登录注册
请使用微信扫一扫
关注公众号完成登录
1.2 生命周期环境影响分析
本文采用GREET 2020,构建如表1所示的19种路径对应的过程,开展LCA研究,步骤如下:
1)选定车型。车型和车辆相关参数是使用GREET软件研究汽车能耗和排放的必要条件。本文为FCV、ICEV和BEV分别选择一款具体的车型作为代表。FCV选择丰田Mirai,ICEV选择凯美瑞2019款2.5G豪华版车,BEV选择比亚迪汉2020款EV超长续航版豪华型车。这些车辆的相关参数根据太平洋汽车网等资料和文献整理,具体见表2。
2)设定基本过程及参数。在GREET模型中,对于每一个过程或子过程,需要定义使用的技术、输入的物质或能量的类型、输出的物质。根据表1的路径设计,需要定义制氢、输氢、发电等不同的过程,相关参数来自文献或软件本身,软件的相关操作和设置
来自操作手册。模型设置的输氢距离约1300 km,输电线损约5%。在所有过程中,都可能直接或者间接用到电力,因此电力的构成对模型运行结果有不可忽视的影响,模型中的发电结构(混合电力)参考文献中的电力结构(见表3)。在GREET模型中,水电、风电、光伏发电这3种可再生能源发电技术的直接排放均为0,仅有用水量和效率的差别。考虑到光伏发电对地域的要求最低,成本也具有竞争力,因此本研究选择光伏发电作为可再生能源电力的代表。
3)环境影响评价方法。环境排放的危害最终会体现在对生态和人类健康的威胁上。因此,有必要评价排放污染物的环境影响,本文采用LCA常用的生态指标99(Eco-indicator 99)方法,该方法将环境影响量化为人体毒性潜力、气溶胶潜力、光化学烟雾潜力、酸化潜力、全球变暖潜力等方面,各类污染排放与环境影响指标的权重关系见表4。
2 结果与讨论
2.1 能耗与水耗
不同路径的能耗结果如图2所示。结合表1可知,混合发电制氢、煤制氢的FCV路径,以及BEV路径的WTP阶段能耗明显较高;可再生能源发电制氢、焦炉煤气副产氢联合气氢运输、天然气制氢联合气氢运输的FCV路径,以及ICEV路径的PTW阶段能耗高于WTP阶段。不同FCV路径的PTW阶段的能耗相差不多,大约为135 MJ/百km。而ICEV的PTW阶段能耗为282 MJ/百km,远高于WTP阶段的73 MJ/百km,几乎是后者的4倍。BEV在WTP和PTW阶段的能耗分别是135 MJ/百km和96 MJ/百km,前者是后者的1.4倍。这种差异是制氢路径的技术工艺造成的,化石能源能耗较高,而可再生能源能耗较低,工业副产氢的能耗低是因为能耗主要分摊在产品上而不是副产品氢上。综合分析19种路径的能耗,能耗较高的4条路径都包含混合电制氢的环节,百km能耗均超过500 MJ,其中FCV-P6(混合电制氢+液氢槽车)的能耗最高,达到551 MJ/百km,FCV-P17为524 MJ/百km。能耗较低的路径为可再生能源发电制氢路径、焦炉煤气制氢以及天然气制氢的FCV路径,能耗水平为221~239 MJ/百km。制氢+输氢路径和现场制氢路径相比,能耗差别不大。
在相同制氢技术的路径中,3种运输方式的能耗从低到高分别是气氢管道、气氢拖车、液氢槽车。以FCV-P4、FCV-P5、FCV-P6为例,由于运输方式不同引起的能耗差异仅占全部能耗的2%~3%,因此这3种路径的总能耗近乎相同。不同路径的水耗结果如图3所示。由于所有路径PTW阶段的水耗都为0,WTP阶段的水耗即为这些燃料路径WTW过程的水耗。
大部分FCV路径的水耗范围是0.04~0.08 m3/百km,都低于BEV路径的水耗0.11 m3/百km,有些路径的水耗甚至低于ICEV路径的0.05 m3/百km。但是和混合发电制氢相关的FCV路径水耗较高,高达0.3 m3/百km,几乎是BEV的3倍、ICEV的6倍。这是由于混合发电部分的水耗较高,而混合发电的水耗又取决于电力结构。中国电力结构以水耗较高的火电为主,导致混合发电的WTP阶段水耗较高。如果未来电力结构发生变化,可再生能源比例逐渐提高,则该FCV路径的水耗也会随之降低。
2.2 环境排放
环境排放关注9种污染物:CH4、CO、CO2、N2O、NOx、PM2.5、PM10、SOx、VOC。通过GREET模型计算19种路径在WTP和PTW阶段的9种污染物的排放水平。由于仅有ICEV存在PTW阶段的污染物,所以不分别展示WTP和PTW各自的情况,仅显示每个路径每种污染物WTW的排放量,结果见表5。
