登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
为什么提升燃料电池的功率密度至关重要?首先,提升燃料电池的功率密度能够减小电堆体积,减低制造成本。
(来源:微信公众号“香橙会研究院” ID:xch-club 作者:黄振宇)
另外,提升燃料电池的功率密度即意味着提升其性能,这可以降低运行成本。日本的NEDO(New Energy and Industrial Technology Development Organization)部门提出了雄心壮志的目标,于2030年和2040年电堆的体积功率密度分别达到6kW/L和9kW/L。
那么,如何在现有电堆设计的基础上进一步提升其功率密度?焦魁教授等人从膜电极组件(扩散层、催化层、质子交换膜)、双极板4个组件给出了进一步优化方向,如表1所示,详述如下。
表1 电堆4个部件存在的问题、优化方向、预估性能提升率与未来发展趋势
1.扩散层
未来近几年,鉴于碳纸在电导率、机械强度、化学耐受性和制造成本等方面的优点,其仍将作为扩散层的主流选择。扩散层的结构优化技术,如激光打孔在积极开发中并可能实际运用。另外,扩散层的孔隙率优化技术可以通过控制碳纤维的方法实现。孔隙率优化的指导思想之一是协同设计流道和扩散层结构以达到反应气体和水的最佳传递。例如,降低扩散层一侧或两侧的孔隙率能够增大孔隙率梯度,有助于反应气体的供给与水的排出。
扩散层设计中另一个重要的考量因素是不同组件间的界面阻抗,主要取决于材料属性和组装工艺。双极板与扩散层间的接触阻抗是电阻抗的主要来源,约占扩散层自身阻抗两个量级。为了减少甚至消除双极板与扩散层间的接触阻抗,一体化设计是一种新的研究方向。这需要构造出另一种新的组件能够同时满足扩散层和双极板所有功能,包括传导电流,分配反应气体与水管理。这样反应气体的传递路径能够变得更短,从而满足高电流密度(3-4A·cm-2)工况下的传质需求。
设定的功率密度目标(6-9kW/L)对水管理能力提出了更高的要求。涂覆在扩散层表面的微孔层(PTFE(疏水物质)含量一般为20%-40%)能够有效排除催化层与扩散层界面的液态水,防止其发生水淹工况阻碍气体传质。然而,随着质子交换膜技术的进步,能够使电堆在更高的温度和更低的湿度下运行,从而简化水管理。这时,微孔层内添加疏水物质不再是唯一的选择。另外,微孔层和扩散层润湿性的设计及其微孔结构将随着现实的需要进行调整。例如,亲水的阳极和疏水的阴极,或者是局部亲水局部疏水的膜电极分区域设计,这些设计都更有利于不加湿燃料电池系统的运行。
总结来说,扩散层和微孔层的优化匹配设计能够进一步提升燃料电池10%的功率。
图1. 扩散层的两种优化方向。(左)梯度孔隙率;(右)扩散层-双极板的集成设计
2.催化层
催化层的性能对维持高功率密度至关重要。要达到9kW/L的功率密度,需要在4.4A·cm-2的工作电流密度下达到超过0.8V的高输出电压。这需要催化活性的巨大突破。新型的催化剂结构设计,如纳米笼、纳米线、纳米晶体等,是一种提升催化剂比活度的重要手段。然而,很多的新型催化剂结构尽管获得了非常高的质量比活性,但是这些结构本身处于亚稳定的状态,独特的形状特征将随着催化剂的老化而消失。因此,将来的一个挑战是如何在燃料电池的真实运行环境中保持其超高比活性的前提下提升寿命。
图2 新型催化剂
图3 碳支撑优化
催化层中离聚物的分布对其离子导电率和铂利用率具有非常重要的影响。碳支撑,最佳内部孔径在4-7mm,添加氮元素能够使离聚物分布更均匀。另外,也需要综合考虑离聚物的侧链长度。因为尽管缩短离聚物的侧链长度能够增强质子传导能力,但也会增加反应物的传质阻力。最后,应该注意催化层和质子交换膜界面离聚物不断地吸水溶胀-脱水消溶胀过程会导致界面衰减,必须充分保证催化层中的离聚物与质子交换膜良好接触。另外还需要制造高稳定性和不同湿度下含水能力变化不大的离聚物。
