登录注册
请使用微信扫一扫
关注公众号完成登录
1.2 生命周期环境影响分析
本文采用GREET 2020,构建如表1所示的19种路径对应的过程,开展LCA研究,步骤如下:
1)选定车型。车型和车辆相关参数是使用GREET软件研究汽车能耗和排放的必要条件。本文为FCV、ICEV和BEV分别选择一款具体的车型作为代表。FCV选择丰田Mirai,ICEV选择凯美瑞2019款2.5G豪华版车,BEV选择比亚迪汉2020款EV超长续航版豪华型车。这些车辆的相关参数根据太平洋汽车网等资料和文献整理,具体见表2。
2)设定基本过程及参数。在GREET模型中,对于每一个过程或子过程,需要定义使用的技术、输入的物质或能量的类型、输出的物质。根据表1的路径设计,需要定义制氢、输氢、发电等不同的过程,相关参数来自文献或软件本身,软件的相关操作和设置
来自操作手册。模型设置的输氢距离约1300 km,输电线损约5%。在所有过程中,都可能直接或者间接用到电力,因此电力的构成对模型运行结果有不可忽视的影响,模型中的发电结构(混合电力)参考文献中的电力结构(见表3)。在GREET模型中,水电、风电、光伏发电这3种可再生能源发电技术的直接排放均为0,仅有用水量和效率的差别。考虑到光伏发电对地域的要求最低,成本也具有竞争力,因此本研究选择光伏发电作为可再生能源电力的代表。
3)环境影响评价方法。环境排放的危害最终会体现在对生态和人类健康的威胁上。因此,有必要评价排放污染物的环境影响,本文采用LCA常用的生态指标99(Eco-indicator 99)方法,该方法将环境影响量化为人体毒性潜力、气溶胶潜力、光化学烟雾潜力、酸化潜力、全球变暖潜力等方面,各类污染排放与环境影响指标的权重关系见表4。
2 结果与讨论
2.1 能耗与水耗
不同路径的能耗结果如图2所示。结合表1可知,混合发电制氢、煤制氢的FCV路径,以及BEV路径的WTP阶段能耗明显较高;可再生能源发电制氢、焦炉煤气副产氢联合气氢运输、天然气制氢联合气氢运输的FCV路径,以及ICEV路径的PTW阶段能耗高于WTP阶段。不同FCV路径的PTW阶段的能耗相差不多,大约为135 MJ/百km。而ICEV的PTW阶段能耗为282 MJ/百km,远高于WTP阶段的73 MJ/百km,几乎是后者的4倍。BEV在WTP和PTW阶段的能耗分别是135 MJ/百km和96 MJ/百km,前者是后者的1.4倍。这种差异是制氢路径的技术工艺造成的,化石能源能耗较高,而可再生能源能耗较低,工业副产氢的能耗低是因为能耗主要分摊在产品上而不是副产品氢上。综合分析19种路径的能耗,能耗较高的4条路径都包含混合电制氢的环节,百km能耗均超过500 MJ,其中FCV-P6(混合电制氢+液氢槽车)的能耗最高,达到551 MJ/百km,FCV-P17为524 MJ/百km。能耗较低的路径为可再生能源发电制氢路径、焦炉煤气制氢以及天然气制氢的FCV路径,能耗水平为221~239 MJ/百km。制氢+输氢路径和现场制氢路径相比,能耗差别不大。
在相同制氢技术的路径中,3种运输方式的能耗从低到高分别是气氢管道、气氢拖车、液氢槽车。以FCV-P4、FCV-P5、FCV-P6为例,由于运输方式不同引起的能耗差异仅占全部能耗的2%~3%,因此这3种路径的总能耗近乎相同。不同路径的水耗结果如图3所示。由于所有路径PTW阶段的水耗都为0,WTP阶段的水耗即为这些燃料路径WTW过程的水耗。
大部分FCV路径的水耗范围是0.04~0.08 m3/百km,都低于BEV路径的水耗0.11 m3/百km,有些路径的水耗甚至低于ICEV路径的0.05 m3/百km。但是和混合发电制氢相关的FCV路径水耗较高,高达0.3 m3/百km,几乎是BEV的3倍、ICEV的6倍。这是由于混合发电部分的水耗较高,而混合发电的水耗又取决于电力结构。中国电力结构以水耗较高的火电为主,导致混合发电的WTP阶段水耗较高。如果未来电力结构发生变化,可再生能源比例逐渐提高,则该FCV路径的水耗也会随之降低。
2.2 环境排放
