航天氢能签订氢能产业合作框架协议,并在筹建氢能专班实现全方位合作、共同研发十吨级大型氢液化和航空煤油技术、积极谋划大型液氢工厂示范,以及共建氢能“产、学、研、用”新生态新业态等方面达成一致意见。氢能以其清洁、高效和可持续的特性,有望成为全球能源结构的重
北极星氢能网获悉,近日,连云港中远海运特种装备制造有限公司(以下简称“特装公司”)成功中标国内200m液氢接收容器项目,中标金额达千万,标志着特装公司在氢能高端装备领域取得了重大突破。
北极星氢能网获悉,2月10日,国内首架吨级液氢电动垂直起降无人机日前在当地试飞成功。这是陕西在液氢应用领域取得的重大突破。据介绍,此次试飞的是吨级液氢电动垂直起降无人机,地点位于凤翔高新技术产业开发区西交大低温液氢试验基地内。试验由西安交通大学能动学院领衔,试飞的无人机由陕西、北京
近日,杭氧股份在投资互动平台上表示,公司在四年前便前瞻性地布局氢产业研究,在氢产业方面已积累了丰富的技术储备,特别是在氢液化、液氢储运,如液氢罐、液氢泵、氢压缩机、液氢阀门等领域取得了显著成果。此外在氢利用方面,公司在运营6000千克/天加氢站并承建了国内日加氢量规模最大的“氢电气一
北极星氢能网获悉,2025年2月10日,江苏国富氢能技术装备股份有限公司(简称“国富氢能”)与德国WankelAviationGmbH(简称“Wankel航空”)正式签署战略合作协议,双方将围绕低空经济领域的氢动力系统研发与液氢应用技术展开深度合作。这一合作标志着中德两国在氢动力飞机技术领域的强强联合,推动绿
近日,在江苏国富氢能技术装备股份有限公司(下简称国富氢能)、LindeHydrogenFuelTechGmbH(下简称Linde)、杭州能巨低温设备有限公司(下简称杭州能巨)三方高层的见证下,国富氢能与杭州能巨(LindeHydrogenFuelTechGmbH中国区授权代理商)签署重要合作协议,双方将引进Linde在液氢加氢站领域的先进
近日,新疆阿克苏市绿电绿氢液氢储氢项目设计竞争性谈判公告发布,项目资金900万元,建设规模:化工园区300亩用地厂房及相应的公用工程和配套设施。
近日,北极星氢能网获悉,齐鲁氢能(山东)发展有限公司氢能一体化项目正在进行试生产,今年年初将投入运营,项目全部达产后,其将成为国内第一大液氢供应商。项目总投资5.5亿元,主要生产高压氢气和液氢,该项目分为一期和二期,其中一期年产液氢3300吨、二期年产液氢9900吨,项目投产后,预计每年可
北极星氢能网获悉,山西省工业和信息化厅发布《山西省重点产业链能级跃升2025年行动计划》。行动计划指出,力争到2025年底,山西省级产业链整体营收突破8000亿元,链主企业达到45家以上,链核企业突破120家,产业链企业突破800家;产业集群和产业链融合发展取得新进展,产业链现代化水平进一步提升,上
北极星氢能网获悉,近日,国家知识产权局信息显示,东旭科技集团有限公司公布了3项发明专利,分别是氢燃料电池防阴极水堵系统及控制方法、高熵合金材料及其制备方法和应用以及膜电极及其制备方法和应用。涉及冶金领域,旨在提高氢燃料电池系统的稳定性和提升材料的储氢性能。氢燃料电池防阴极水堵系统
北极星氢能网获悉,3月14日,国家知识产权局信息显示,北京氢璞创能科技有限公司近日获得一项实用新型专利授权,专利名称为“一种燃料电池装堆工装”,该专利旨在提高燃料电池电堆的整齐度、性能及寿命,降低设备精度要求,适用于不同尺寸的电堆产品。专利摘要显示,本实用新型提供一种燃料电池装堆工