整体而言,FCV路径的环境排放并不总优于或劣于ICEV及BEV,这和FCV路径的具体制氢和输氢方式有关。ICEV路径的某些污染物排放较高,例如CO、CO2、NOx和VOC,4种污染物排放量分别是17025 280、20、20 g/百km。BEV路径的排放则普遍较低,CH4、NOx、SOx、CO2分别是30、10、50、18 810 g/百km。本研究对BEV的LCA分析结果是针对使用电网电(混合电)的情景。本研究也对BEV使用可再生能源发电的情景进行了LCA分析,结果表明:在可再生能源发电情景下,BEV的这9种主要污染物排放均为0,是所有路径中最为环保的选择。综合比较环境排放水平,可再生能源发电制氢的燃料电池汽车表现最好,其他路径的排放水平跟污染物类型有关。例如,混合发电制氢的VOC排放几乎为0,但是NOx、SOx、PM10和CO2的排放量很高。另外,和制氢过程相比,输氢过程的能耗和环境影响都比较小。
2.3 环境毒性
对于环境毒性,用环境排放数据和生态指标99计算人体毒性潜力、气溶胶潜力、光化学烟雾潜力、酸化潜力和全球变暖潜力。为方便对比,对这5项指标进行归一化处理,结果如图4所示。
由图4可知,FCV路径和ICEV及BEV路径相比,并不具有稳定的优势或劣势,这和FCV路径的具体制氢和输氢方式有关。ICEV路径的某些污染物排放较高,而BEV路径的排放则普遍较低。在19种路径中,FCV-P1、FCV-P2、FCV-P3、FCV-P16的所有毒性都表现得最低,这说明可再生能源发电制氢的综合环境毒性最小,其他路径的排放水平跟污染物类型有关,这一特点和环境排放类似。混合发电制氢在所有指标中都表现出较强的毒性,这是由于混合发电的石化燃料发电占比过高造成的。
2.4 情景分析
电解水制氢是未来具有重要发展前景的技术,可作为各种P2X(power-to-chemicals)的重要内容,对于解决可再生能源弃电问题具有重要意义。该技术的环境影响取决于电力的生产结构。在本研究中,FCV-P1至FCV-P3为100%可再生能源发电制氢条件下FCV的燃料路径,而FCV-P4至FCV-P6为2019年发电结构下(可再生能源占比较低)涵盖电制氢技术的FCV的燃料路径。为进一步探讨可再生能源发电比例如何影响FCV燃料路径的环境排放,本研究参考中国石油经济技术研究院对2030年和2050年中国发电结构的预测,在文中设立了2030年(水电、风电、光伏发电合计占比35%)和2050年(水电、风电、光伏发电合计占比55%)2种发电结构;进一步,将这2种结构下电制氢技术与3种氢气储运技术进行组合,形成6条新的技术路径(包括FCV-P4-2030、FCV-P5-2030、FCV-P6-2030、FCV-P4-2050、FCV-P5-2050和FCV-P6-2050);最后,基于GREET模型计算这些技术路径的LCA结果,并与本研究设计的19条技术路径(特别是FCV-P1至FCV-P6这6条技术路径)的环境排放结果进行归一化后的对比,结果如图5所示
研究表明:①随着可再生能源占比逐渐增加,FCV燃料路径的能耗、水耗、污染物排放均逐渐降低;②与化石能源制氢和工业副产氢相比,在2030年和2050年发电结构下,涵盖电解水技术的FCV燃料路径的能耗和环境排放(如碳排放)仍然较高,甚至比ICEV及BEV(混合电+锂离子电动车)路径的排放都要高。
3 结论与展望
针对FCV对环境影响的争议,本文综合考虑中国当前主要的氢燃料生产、运输等不同技术组合,分析了17种FCV燃料路径的能耗、水耗、环境排放及其环境影响,并对比BEV和ICEV,提出FCV在氢燃料路径发展方面的相关建议。研究表明:①各路径在能耗、水耗、环境排放、环境毒性方面差异很大,其中FCV-P3(可再生能源发电制氢+液氢槽车)和FCV-P16(可再生能源发电+输电+现场制氢)这2条路径的环境影响最小,远低于其他路径,也低于BEV和ICEV的环境影响;②涵盖混合电制氢过程的路径(如FCV-P6、FCV-P17等)具有较高的能耗、水耗和环境影响,甚至高于涵盖煤制氢、天然气制氢、工业副产氢过程的路径(FCV-P7至FCV-P15);③BEV在各方面的环境影响低于大部分的FCV路径,高于FCV-P3和FCV-P16,IECV在VOC、CO和NOx排放方面远高于FCV的各路径,但其环境影响并非全部劣于FCV的各路径;④随着可再生能源占比的逐渐增加,FCV燃料路径的能耗、水耗、污染物排放均逐渐降低。