环境排放关注9种污染物:CH4、CO、CO2、N2O、NOx、PM2.5、PM10、SOx、VOC。通过GREET模型计算19种路径在WTP和PTW阶段的9种污染物的排放水平。由于仅有ICEV存在PTW阶段的污染物,所以不分别展示WTP和PTW各自的情况,仅显示每个路径每种污染物WTW的排放量,结果见表5。
整体而言,FCV路径的环境排放并不总优于或劣于ICEV及BEV,这和FCV路径的具体制氢和输氢方式有关。ICEV路径的某些污染物排放较高,例如CO、CO2、NOx和VOC,4种污染物排放量分别是17025 280、20、20 g/百km。BEV路径的排放则普遍较低,CH4、NOx、SOx、CO2分别是30、10、50、18 810 g/百km。本研究对BEV的LCA分析结果是针对使用电网电(混合电)的情景。本研究也对BEV使用可再生能源发电的情景进行了LCA分析,结果表明:在可再生能源发电情景下,BEV的这9种主要污染物排放均为0,是所有路径中最为环保的选择。综合比较环境排放水平,可再生能源发电制氢的燃料电池汽车表现最好,其他路径的排放水平跟污染物类型有关。例如,混合发电制氢的VOC排放几乎为0,但是NOx、SOx、PM10和CO2的排放量很高。另外,和制氢过程相比,输氢过程的能耗和环境影响都比较小。
2.3 环境毒性
对于环境毒性,用环境排放数据和生态指标99计算人体毒性潜力、气溶胶潜力、光化学烟雾潜力、酸化潜力和全球变暖潜力。为方便对比,对这5项指标进行归一化处理,结果如图4所示。
由图4可知,FCV路径和ICEV及BEV路径相比,并不具有稳定的优势或劣势,这和FCV路径的具体制氢和输氢方式有关。ICEV路径的某些污染物排放较高,而BEV路径的排放则普遍较低。在19种路径中,FCV-P1、FCV-P2、FCV-P3、FCV-P16的所有毒性都表现得最低,这说明可再生能源发电制氢的综合环境毒性最小,其他路径的排放水平跟污染物类型有关,这一特点和环境排放类似。混合发电制氢在所有指标中都表现出较强的毒性,这是由于混合发电的石化燃料发电占比过高造成的。
2.4 情景分析
电解水制氢是未来具有重要发展前景的技术,可作为各种P2X(power-to-chemicals)的重要内容,对于解决可再生能源弃电问题具有重要意义。该技术的环境影响取决于电力的生产结构。在本研究中,FCV-P1至FCV-P3为100%可再生能源发电制氢条件下FCV的燃料路径,而FCV-P4至FCV-P6为2019年发电结构下(可再生能源占比较低)涵盖电制氢技术的FCV的燃料路径。为进一步探讨可再生能源发电比例如何影响FCV燃料路径的环境排放,本研究参考中国石油经济技术研究院对2030年和2050年中国发电结构的预测,在文中设立了2030年(水电、风电、光伏发电合计占比35%)和2050年(水电、风电、光伏发电合计占比55%)2种发电结构;进一步,将这2种结构下电制氢技术与3种氢气储运技术进行组合,形成6条新的技术路径(包括FCV-P4-2030、FCV-P5-2030、FCV-P6-2030、FCV-P4-2050、FCV-P5-2050和FCV-P6-2050);最后,基于GREET模型计算这些技术路径的LCA结果,并与本研究设计的19条技术路径(特别是FCV-P1至FCV-P6这6条技术路径)的环境排放结果进行归一化后的对比,结果如图5所示
研究表明:①随着可再生能源占比逐渐增加,FCV燃料路径的能耗、水耗、污染物排放均逐渐降低;②与化石能源制氢和工业副产氢相比,在2030年和2050年发电结构下,涵盖电解水技术的FCV燃料路径的能耗和环境排放(如碳排放)仍然较高,甚至比ICEV及BEV(混合电+锂离子电动车)路径的排放都要高。
3 结论与展望