北极星氢能网获悉,3月12日,国家能源集团新朔铁路首次完成国内首台2400千瓦大功率氢能源动力调车机车C1修程,此前完成了国内首台重载运输干调一体化电电双源制大功率机车C1修程,标志着我国重载铁路新型装备市场化运用取得关键突破。面对重载铁路新型机车检修工艺“零”的空白,为突破氢燃料电池、动
北极星氢能网获悉,3月18日,国家知识产权局信息显示,中车长春轨道客车股份有限公司申请一项名为“一种适用于磁悬浮轨道车辆的氢能动力系统”的专利,公开号CN119636820A,申请日期为2025年1月2日。专利摘要显示,本发明提供一种适用于磁悬浮轨道车辆的氢能动力系统,包括储氢系统、氢燃料电池系统、
北极星氢能网获悉,3月19日据外媒报道,荷兰氢能生产商HyERPower正在开发荷兰首座氢能发电供热一体化工厂,HyER发电厂将安装在Vlissingen的创新中心KAAP,该工厂计划于年底运营。HyERPower开发的是一种氢动力系统来产生热量和电力,该工厂将结合热泵、燃料电池系统和储能技术,为企业的电力和热力需求
地处长三角腹地的常熟高新区,正以制造业的深厚底蕴为基石,悄然酝酿着一场氢能产业的发展浪潮。据悉,常熟高新区的氢能产业,得益于汽车零部件产业基础雄厚,为氢能产业的发展提供了有力支撑。丰田、重塑、治臻、捷氢等40余家氢能企业安家落户,投资项目超50个。区内的重塑科技是上海重塑在华东地区的
孝义经济开发区作为山西重要的工业基地,加速传统产业智能化、绿色化升级改造,推进新兴产业培育壮大,发展形成了煤炭、焦化、氧化铝等强大的传统优势产业集群。据悉,孝义区不断强化科技赋能,推动氢能、碳基新材料、铝镁新材料、固废综合利用、白酒五大新兴产业蓬勃发展。氢能产业已初步构建“气—站
根据《宁波市氢能示范应用扶持暂行办法》(甬能源综合〔2021〕93号),《关于进一步做好氢能示范应用扶持有关工作的通知》(甬能源综合〔2024〕105号),经组织申报、区(县、市)核查、市级部门审查、专家评审等程序,现将2025年宁波市氢能示范应用第一批补贴情况进行公示,其中加氢站建设本期补贴500
北极星氢能网获悉,浙江嘉兴日前印发《嘉兴市推动经济高质量发展若干政策(2025年版)》。通过最新政策获悉,嘉兴市不断加快构建嘉兴特色现代化产业体系,紧紧围绕“135N”先进制造业集群发展,培育壮大新兴产业,积极前瞻布局未来产业,推动“两化”改造提速提质提效,推动历史经典产业高质量传承发展
2025年氢燃料电池产业的开端并不顺利。多家燃料电池车企宣布破产倒闭,燃料电池企业“卖身”求存或改变战略,全球范围内氢能投资收紧,每一个信号都在暗示:这场洗牌,比预想中来得更猛烈。但产业“先驱”丰田的氢能步伐依旧坚定,通过技术产业化迭代、应用范围拓宽、氢能生态打造等,开启了其氢能战略
北极星氢能网获悉,山西省工业和信息化厅发布《山西省重点产业链能级跃升2025年行动计划》。行动计划指出,力争到2025年底,山西省级产业链整体营收突破8000亿元,链主企业达到45家以上,链核企业突破120家,产业链企业突破800家;产业集群和产业链融合发展取得新进展,产业链现代化水平进一步提升,上
北极星氢能网获悉,近日,国家知识产权局信息显示,东旭科技集团有限公司公布了3项发明专利,分别是氢燃料电池防阴极水堵系统及控制方法、高熵合金材料及其制备方法和应用以及膜电极及其制备方法和应用。涉及冶金领域,旨在提高氢燃料电池系统的稳定性和提升材料的储氢性能。氢燃料电池防阴极水堵系统