涵盖可再生能源发电制氢过程的路径具有较低的能耗、水耗、环境排放和环境毒性,但这些路径目前具有较高的经济成本;涵盖煤制氢、天然气制氢、工业副产氢过程的路径的能耗和水耗较高,但却具有较低的成本。按照目前的技术水平和电力结构、能源结构,本文研究的17种FCV路径的环境和经济效益无法同时达到最优。未来电力结构、技术水平发生变化的情况下,用本文提出的研究方法可对上述技术路径进行重新评价。本文的研究方法对于分析FCV的能耗、排放、成本有借鉴作用,未来将根据不同地区的实际情况,采用更多本地化数据,使研究结果具有更大的参考价值。
参考文献
[1] International Energy Agency. Global energy & CO2 status report 2019[R/OL].[2021-01-28]./reports/global-energy-co2-status-report-2019.
[2] HWANG J J. Sustainability study of hydrogen pathways for fuel cell vehicle applications[J]. Renewable and Sustainable Energy Reviews, 2013, 19: 220-229.
[3] YANG Z J, WANG B W, JIAO K. Life cycle assessment of fuel cell, electric and internal combustion engine vehicles under different fuel scenarios and driving mileages in China[J].Energy, 2020, 198: 117365.
[4] THOMAS C E, JAMES B D, LOMAX F D Jr, et al. Fuel options for the fuel cell vehicle: hydrogen, methanol or gasoline?[J]. International Journal of Hydrogen Energy, 2000,25(6): 551-567.
[5] GRANOVSKII M, DINCER I, ROSEN M A. Economic and environmental comparison of conventional, hybrid, electric and hydrogen fuel cell vehicles[J]. Journal of Power Sources, 2006,159(2): 1186-1193.
[6] ASHNANI M H M, MIREMADI T, JOHARI A, et al. Environmental impact of alternative fuels and vehicle technologies: a life cycle assessment perspective[J]. Procedia Environmental Sciences, 2015, 30: 205-210.
[7] KIM I, KIM J, LEE J. Dynamic analysis of well-to-wheel electric and hydrogen vehicles greenhouse gas emissions: Focusing on consumer preferences and power mix changes in South Korea[J]. Applied Energy, 2020, 260: 114281.
[8] ABDELKAREEM M A, ELSAID K, WILBERFORCE T, et al. Environmental aspects of fuel cells: a review[J]. Science of the Total Environment, 2021, 752: 141803.