针对FCV对环境影响的争议,本文综合考虑中国当前主要的氢燃料生产、运输等不同技术组合,分析了17种FCV燃料路径的能耗、水耗、环境排放及其环境影响,并对比BEV和ICEV,提出FCV在氢燃料路径发展方面的相关建议。研究表明:①各路径在能耗、水耗、环境排放、环境毒性方面差异很大,其中FCV-P3(可再生能源发电制氢+液氢槽车)和FCV-P16(可再生能源发电+输电+现场制氢)这2条路径的环境影响最小,远低于其他路径,也低于BEV和ICEV的环境影响;②涵盖混合电制氢过程的路径(如FCV-P6、FCV-P17等)具有较高的能耗、水耗和环境影响,甚至高于涵盖煤制氢、天然气制氢、工业副产氢过程的路径(FCV-P7至FCV-P15);③BEV在各方面的环境影响低于大部分的FCV路径,高于FCV-P3和FCV-P16,IECV在VOC、CO和NOx排放方面远高于FCV的各路径,但其环境影响并非全部劣于FCV的各路径;④随着可再生能源占比的逐渐增加,FCV燃料路径的能耗、水耗、污染物排放均逐渐降低。涵盖可再生能源发电制氢过程的路径具有较低的能耗、水耗、环境排放和环境毒性,但这些路径目前具有较高的经济成本;涵盖煤制氢、天然气制氢、工业副产氢过程的路径的能耗和水耗较高,但却具有较低的成本。按照目前的技术水平和电力结构、能源结构,本文研究的17种FCV路径的环境和经济效益无法同时达到最优。未来电力结构、技术水平发生变化的情况下,用本文提出的研究方法可对上述技术路径进行重新评价。本文的研究方法对于分析FCV的能耗、排放、成本有借鉴作用,未来将根据不同地区的实际情况,采用更多本地化数据,使研究结果具有更大的参考价值。
参考文献
[1] International Energy Agency. Global energy & CO2 status report 2019[R/OL].[2021-01-28]./reports/global-energy-co2-status-report-2019.
[2] HWANG J J. Sustainability study of hydrogen pathways for fuel cell vehicle applications[J]. Renewable and Sustainable Energy Reviews, 2013, 19: 220-229.
[3] YANG Z J, WANG B W, JIAO K. Life cycle assessment of fuel cell, electric and internal combustion engine vehicles under different fuel scenarios and driving mileages in China[J].Energy, 2020, 198: 117365.
[4] THOMAS C E, JAMES B D, LOMAX F D Jr, et al. Fuel options for the fuel cell vehicle: hydrogen, methanol or gasoline?[J]. International Journal of Hydrogen Energy, 2000,25(6): 551-567.
[5] GRANOVSKII M, DINCER I, ROSEN M A. Economic and environmental comparison of conventional, hybrid, electric and hydrogen fuel cell vehicles[J]. Journal of Power Sources, 2006,159(2): 1186-1193.
[6] ASHNANI M H M, MIREMADI T, JOHARI A, et al. Environmental impact of alternative fuels and vehicle technologies: a life cycle assessment perspective[J]. Procedia Environmental Sciences, 2015, 30: 205-210.
[7] KIM I, KIM J, LEE J. Dynamic analysis of well-to-wheel electric and hydrogen vehicles greenhouse gas emissions: Focusing on consumer preferences and power mix changes in South Korea[J]. Applied Energy, 2020, 260: 114281.