膜电极的有序结构设计,如图4所示,能够提供高效的质子传输通道与反应位点,确保高铂利用率,能够在低铂负载的条件下提供高功率密度,是一种具有前景的膜电极设计方式,但目前尚未商业化运用。
总结来说,综合上述催化层设计的优化方法,期望提升40%的功率密度。
图4 膜电极的有序结构设计
3.质子交换膜
质子交换膜应该朝这个方向发展:低湿度条件下具有高质子传导率、电化学反应工况下良好的稳定性以及具有好的机械强度、不易穿孔。目前增强广泛商业化运用的全氟磺酸质子交换膜性能的常用方法是减薄其厚度。如日本第一代MIRAI汽车使用了10um的超薄全氟磺酸膜,降低了质子和水的传导阻力,更实现了避免阳极水淹的自增湿。然而,该种方法面临机械强度不足和化学耐受性较低的严峻挑战。三种方法可以缓解上述问题。1、双极板的协同设计,给予质子交换膜更有多的支撑,如日本第一代MIRAI;2、添加铈盐;3.在添加铈盐的基础上采用聚多巴胺进行进一步处理。
增加质子交换膜低湿工况下的质子传导能力能够减少加湿设备的需求,从而间接增加功率密度。基于仙人掌仿生的质子交换膜结构设计能够避免内部水分流失,从而使其能够达到自增湿运行。另外,穿透平面的定向质子传输通道的结构设计也具有良好的保水性和质子传导能力。最后,通过在聚合物中增加亚铁氰化物基团不仅能够提升质子传导能力,还能够增加质子交换膜对氧化自由基降解的抵抗力,可能是一种可行的低成本的长寿命质子交换膜的制造方法。
未来5-10年,全氟磺酸质子交换膜仍是主流,相关的优化措施能够提升10%-20%的功率密度。然而,长期来看,较便宜的非全氟化质子交换膜有望进一步发展并运用。
4.双极板
自从20世纪末期质子交换膜燃料电池用于汽车工业,双极板的发展和创新便一直没有中断。然而,当电池的功率密度需要进一步提升至9kW/L时,仍然需要更加先进的双极板技术以进一步将现在的功率密度提升20%。焦魁教授等人结合美国DOE和日本NEDO部门的报告,提出了目前双极板技术的局限性并指出一些需要克服的技术难题。
图5. 双极板的发展趋势
传质能力是双极板设计的一个重要评价标准,主要取决于流场结构。目前,存在两种传统的流道结构优化路线,如图5所示。
一种是优化流道和脊的相对宽度;另一种是改变传统的脊结构,如针状流场。
对于传统流场来说,这些新型流场具有优点,但同样增加了复杂性。如日本MIRAI的3D精细流场,尽管极大地增强了传质,但其鱼鳞状的挡板结构容易产生表面裂纹,从而将金属基质暴露在酸性的环境。另外,3D流场的加工费用增大了双极板的总成本。故而,丰田将第二代MIRAI流场替换成了2D波浪形流场。这似乎表明传质强化不是目前电堆设计的一个重要考量因素。然而,应该看到,目前丰田第二代MIRAI的功率密度仅为4.4kW/L,与9kW/L仍存在非常大的差距。流道结构优化,如内置障碍物等,一般会增大气体流速,从而增大压降,导致寄生功率损失上升。另外,高电流密度下的水管理问题也是流道设计优化需要解决的难点。随着质子交换膜的优化,燃料电池以后可以在100℃以上运行,水的蒸发可以解决水管理问题。
热传导和电子传导也是双极板设计的两个挑战。因为电堆边缘热耗散可以忽略不计,大多数废热需要经过膜电极和双极板导出传递给冷却液后在外部通过换热设备进行对流换热消除。对于4kW/L的电堆来说,扩散层和双极板间的界面热阻是双极板自身热阻的10倍。另外,双极板和扩散层的界面电阻为10-6Ω·m2,比双极板自身电阻10-10Ω·m2高了4个量级。故而需要减小双极板与膜电极间的接触阻抗,可以从电堆的紧凑性、双极板和扩散层间的接触面积、双极板的表面粗糙度等方面着手。另外,电堆的冷却流道需要集成入双极板中,故而还存在增加冷却能力与双极板厚度增加之间的矛盾。