[9] LIU X Y, REDDI K, ELGOWAINY A, et al. Comparison of well-to-wheels energy use and emissions of a hydrogen fuel cell electric vehicle relative to a conventional gasoline-powered internal combustion engine vehicle[J]. International Journal of Hydrogen Energy, 2020, 45(1): 972-983.
[10] ABDEREZZAK B, BUSAWON K, BINNS R. Flows consumption assessment study for fuel cell vehicles: towards a popularization of FCVs technology[J]. International Journal of
Hydrogen Energy, 2017, 42(17): 12905-12911.
[11] HE X, WANG F, WALLINGTON T J, et al. Well-to-wheels emissions, costs, and feedstock potentials for light-duty hydrogen fuel cell vehicles in China in 2017 and 2030[J].Renewable and Sustainable Energy Reviews, 2021, 137: 110477.
[12] ZAMEL N, LI X G. Life cycle analysis of vehicles powered by a fuel cell and by internal combustion engine for Canada[J]. Journal of Power Sources, 2006, 155(2): 297-310.
[13] LEE D Y, ELGOWAINY A, KOTZ A, et al. Life-cycle implications of hydrogen fuel cell electric vehicle technology for medium- and heavy-duty trucks[J]. Journal of Power Sources, 2018, 393: 217-229.
[14] QIAN F Y, GAO W J, YANG Y W, et al. Economic optimization and potential analysis of fuel cell vehicle-togrid (FCV2G) system with large-scale buildings[J]. Energy Conversion and Management, 2020, 205: 112463.
[15] AHMADI P, KJEANG E. Comparative life cycle assessment of hydrogen fuel cell passenger vehicles in different Canadian provinces[J]. International Journal of Hydrogen Energy, 2015,
40(38): 12905-12917.
[16] PEREIRA S R, COELHO M C. Life cycle analysis of hydrogenA well-to-wheels analysis for Portugal[J]. International Journal of Hydrogen Energy, 2013, 38(5): 2029-2038.
[17] 孔德洋,唐闻翀,柳文灿,等. 燃料电池汽车能耗、排放与经济性评估[J]. 同济大学学报(自然科学版),2018,46(4):498-503.
KONG Deyang, TANG Wenchong, LIU Wencan, et al. Energy consumption, emissions and economic evaluation of fuel cell vehicles[J]. Journal of Tongji University (Natural Science), 2018, 46(4): 498-503(in Chinese).
[18] 陈轶嵩,丁振森,王文君,等. 氢燃料电池汽车不同制氢方案的全生命周期评价及情景模拟研究[J]. 中国公路学报,2019,32(5):172-180.
CHEN Yisong, DING Zhensen, WANG Wenjun, et al. Lifecycle assessment and scenario simulation of four hydrogen production schemes for hydrogen fuel cell vehicles[J]. China Journal of Highway and Transport, 2019, 32(5):172-180(in Chinese).
[19] ORUC O, DINCER I. Development and performance assessment power generating systems using clean hydrogen[J]. Energy, 2021, 215: 119100.
[20] WULF C, KALTSCHMITT M. Hydrogen supply chains for mobility—environmental and economic assessment[J]. Sustainability, 2018, 10(6): 1699.
[21] WULF C, REUß M, GRUBE T, et al. Life cycle assessment of hydrogen transport and distribution options[J]. Journal of Cleaner Production, 2018, 199: 431-443.
[22] ANDERSON R, KESHWANI D, GURU A, et al. An integrated modeling framework for crop and biofuel systems using the DSSAT and GREET models[J]. Environmental Modelling & Software, 2018, 108: 40-50.
[23] PEREIRA L G, CAVALETT O, BONOMI A, et al. Comparison of biofuel life-cycle GHG emissions assessment tools: the case studies of ethanol produced from sugarcane,corn, and wheat[J]. Renewable and Sustainable Energy Reviews, 2019, 110: 1-12.
[24] WEI Q S, ZHANG X, OH B S. The effect of driving cycles and H2 production pathways on the lifecycle analysis of hydrogen fuel cell vehicle: a case study in South Korea[J]. International
Journal of Hydrogen Energy, 2021, 46(10): 7622-7633.