[8] ABDELKAREEM M A, ELSAID K, WILBERFORCE T, et al. Environmental aspects of fuel cells: a review[J]. Science of the Total Environment, 2021, 752: 141803.
[9] LIU X Y, REDDI K, ELGOWAINY A, et al. Comparison of well-to-wheels energy use and emissions of a hydrogen fuel cell electric vehicle relative to a conventional gasoline-powered internal combustion engine vehicle[J]. International Journal of Hydrogen Energy, 2020, 45(1): 972-983.
[10] ABDEREZZAK B, BUSAWON K, BINNS R. Flows consumption assessment study for fuel cell vehicles: towards a popularization of FCVs technology[J]. International Journal of
Hydrogen Energy, 2017, 42(17): 12905-12911.
[11] HE X, WANG F, WALLINGTON T J, et al. Well-to-wheels emissions, costs, and feedstock potentials for light-duty hydrogen fuel cell vehicles in China in 2017 and 2030[J].Renewable and Sustainable Energy Reviews, 2021, 137: 110477.
[12] ZAMEL N, LI X G. Life cycle analysis of vehicles powered by a fuel cell and by internal combustion engine for Canada[J]. Journal of Power Sources, 2006, 155(2): 297-310.
[13] LEE D Y, ELGOWAINY A, KOTZ A, et al. Life-cycle implications of hydrogen fuel cell electric vehicle technology for medium- and heavy-duty trucks[J]. Journal of Power Sources, 2018, 393: 217-229.
[14] QIAN F Y, GAO W J, YANG Y W, et al. Economic optimization and potential analysis of fuel cell vehicle-togrid (FCV2G) system with large-scale buildings[J]. Energy Conversion and Management, 2020, 205: 112463.
[15] AHMADI P, KJEANG E. Comparative life cycle assessment of hydrogen fuel cell passenger vehicles in different Canadian provinces[J]. International Journal of Hydrogen Energy, 2015,
40(38): 12905-12917.
[16] PEREIRA S R, COELHO M C. Life cycle analysis of hydrogenA well-to-wheels analysis for Portugal[J]. International Journal of Hydrogen Energy, 2013, 38(5): 2029-2038.
[17] 孔德洋,唐闻翀,柳文灿,等. 燃料电池汽车能耗、排放与经济性评估[J]. 同济大学学报(自然科学版),2018,46(4):498-503.
KONG Deyang, TANG Wenchong, LIU Wencan, et al. Energy consumption, emissions and economic evaluation of fuel cell vehicles[J]. Journal of Tongji University (Natural Science), 2018, 46(4): 498-503(in Chinese).
[18] 陈轶嵩,丁振森,王文君,等. 氢燃料电池汽车不同制氢方案的全生命周期评价及情景模拟研究[J]. 中国公路学报,2019,32(5):172-180.
CHEN Yisong, DING Zhensen, WANG Wenjun, et al. Lifecycle assessment and scenario simulation of four hydrogen production schemes for hydrogen fuel cell vehicles[J]. China Journal of Highway and Transport, 2019, 32(5):172-180(in Chinese).
[19] ORUC O, DINCER I. Development and performance assessment power generating systems using clean hydrogen[J]. Energy, 2021, 215: 119100.
[20] WULF C, KALTSCHMITT M. Hydrogen supply chains for mobility—environmental and economic assessment[J]. Sustainability, 2018, 10(6): 1699.
[21] WULF C, REUß M, GRUBE T, et al. Life cycle assessment of hydrogen transport and distribution options[J]. Journal of Cleaner Production, 2018, 199: 431-443.
[22] ANDERSON R, KESHWANI D, GURU A, et al. An integrated modeling framework for crop and biofuel systems using the DSSAT and GREET models[J]. Environmental Modelling & Software, 2018, 108: 40-50.
[23] PEREIRA L G, CAVALETT O, BONOMI A, et al. Comparison of biofuel life-cycle GHG emissions assessment tools: the case studies of ethanol produced from sugarcane,corn, and wheat[J]. Renewable and Sustainable Energy Reviews, 2019, 110: 1-12.