电化学腐蚀和机械损伤是双极板寿命衰减的两大主要原因。当电流密度进一步增长(约3.8A·cm-2),各组件的电化学腐蚀,特别是金属双极板,是电池寿命衰减的主要原因。为了缓解双极板的腐蚀,其表面通常进行钝化处理,一般方法为加入能够形成低电阻氧化膜的材料或沉积耐腐蚀涂层。目前使用的涂层如多层碳化铬等已经达到了美国DOE部门2020年设定的标准:小于1uA·cm-2。然而,涂层技术仍然需要进一步发展,以达到更好的腐蚀阻抗、更低的接触阻抗以及最为重要的:更低的制造成本。机械上,MEA的膨胀和收缩、反应气体和冷却液局部压力的变化都会引起双极板载荷和压力的波动,从而导致其塑性变形和疲劳失效。2020年美国DOE部门关于双极板弯曲强度和冲击强度的标准分别为25Mpa和40.5J·m-1。典型的双极板材料不锈钢和柔性石墨已经满足了这些标准。然而,制造过程中或长期运行后会发生局部厚度减少、裂纹、塑性变形敏感性增加等不利现象。此外,对于更为精细的脊结构,较高的预紧力会导致双极板变形,使双极板与扩散层接触不良。
考虑双极板在实现传质能力的同时,应同时考虑其制造难度是否与燃料电池产品量产的产业基础相对应。双极板约占电堆成本和体积的30%和70%,取决于材料、构造能力和涂层技术。美国能源部2020年关于双极板的总成本预算包括材料、成形和涂层,为3美元每千瓦,而目前仅 SS 316L型双极板的基质材料就要花费2.7美元每千瓦,使该成本目前难以完成。日本NEDO和美国DOE部门都强调了降低双极板的成本对燃料电池技术和燃料电池汽车产业进一步发展的重要性。
5. 多孔双极板-膜电极一体化设计
一种新型的多孔泡沫金属/石墨双极板可以用来分配反应气体,如图1右图所示。在适当的机械性能下,体积和质量减小的泡沫金属双极板能够达到物质和热量的均匀分布。这些多孔材料的几何参数,如孔隙率、孔密度和孔的形状等都是可控的并且制造成本远低于流场精细加工的成本。这种结构可以取代GDL使外部的反应气体通过多孔双极板-膜电极一体化设计直接与催化层传质。这样不仅结构更为紧凑,而且直接避免了双极板与扩散层间的接触阻抗。总结来说,双极板-膜电极一体化设计能够同时满足传质强化、缓解水淹、减少电堆体积的优点,可以提供一个达到目标功率密度的可行方法。
香橙会研究院简评
(1)总的来说,焦魁教授与侯中军博士、Michael D.Guiver的这篇论文,指出了在现有材料体系下电堆各组件存在的问题以及解决的方法,并给每个组件优化预估了一定的功率提升指标,具有前瞻性,能够作为国内电堆厂家技术发展路径的参考。
除此之外,从这篇文章中也可以凝练出评价一个电堆产商的水准:
首先,最基本的,需要有良好的电堆装配技术(应该指出,燃料电池的组装工艺是衡量电堆公司技术水平的重要考察标准,科技部也斥资5500万支持“高精度电堆组装及成套批量制造装备技术”。目前,氢璞创能和新源动力等公司都有自动化的燃料电池电堆生产线);
往上一层,则是需要稳定且有实力的战略合作伙伴进行双极板-膜电极等组件的协同设计;
最上一层则是将所有组件甚至控制系统纳入公司版图,从而实现整个电堆模块的完整设计。
(2)该文着重提出双极板-扩散层的一体化设计,如泡沫金属,是一种非常值得期待的大幅度提升电池性能的方法。当然,泡沫金属商业化之路需要多久,这个另需讨论。