[25] UGURLU A, OZTUNA S. How liquid hydrogen production methods affect emissions in liquid hydrogen powered vehicles?[J]. International Journal of Hydrogen Energy, 2020,45(60): 35269-35280.
[26] 李璐伶,樊栓狮,陈秋雄,等. 储氢技术研究现状及展望[J]. 储能科学与技术,2018,7(4):586-594.
LI Luling, FAN Shuanshi, CHEN Qiuxiong, et al. Hydrogen storage technology: current status and prospects[J]. Energy Storage Science and Technology, 2018, 7(4): 586-594(in Chinese).
[27] 黄格省,李锦山,魏寿祥,等. 化石原料制氢技术发展现状与经济性分析[J]. 化工进展,2019,38(12):5217-5224.
HUANG Gesheng, LI Jinshan, WEI Shouxiang, et al. Status and economic analysis of hydrogen production technology from fossil raw materials[J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5217-5224(in Chinese).
[28] GaBi. Description of the Eco-indicator 99 method[EB/OL].[2021-01-28]. /support/gabi/gabi-lcia-documentation/eco-indicator-99.
[29] 金莉娜,陆怡雅,谢婧媛,等. 基于GREET模型的新能源汽车全生命周期的环境与经济效益分析[J]. 资源与产业,2019,21(5):1-8.
JIN Lina, LU Yiya, XIE Jingyuan, et al. Environment and economy analysis on entire life circle of new energy vehicles based on GREET model[J]. Resources & Industries, 2019,21(5): 1-8(in Chinese).
[30] WANG M, WU Y, ELGOWAINY A. Operating manual for GREET: version 1.7[R]. Center for Transportation Research, Energy Systems Division, Argonne National Laboratory, 2007.
[31] 水电水利规划设计总院. 中国可再生能源发展报告2019[R]. 北京:水电水利规划设计总院,2020.
[32] 李书华. 电动汽车全生命周期分析及环境效益评价[D]. 长 春:吉林大学,2014.
[33] 李佳蓉,林今,肖晋宇,等. 面向可再生能源消纳的电化工(P2X)技术分析及其能耗水平对比[J]. 全球能源互联网,2020,3(1):92-102.
LI Jiarong, LIN Jin, XIAO Jinyu, et al. Technical and energy consumption comparison of power-to-chemicals (P2X) technologies for renewable energy integration[J]. Journal of Global Energy Interconnection, 2020, 3(1): 92-102(in Chinese).
[34] 中国石油经济技术研究院. 2050年世界与中国能源展望(2020年版)[R]. 北京:中国石油经济技术研究院,2020.
[35] 单彤文,宋鹏飞,李又武,等. 制氢、储运和加注全产业链氢气成本分析[J]. 天然气化工(C1化学与化工),2020,45(1):85-90.
SHAN Tongwen, SONG Pengfei, LI Youwu, et al. Cost analysis of hydrogen from the perspective of the whole industrial chain of production, storage, transportation and refueling[J]. Natural Gas Chemical Industry, 2020, 45(1): 85-90(in Chinese).