[24] WEI Q S, ZHANG X, OH B S. The effect of driving cycles and H2 production pathways on the lifecycle analysis of hydrogen fuel cell vehicle: a case study in South Korea[J]. International
Journal of Hydrogen Energy, 2021, 46(10): 7622-7633.
[25] UGURLU A, OZTUNA S. How liquid hydrogen production methods affect emissions in liquid hydrogen powered vehicles?[J]. International Journal of Hydrogen Energy, 2020,45(60): 35269-35280.
[26] 李璐伶,樊栓狮,陈秋雄,等. 储氢技术研究现状及展望[J]. 储能科学与技术,2018,7(4):586-594.
LI Luling, FAN Shuanshi, CHEN Qiuxiong, et al. Hydrogen storage technology: current status and prospects[J]. Energy Storage Science and Technology, 2018, 7(4): 586-594(in Chinese).
[27] 黄格省,李锦山,魏寿祥,等. 化石原料制氢技术发展现状与经济性分析[J]. 化工进展,2019,38(12):5217-5224.
HUANG Gesheng, LI Jinshan, WEI Shouxiang, et al. Status and economic analysis of hydrogen production technology from fossil raw materials[J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5217-5224(in Chinese).
[28] GaBi. Description of the Eco-indicator 99 method[EB/OL].[2021-01-28]. /support/gabi/gabi-lcia-documentation/eco-indicator-99.
[29] 金莉娜,陆怡雅,谢婧媛,等. 基于GREET模型的新能源汽车全生命周期的环境与经济效益分析[J]. 资源与产业,2019,21(5):1-8.
JIN Lina, LU Yiya, XIE Jingyuan, et al. Environment and economy analysis on entire life circle of new energy vehicles based on GREET model[J]. Resources & Industries, 2019,21(5): 1-8(in Chinese).
[30] WANG M, WU Y, ELGOWAINY A. Operating manual for GREET: version 1.7[R]. Center for Transportation Research, Energy Systems Division, Argonne National Laboratory, 2007.
[31] 水电水利规划设计总院. 中国可再生能源发展报告2019[R]. 北京:水电水利规划设计总院,2020.
[32] 李书华. 电动汽车全生命周期分析及环境效益评价[D]. 长 春:吉林大学,2014.
[33] 李佳蓉,林今,肖晋宇,等. 面向可再生能源消纳的电化工(P2X)技术分析及其能耗水平对比[J]. 全球能源互联网,2020,3(1):92-102.
LI Jiarong, LIN Jin, XIAO Jinyu, et al. Technical and energy consumption comparison of power-to-chemicals (P2X) technologies for renewable energy integration[J]. Journal of Global Energy Interconnection, 2020, 3(1): 92-102(in Chinese).
[34] 中国石油经济技术研究院. 2050年世界与中国能源展望(2020年版)[R]. 北京:中国石油经济技术研究院,2020.
[35] 单彤文,宋鹏飞,李又武,等. 制氢、储运和加注全产业链氢气成本分析[J]. 天然气化工(C1化学与化工),2020,45(1):85-90.
SHAN Tongwen, SONG Pengfei, LI Youwu, et al. Cost analysis of hydrogen from the perspective of the whole industrial chain of production, storage, transportation and refueling[J]. Natural Gas Chemical Industry, 2020, 45(1): 85-90(in Chinese).