(3)燃料电池工作状态的发展趋势是高温自增湿。高温不仅能够提升电池性能,而且当温度超过水的蒸发温度,则能够大幅度缓解高电流密度工况水淹导致的传质恶化问题。而自增湿则能够使电堆摆脱加湿系统,降低制造成本和运行成本。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
为进一步加强重药物流绿色环保建设,持续降低物流成本,提高配送效率,重药物流2024年采购的3台氢能源车近日已投入使用。氢能源车的工作原理是氢气和氧气通过燃料电池系统直接产生电化学反应而产生电流,直接驱动车辆行驶。与传统燃油车相比具有清洁环保、性能稳定、用车成本低、营运效率高等诸多优势
11月15日,由秦创原总窗口企业,陕西同尘和光低温科技有限公司与中国石油天然气管道工程有限公司、中国科学院理化技术研究所联合建设的0.5吨/天小型撬装液氢试验平台正式开工。项目采用高效、低能耗的液化系统,为液氢生产提供可靠的冷量保障,同时配置液氢薄膜罐和球罐的组合方案,大幅提升了液氢储存
北极星氢能网获悉,11月15日,财政部发布关于提前下达2025年节能减排补助资金预算的通知。根据《通知》,2025年奖补资金总共16.25亿元。其中,前五市分别为唐山39830万元;上海31349万元;郑州26368万元;北京24308万元;天津11207万元。其中,第二年度燃料电池汽车示范应用奖励资金不得用于支持燃料电
北极星氢能网获悉,10月23日,上海市科学技术奖再度揭晓。高功率车用燃料电池电堆关键技术及产业化应用成功2023年度上海市科学技术一等奖获奖项目优秀创新成果。详情如下:项目名称:高功率车用燃料电池电堆关键技术及产业化应用完成单位:上海交通大学完成人:易培云等奖励等级:科技进步一等奖自“碳
北极星氢能网获悉,2024年11月8日,广州市生态环境局印发了《广州市氢燃料电池汽车行驶碳普惠方法学(2024年试行版)》。原文如下:广州市生态环境局关于印发《广州市氢燃料电池汽车行驶碳普惠方法学(2024年试行版)》《广州市餐饮外卖行业无需餐具碳普惠方法学(2024年试行版)》的通知各有关单位:
北极星氢能网获悉,2024年11月11日,中汽协会发布2024年10月汽车工业经济运行情况。其中,2024年10月燃料电池汽车产销分别完成491和563辆,同比分别增长19.2%和18.8%。1-10月,燃料电池汽车产销分别完成4679辆和4695辆,同比分别增长25.9%和27.4%。根据公布的数据显示,10月,新能源汽车产销分别完成14
11月15日,现代汽车将携旗下氢能、电动化及高性能N品牌在内的多款产品集中亮相2024年广州国际汽车展览会,展现现代汽车在新能源领域全球领先的技术实力与在华发展的最新成果。其中,现代汽车最新氢燃料电池概念车INITIUM也将继10月全球发布之后首次亮相中国。现代汽车集团海外首家氢燃料电池研发、生产
北极星氢能网获悉,2024年11月11日,清能公司旗下控股子公司内蒙古清能通胜新能源有限公司(以下简称“清能通胜”)隆重举行大功率燃料电池及加氢制氢核心装备产业基地投产仪式。清能通胜位于伊金霍洛旗空港物流园区,凭借清能股份二十余年在燃料电池及新型电解制氢技术领域的技术积累和丰富的批量化生
据北极星氢能网不完全统计,2024年三季度,国家及地方层面共计发布氢能产业支持性政策条例37条,其中便包括吉林省、陕西省和山西省吕梁市对氢能车辆高速费进行减免的政策。有业内专家表示,在很多终端用户的眼中,真正能让氢能车辆推广普及的要素不见得是初期成本,而是使用成本。而氢能车辆目前最好的
北极星氢能网获悉,近日,中原内配在投资者互动平台表示,公司与吉凯恩就固态储氢系统展开合作,主要负责促进该系统在中国区域的营销。该合作将在合作有效期内结合市场情况适时推进。2023年,公司子公司焦作同声氢能科技有限公司已向宇通商用车有限公司销售50台氢燃料电池系统。未来,公司将继续联合宇