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
6月21日,亿华通发布了《关于完成董事会换届选举及聘任高级管理人员、证券事务代表的公告》。根据公告,张国强先生、宋海英女士、戴东哲女士、宋峰先生当选为亿华通非独立董事,纪雪洪先生、陈素权先生、李志杰先生当选为公司独立非执行董事,张红黎女士当选为公司职工代表董事;全体董事一致同意选举
氢燃料电池汽车产业迈入提质增速新阶段——2025国际氢能与燃料电池汽车大会主论坛观察近年来,在全球加速推进碳中和战略的大背景下,氢能以其来源丰富、绿色低碳等特征,在交通、工业等领域展现出了巨大的应用潜力,正加速以“未来能源”的身份融入社会大众的日常生活中。日前,中国汽车工程学会与国际
6月23日,氢动科技广东氢动“氢车万里行”启动仪式隆重举行,珠三角-粤西示范线常态化运营,政企学研多方代表齐聚,共促氢能冷链运输规模化发展,为双碳目标下的绿色物流转型树立实践标杆。在“氢车万里行”的车轮滚滚中,一条连接珠三角与粤西的绿色冷链动脉正焕发勃勃生机。本条线路主要开展珠三角区
日前,安阳市生态环境局印发《安阳市“无废城市”建设实施方案(2025—2027年)》(征求意见稿)。文件提出,到2027年底,安阳市“无废城市”制度、市场、技术、监管体系基本完善,主要指标达到省内先进水平,减污降碳协同增效作用初显;安阳市固体废物智慧监管信息平台上线运营,实现五大领域固体废物
北极星氢能网获悉,6月20日,浙江舟山群岛新区六横管理委员会发布《关于进一步推动六横实体经济高质量发展的若干政策》。政策中明确:支持氢能产业发展。鼓励开展清洁能源制氢、储能、厂区氢能车辆应用等一体化示范场景应用,对企业发生设计研发、制氢设备、厂区氢能源车辆购置、租赁等费用给予30%,最
近日,国家重点研发计划“用户侧燃料电池微网集成与主动支撑电网关键技术”项目示范工程在广州国际氢能产业园正式开工建设。该项目由广东电网公司广州供电局牵头,预计将在2026年建成国内规模最大“向上支撑电网、向下服务用户”氢热电高效联供燃料电池微网,热电联供综合效率超90%,达国际领先水平。
编者按:近日,交通运输部、国家发展改革委等十部门联合印发《关于推动交通运输与能源融合发展的指导意见》(以下简称《交能融合指导意见》),明确交通运输与能源融合发展目标,部署了8个方面25项重点任务。交能融合委员会刊发“《交能融合指导意见》系列解读”,本文是系列解读第四篇。来源:交能融
北极星售电网获悉,6月23日,广东广州市人民政府发布关于印发《广州市推动智能网联新能源汽车产业发展三年行动计划》(以下简称《计划》)的通知。《计划》指出,鼓励整车企业强化V2G车型研发和售后服务,探索“电力充储放一张网”建设,开展新能源车辆智能有序充电、虚拟电厂、光储充一体化等多模式创
越南工贸部副部长阮黄龙6月10日在巴黎与法国核安全与辐射防护局(ASNR)和法国原子能与替代能源委员会(CEA)举行工作会谈。双方就各自观点、愿景及合作需求进行坦诚交流,并一致同意,今后将在以下4方面开展具体合作:支持越南规划核能发展,建立核安全法律框架与政策体系,确保符合国际标准;加强人
北极星氢能网从“氢通新能源”获悉,6月18日,由中国汽车工程学会和氢能燃料电池协会共同主办的2025国际氢能与燃料电池汽车大会暨展览会在上海汽车会展中心开幕。作为全球领先的氢能综合解决方案提供商,氢通能源集团以“氢链未来通领全域”为主题亮相展会,并举行氢通能源集团科技战略暨260吨氢能矿卡
北极星氢能网获悉,2025年6月18日,广东氢能产业迎来关键整合。广东云韬氢能科技有限公司(云韬氢能)、广州白云新能源科技有限公司(白云新能源)、广州白云金科控股集团有限公司(白云金控)联合体与宝武清洁能源有限公司(宝武清能)、宝武集团中南钢铁有限公司(中南钢铁)正式签署广东宝氢科技有