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
2015年7月15日,经国务院批准,由中国电力投资集团公司和国家核电技术有限公司合并重组而成的国家电力投资集团,在北京正式挂牌。这一天,两大能源央企的整合完成,不仅开创了我国能源产业体制改革的先河,也为中国能源转型提供了新的动力支撑。国家电投集团成立之初,就成为国内唯一同时拥有火电、水
2015年7月15日,经国务院批准,由中国电力投资集团公司和国家核电技术有限公司合并重组而成的国家电力投资集团,在北京正式挂牌。这一天,两大能源央企的整合完成,不仅开创了我国能源产业体制改革的先河,也为中国能源转型提供了新的动力支撑。国家电投集团成立之初,就成为国内唯一同时拥有火电、水
国华投资国华(赤城)风电有限公司氢气运输服务公开招标项目中标候选人公示国华投资河北分公司赤城制氢厂位于河北省张家口市赤城县经济开发区,该项目用自有新能源电源开展电解水制氢,项目总氢气产能为4000Nm/h,一期建设2000Nm/h(折合4272kg/d),二期预留用地(规模2000Nm/h)。产品氢纯度为99.999
十年蜕变——国家电投重组成立以来改革发展成就综述2015年7月15日,经国务院批准,由中国电力投资集团公司和国家核电技术有限公司合并重组而成的国家电力投资集团有限公司(以下简称“国家电投”),在北京正式挂牌。这一天,两大能源央企的整合完成,不仅开创了我国能源产业体制改革的先河,也为中国
北极星储能网获悉,7月10日,科力远披露,公司目前已取得储能项目建设所需批准备案、即将投建的有河北省合计400MW/1000MWh规模、山东省合计400MW/800MW规模、内蒙古合300MW/1200MWh规模、广东100MW/200MWh规模的8个独立储能及共享储能项目。预计将于今年3-4季度逐步释放。另有各类型储能应用场景储备项
继4月交通运输部与国家发改委等十部门联合印发了交能融合指导意见之后,交通运输部再次携手此前十部门中的三部委,出台与交能融合相关细分领域的规划建设文件。7月7日,国家发展改革委办公厅、国家能源局综合司、工业和信息化部办公厅、交通运输部办公厅联合编制的《关于促进大功率充电设施科学规划建
北极星储能网获悉,7月4日,深圳坪山区人民政府发布《深圳市坪山区落实“双碳”战略进一步推动新能源产业高质量发展的若干措施》。其中指出,支持企业建设新型电池及储能、充电设施、光伏、氢能、智能电网和综合能源服务等领域中试生产线,对项目总投资额(不含土建)在500万元以上的,按设备投资额的1
近日,成都市发布了《关于开展2025年度成都市氢燃料电池商用车示范应用项目(第一批)申报工作的通知》(以下简称《通知》)。根据《通知》,成都将以“揭榜挂帅”方式稳步推进氢燃料电池商用车示范推广工作,2025年分两批次推广1000辆氢燃料电池商用车,其中第一批推广500辆。氢燃料电池商用车示范应
北极星碳管家网获悉,7月7日,天津市工业和信息化局天津市委网信办天津市发展改革委天津市科技局天津市财政局发布关于修订印发天津市推动制造业高质量发展若干政策措施实施细则的通知。内容指出,支持工业企业高质量投资,给予最高5000万元支持;推进产业基础再造,给予最高3000万元支持。全文如下:市
7月7日,天津市工业和信息化局天津市委网信办天津市发展改革委天津市科技局天津市财政局发布关于修订印发天津市推动制造业高质量发展若干政策措施实施细则的通知。内容指出,支持新能源发展。围绕先进新型电池(锂电池、半/全固态电池、钠离子电池、氢燃料电池等)产品及关键材料,高效光伏产品、风电
北极星售电网获悉,7月2日,四川省经济和信息化厅发布关于省第十四届人民代表大会第四次会议第14040432号建议办理答复意见的函。答复文件明确,近年来,四川依托得天独厚的清洁能源和矿产资源优势,抢抓国家战略腹地建设机遇,聚焦锂电、光伏、新能源汽车等新兴产业精心谋划、精准施策,推动产业发展化