北极星氢能网获悉,3月18日,国家知识产权局信息显示,中车长春轨道客车股份有限公司申请一项名为“一种适用于磁悬浮轨道车辆的氢能动力系统”的专利,公开号CN119636820A,申请日期为2025年1月2日。专利摘要显示,本发明提供一种适用于磁悬浮轨道车辆的氢能动力系统,包括储氢系统、氢燃料电池系统、
北极星氢能网获悉,3月19日据外媒报道,荷兰氢能生产商HyERPower正在开发荷兰首座氢能发电供热一体化工厂,HyER发电厂将安装在Vlissingen的创新中心KAAP,该工厂计划于年底运营。HyERPower开发的是一种氢动力系统来产生热量和电力,该工厂将结合热泵、燃料电池系统和储能技术,为企业的电力和热力需求
地处长三角腹地的常熟高新区,正以制造业的深厚底蕴为基石,悄然酝酿着一场氢能产业的发展浪潮。据悉,常熟高新区的氢能产业,得益于汽车零部件产业基础雄厚,为氢能产业的发展提供了有力支撑。丰田、重塑、治臻、捷氢等40余家氢能企业安家落户,投资项目超50个。区内的重塑科技是上海重塑在华东地区的
孝义经济开发区作为山西重要的工业基地,加速传统产业智能化、绿色化升级改造,推进新兴产业培育壮大,发展形成了煤炭、焦化、氧化铝等强大的传统优势产业集群。据悉,孝义区不断强化科技赋能,推动氢能、碳基新材料、铝镁新材料、固废综合利用、白酒五大新兴产业蓬勃发展。氢能产业已初步构建“气—站
北极星氢能网获悉,浙江嘉兴日前印发《嘉兴市推动经济高质量发展若干政策(2025年版)》。通过最新政策获悉,嘉兴市不断加快构建嘉兴特色现代化产业体系,紧紧围绕“135N”先进制造业集群发展,培育壮大新兴产业,积极前瞻布局未来产业,推动“两化”改造提速提质提效,推动历史经典产业高质量传承发展
2025年氢燃料电池产业的开端并不顺利。多家燃料电池车企宣布破产倒闭,燃料电池企业“卖身”求存或改变战略,全球范围内氢能投资收紧,每一个信号都在暗示:这场洗牌,比预想中来得更猛烈。但产业“先驱”丰田的氢能步伐依旧坚定,通过技术产业化迭代、应用范围拓宽、氢能生态打造等,开启了其氢能战略
北极星氢能网获悉,2024年9月,龙华区出台《深圳市龙华区促进新能源产业高质量发展若干措施》(以下简称《若干措施》),该措施包括重点支持机构和领域、推动产业集聚发展、提升产业创新能力、拓展技术应用场景等方面内容,共形成18条扶持措施。提出将重点支持整车制造、电机电控、动力电池、充电设施
北极星氢能网获悉,3月18日上午,空港磬德公司首批50台氢能源运输车交车仪式在河南郑州航空港区举办。据悉,空港磬德公司此次交付的50辆宇通氢燃料电池重卡,搭载行业领先的氢燃料电堆技术,具备零排放、长续航、高载重等优势,配套建设的1500kg/12h加氢撬装站已正式投运,形成“车辆运营+加氢服务”一
北极星氢能网了解到,3月18日,洛阳市人民政府发布《关于洛阳市减污降碳协同创新试点建设实施方案》的通知,通知指出:加快推动氢能产业发展。持续推进氢能产业链条本地化、生产规模化、运营集约化,基本建立以工业副产氢、化石原料制氢和可再生能源制氢相结合的氢能供给体系,建设1-2个能源制氢示范项
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!