各地氢能发展虽然已取得一定进展,但仍面临一些问题和挑战,涉及基础设施、成本、技术等多个方面,这些方面往往相互交织,有时互为因果。来源:电联新媒作者:郑平近年来,国内多地将发展氢能作为促进产业发展和实现碳达峰、碳中和目标的重要抓手,推出不同层面的氢能发展规划,并投入大量资源推动具体
氢燃料电池汽车产业迈入提质增速新阶段——2025国际氢能与燃料电池汽车大会主论坛观察近年来,在全球加速推进碳中和战略的大背景下,氢能以其来源丰富、绿色低碳等特征,在交通、工业等领域展现出了巨大的应用潜力,正加速以“未来能源”的身份融入社会大众的日常生活中。日前,中国汽车工程学会与国际
近日,国家重点研发计划“用户侧燃料电池微网集成与主动支撑电网关键技术”项目示范工程在广州国际氢能产业园正式开工建设。该项目由广东电网公司广州供电局牵头,预计将在2026年建成国内规模最大“向上支撑电网、向下服务用户”氢热电高效联供燃料电池微网,热电联供综合效率超90%,达国际领先水平。
北极星售电网获悉,6月23日,广东广州市人民政府发布关于印发《广州市推动智能网联新能源汽车产业发展三年行动计划》(以下简称《计划》)的通知。《计划》指出,鼓励整车企业强化V2G车型研发和售后服务,探索“电力充储放一张网”建设,开展新能源车辆智能有序充电、虚拟电厂、光储充一体化等多模式创
北极星氢能网从“氢通新能源”获悉,6月18日,由中国汽车工程学会和氢能燃料电池协会共同主办的2025国际氢能与燃料电池汽车大会暨展览会在上海汽车会展中心开幕。作为全球领先的氢能综合解决方案提供商,氢通能源集团以“氢链未来通领全域”为主题亮相展会,并举行氢通能源集团科技战略暨260吨氢能矿卡
4月25日,交通运输部、国家发展改革委等十部门联合发布《关于推动交通运输与能源融合发展的指导意见》(以下简称《指导意见》),明确要求到2027年,基本形成多部门协同的交通运输与能源融合发展机制,政策法规、标准规范、技术装备体系逐步健全。交通运输行业电能占行业终端用能的比例达到10%。交通基
北极星氢能网获悉,近日,红旗氢燃料电池汽车项目在中国汽车技术研究中心(以下简称“中汽研”)成功通过氢耗与续驶里程关键试验,不仅验证了红旗氢燃料电池系统的卓越性能,更展现了红旗研发将前瞻技术快速转化为产品竞争力的技术实力。此次试验在中汽研国家级实验室内严格按照国际最严苛的CHTC-C工况
北极星氢能网获悉,近日,由山西美锦能源股份有限公司(以下简称:美锦能源)与张久俊院士团队联合创立的骊能新能源科技(北京)有限公司(以下简称"骊能新能源")宣布完成A轮融资,标志着国内气体扩散层(GDL)领域的技术突破并获得资本市场高度青睐,同时也标志着美锦氢能产业链的关键环节——碳纸项
北极星氢能网获悉,6月18日,福建省发展和改革委员会发布《福建省氢能产业创新发展中长期规划(2025—2035年)》的通知。通知指出,氢能产业分为两个阶段发展任务:一是2025至2030年为起步发展期,建成10个以上高能级创新平台,培育1-3个百兆瓦级绿电制氢示范项目,建成1-3个氢基绿色船舶燃料加注港口
北极星氢能网获悉,湖南省政府在官网发布了《湖南省氢能产业发展三年行动方案》(以下简称《方案》)。方案提出,到2027年在交通运输、氢储能、氢冶炼、氢化工等部分领域实现规模应用,市场机制和管理机制更加健全,集聚具有全国影响力的骨干企业10家左右,氢能关键材料部分领域产业规模全国领先,氢能
北极星氢能网获悉,近日,由国家市场监督管理总局批准筹建的国家氢燃料电池汽车质量检验检测中心(以下简称“中心”)在北京大兴国际氢能示范区正式投入使用,标志着我国在氢能检测领域迈出了重要一步,为氢燃料电池汽车产业的高质量发展提供了坚实的技术支撑。填补空白,打造全链条检测平台中心总投资