7月7日,中集安瑞科能源系统(上海)有限公司(以下简称“中集安瑞科上海”)与江苏中纯氢能科技有限公司(以下简称“江苏中纯”)正式签署氢能业务战略合作协议。双方就采用液驱氢能压缩机在绿氢以及氢交通领域的优势展开探讨并达成一致,充分发挥各自在氢能产业链上的技术专长与资源优势,共同推动绿
北极星碳管家网获悉,7月7日,天津市工业和信息化局天津市委网信办天津市发展改革委天津市科技局天津市财政局发布关于修订印发天津市推动制造业高质量发展若干政策措施实施细则的通知。内容指出,支持工业企业高质量投资,给予最高5000万元支持;推进产业基础再造,给予最高3000万元支持。全文如下:市
7月7日,天津市工业和信息化局天津市委网信办天津市发展改革委天津市科技局天津市财政局发布关于修订印发天津市推动制造业高质量发展若干政策措施实施细则的通知。内容指出,支持新能源发展。围绕先进新型电池(锂电池、半/全固态电池、钠离子电池、氢燃料电池等)产品及关键材料,高效光伏产品、风电
北极星售电网获悉,7月2日,四川省经济和信息化厅发布关于省第十四届人民代表大会第四次会议第14040432号建议办理答复意见的函。答复文件明确,近年来,四川依托得天独厚的清洁能源和矿产资源优势,抢抓国家战略腹地建设机遇,聚焦锂电、光伏、新能源汽车等新兴产业精心谋划、精准施策,推动产业发展化
北极星储能网获悉,7月8日消息,天津市工业和信息化局市委网信办市发展改革委市科技局市财政局关于修订印发天津市推动制造业高质量发展若干政策措施实施细则的通知,提到,围绕先进新型电池(锂电池、半/全固态电池、钠离子电池、氢燃料电池等)产品及关键材料,高效光伏产品、风电整机及关键部件,制
北极星氢能网获悉,7月3日,广州市发改委发布了《广州市发展和改革委员会关于广州市新能源汽车数据接入市级监测平台的补充通知》(以下简称《通知》)。《通知》提出,广州市市在原广州市新能源智能汽车大数据监测平台的基础上,建成并全面上线氢燃料电池汽车及加氢站管理模块,现启动相关数据接入工作
北极星氢能网获悉,6月21日—6月27日,工信部对第396批《道路机动车辆生产企业及产品公告》新产品进行公示,12款燃料电池汽车产品在列:
北极星氢能网获悉,2025年6月24日,上海市2025年节能减排专项资金和超长期特别国债安排计划(第八批)发布!支持方向为国家汽车报废更新、汽车置换更新(燃油车)、汽车置换更新(新能源)、电动自行车报废更新、燃料电池示范应用、国四柴油车提前淘汰更新、国二非道路移动机械更新,计划下达市节能减
氢燃料电池是目前氢能产业中技术最成熟、应用最广泛的核心产品之一,在全球积极应对气候变化并大力推动能源转型的背景下,氢燃料电池作为一种高效且清洁的能源转化设备,成为各国政府、科研机构和企业开展能源技术攻关的重点方向,并推动其在多个领域的应用和商业化进程。根据电解质的不同,氢燃料电池
当前,氢能已成为世界各国推动能源转型、培育经济增长点以及促进可持续发展的重要战略选择。我国高度重视氢能产业的发展,出台《氢能产业发展中长期规划(2021~2035年)》明确氢的能源属性,2024年政府工作报告将氢能纳入前沿新兴产业,《能源法》赋予氢能法定能源地位,国家设立万亿级创业投资引导基
北极星氢能网获悉,上交所官网显示,山东东岳未来氢能材料股份有限公司(简称“未来材料”)科创板IPO已于6月27日获受理,公司本次IPO拟发行股份不超过1.11亿股,募集资金不超过24.46亿元,保荐机构为中信证券。本次发行套用科创板上市规则第一套标准,即预计市值不低于人民币10亿元,最近两年净利润均
国华投资国华(如东)新能源有限公司国华如东光氢储一体化制氢项目EPC总承包公开招标项目招标公告第一章公开招标1.招标条件本招标项目名称为:国华投资国华(如东)新能源有限公司国华如东光氢储一体化制氢项目EPC总承包公开招标,项目招标编号为:CEZB250106609,招标人为国华(如东)新能源有限公司
国华投资国华(赤城)风电有限公司氢气运输服务公开招标项目中标候选人公示国华投资河北分公司赤城制氢厂位于河北省张家口市赤城县经济开发区,该项目用自有新能源电源开展电解水制氢,项目总氢气产能为4000Nm/h,一期建设2000Nm/h(折合4272kg/d),二期预留用地(规模2000Nm/h)。产品氢纯度为99.999
1、投资6.56亿元!广西100MW风电项目开工近日,广西壮族自治区南宁市武鸣太平风电项目举行开工仪式。武鸣太平风电项目总投资约6.56亿元,规划总装机容量100MW,将安装16台单机容量6250kW的风电机组。2、1300MW!中石油某海上风电项目中标结果公布7月1日,中国石油某海上风电项目第一阶段前期技术咨询及
北极星储能网获悉,7月10日,科力远披露,公司目前已取得储能项目建设所需批准备案、即将投建的有河北省合计400MW/1000MWh规模、山东省合计400MW/800MW规模、内蒙古合300MW/1200MWh规模、广东100MW/200MWh规模的8个独立储能及共享储能项目。预计将于今年3-4季度逐步释放。另有各类型储能应用场景储备项
北极星氢能网获悉,7月8日,山西吕梁经开区3MW绿电离网制绿氢加氢一体化示范项目成功试车,标志着吕梁经开区在绿氢制取方面实现新突破。首套单槽2MWAEM制氢系统在吕梁经开区成功试车该项目位于吕梁经开区新材料园区,为吕梁经开区国有公司组织实施。其核心为国内企业研发的全国首台单体2MW纯国产化AEM
北极星氢能网获悉,7月10日,中核集装箱式水电解制氢装置中标候选人公示。根据公示,中标候选人第1名为苏州希倍优氢能源科技有限公司,投标报价为221.341万元。中标候选人第2名为南通安思卓新能源有限公司,投标报价为239万元。中标候选人第3名为北京明阳氢能科技有限公司,投标报价为238万元。根据招
日前,有投资者提问河钢股份:在低碳冶炼技术方面取得了重大突破,唐山基地投用了全球首套120万吨氢基竖炉,碳排降低50%,并获得了欧盟碳关税认证。请问是否属实?请介绍相关情况?谢谢董秘回答:尊敬的投资者,您好!2023年5月,公司间接控股股东河钢集团旗下张家口张宣科技公司建成投运120万吨氢冶金
北极星储能网获悉,7月11日,商务部消息,英政府公布基础设施十年战略,计划投入至少7250亿英镑。其中包括英国能源公司将投资建设英首个区域性氢气运输网络和储能设施,推动战略性输电网络建设以及电动汽车充电基础设施建设。原文如下:据英国政府网站消息,英政府6月19日发布基础设施战略,计划在未来
7月9日,志臻能源伊犁州伊宁县100万千瓦光伏制氢合成氨一体化项目(规模化制氢、氨部分)勘察-设计-施工总承包EPC项目招标。招标公告显示:志臻能源伊犁州伊宁县100万千瓦光伏制氢合成氨一体化项目(规模化制、氨部分)勘察-设计-施工总承包EPC项目己由项目审批/核准/备案机关批准。本项目己具备招标条件,
7月7日,中集安瑞科能源系统(上海)有限公司(以下简称“中集安瑞科上海”)与江苏中纯氢能科技有限公司(以下简称“江苏中纯”)正式签署氢能业务战略合作协议。双方就采用液驱氢能压缩机在绿氢以及氢交通领域的优势展开探讨并达成一致,充分发挥各自在氢能产业链上的技术专长与资源优势,共同推动绿
国家电投集团中央研究院与攀枝花钒钛高新技术产业开发区管理委员会、攀枝花钢城集团有限公司、攀枝花川港燃气有限公司在攀枝花市共同签订《掺氢管道输送应用验证及科技试验平台合作共建协议》。四方将共同推进科技部重点研发计划项目中的掺氢管道输送应用验证及科技试验平台建设。根据协议内容,四方共
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!