“十四五”以来,交通运输部深入贯彻落实党中央、国务院决策部署,统筹推进交通运输节能减排和环境保护工作,加快推动行业绿色低碳转型。一、系统谋划交通运输领域节能降碳工作制定碳达峰碳中和交通运输领域“1+N”政策体系,会同国家发展改革委、工业和信息化部联合制定《交通运输领域绿色低碳发展实
各地氢能发展虽然已取得一定进展,但仍面临一些问题和挑战,涉及基础设施、成本、技术等多个方面,这些方面往往相互交织,有时互为因果。来源:电联新媒作者:郑平近年来,国内多地将发展氢能作为促进产业发展和实现碳达峰、碳中和目标的重要抓手,推出不同层面的氢能发展规划,并投入大量资源推动具体
氢燃料电池汽车产业迈入提质增速新阶段——2025国际氢能与燃料电池汽车大会主论坛观察近年来,在全球加速推进碳中和战略的大背景下,氢能以其来源丰富、绿色低碳等特征,在交通、工业等领域展现出了巨大的应用潜力,正加速以“未来能源”的身份融入社会大众的日常生活中。日前,中国汽车工程学会与国际
6月23日,氢动科技广东氢动“氢车万里行”启动仪式隆重举行,珠三角-粤西示范线常态化运营,政企学研多方代表齐聚,共促氢能冷链运输规模化发展,为双碳目标下的绿色物流转型树立实践标杆。在“氢车万里行”的车轮滚滚中,一条连接珠三角与粤西的绿色冷链动脉正焕发勃勃生机。本条线路主要开展珠三角区
日前,安阳市生态环境局印发《安阳市“无废城市”建设实施方案(2025—2027年)》(征求意见稿)。文件提出,到2027年底,安阳市“无废城市”制度、市场、技术、监管体系基本完善,主要指标达到省内先进水平,减污降碳协同增效作用初显;安阳市固体废物智慧监管信息平台上线运营,实现五大领域固体废物
装备制造业是国家制造业的脊梁。东方电气集团立足国家所需、产业所趋、央企所能,主动扛起保障国家能源安全的重任,众志成城攻克自主燃机技术难关,国内首台自主研制F级50兆瓦燃机(简称G50燃机)成功商运、15兆瓦燃机(简称G15燃机)成功点火,引领构建产业链创新发展生态,推动自主燃机实现“从0到1
6月23日上午9时28分,中能建兰州新区绿电制氢示范项目(以下简称“兰州项目”)首次运行,10时58分负荷升至30%,相关性能参数正常,达到既定目标,制氢设备首次运行一次成功,正式产出氢气。兰州项目使用一套1000Nm³/h碱性水电解制氢成套装备,包括电解槽、分离撬块、纯化撬块以及水碱箱等配套设备,
6月20日,中煤陕西能源化工集团有限公司中煤榆林煤炭深加工基地项目单堆400标方PEM电解槽设备采购项目公告:项目简介与招标范围:项目简介:中煤陕西能源化工集团有限公司位于陕西省榆林市高新技术产业园区榆马大道北B1路东,一期装置规模为年产205万吨甲醇、60万吨聚烯烃装置以及配套公用工程,已于20
北极星氢能网获悉,6月20日,国蒙氢能科技(巴彦淖尔)有限公司甘其毛都口岸加工园区绿电制氢项目(一期)-公开招标公告:项目名称:国蒙氢能科技(巴彦淖尔)有限公司甘其毛都口岸加工园区绿电制氢项目(一期)。建设地点:巴彦淖尔市-乌拉特中旗-甘其毛都口岸加工园区经四路西,中轴路北,经三路东,远鑫公司
近日,四川省经济和信息化厅发布经信系统重点调度的2025年500个重点工业和技术改造项目名单,项目总投资17048.9亿元,2025年计划投资3291.6亿元。其中包含川投泸州天然气发电及配工程项目、四川华电内江白马2×475兆瓦燃机示范项目、四川达州燃气电站二期工程、国家电投川东北高效清洁煤电综合利用一体
6月18日20点18分,湖南能源集团所属湘投国际(衡东)燃气发电有限公司(以下简称“衡东气电”)#1机组燃机首次点火一次成功,湖南省第一个重型燃机调峰发电项目建设取得里程碑式重大突破,也标志着1号机组主设备热态调试全面启动,为1号机组的整组启动、并网及满负荷168试运行工作奠定坚实基础,也为2
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!