北极星氢能网获悉,2024年11月8日,由国氢科技济南绿动牵头实施的山东省重点研发计划(重大科技创新工程)——“大载重长续航无人机用燃料电池研发及应用”项目启动会暨实施方案论证会在济南召开。在启动环节,济南绿动有关负责人作为项目牵头人介绍了该项目的背景、概况、目标以及预期效果等方面内容
北极星氢能网获悉,10月23日,上海市科学技术奖再度揭晓。高功率车用燃料电池电堆关键技术及产业化应用成功2023年度上海市科学技术一等奖获奖项目优秀创新成果。详情如下:项目名称:高功率车用燃料电池电堆关键技术及产业化应用完成单位:上海交通大学完成人:易培云等奖励等级:科技进步一等奖自“碳
北极星氢能网获悉,2024年11月11日,清能公司旗下控股子公司内蒙古清能通胜新能源有限公司(以下简称“清能通胜”)隆重举行大功率燃料电池及加氢制氢核心装备产业基地投产仪式。清能通胜位于伊金霍洛旗空港物流园区,凭借清能股份二十余年在燃料电池及新型电解制氢技术领域的技术积累和丰富的批量化生
北极星氢能网获悉,10月28日下午,河南省首个绿氢绿电示范项目,龙子湖氢能联创测试中心(新乡)项目在新乡高新区氢能产业园签约。据介绍,龙子湖氢能联创测试中心(新乡)项目是由新乡高新区管委会牵头,联合龙子湖新能源实验室、河南安池氢能科技有限公司共同搭建的,面向社会服务的氢能测试平台。将
北极星氢能网获悉,6月3日,工业和信息化部、财政部、税务总局等三部门联合发布公告,调整享受车船税优惠的节能、新能源汽车产品技术要求。公告自今年7月1日起实施。此次技术调整后,政策要求燃料电池系统的额定功率不小于50kW,且与驱动电机的额定功率比值不低于50%。燃料电池启动温度不高于-30℃。燃
北极星氢能网获悉,近日,2024国际氢能与燃料电池汽车大会暨展览会(FCVC2024)在上海汽车会展中心召开,作为氢燃料电堆研发与制造的领军者,神力科技携多款氢燃料电池电堆产品、燃料电池电堆测试设备等高新技术产品亮相,吸引了众多领导和观众驻足参观。本次大会上,神力科技发布全新一代大功率石墨板
北极星氢能网获悉,5月17日,由同济大学牵头承担的国家重点研发计划“新能源汽车”重点专项“车用高温度高性能质子交换膜燃料电池电堆研制”项目启动暨实施方案论证会在嘉定校区召开。同济大学副校长、中国工程院院士童小华,国家自然科学基金委员会高技术研究发展中心能源与交通项目处处长蒋志君等出
2024年3月8日,EKPO燃料电池技术有限公司(EKPO)与中国第一汽车集团(FAW)签署了燃料电池电堆模组样件的开发和供应的合同。“NM12-Single”平台的电堆将用于一汽高端品牌“红旗”的新一代燃料电池车辆。EKPO董事总经理CaroleBrinati女士指出:“红旗在选择合作伙伴时,在产品质量和技术性能方面设定
北极星氢能网获悉,近日,鹏飞与上海氢晨、上海交大等单位共同申报的国家重点研发计划“氢能技术”重点专项“燃料电池电堆高精密度批量制造工艺与成套装备技术”已获得国家科技部批复,是鹏飞在氢能领域首个获批的国家级重点研发课题。“高精度电堆组装及成套批量制造装备技术”项目围绕国家推动能源革
近日,亿华通高温电堆研发取得了阶段性进展,首款高温电堆在中汽研新能源汽车检验中心(天津)有限公司顺利完成了高温性能检测,检测数据显示该高温电堆具有较高的输出性能。在碳达峰、碳中和的大背景下,重卡“柴改氢”、船用燃料电池等需求日益增长,国内大功率燃料电池电堆及发动机产品的研发迭代正
北极星氢能网获悉,2023年末,氢蓝时代全资子公司深科鹏沃批量交付300套燃料电池电堆,完成了年度产销任务。该批SP100电堆产品为深科鹏沃自主研发,电堆体积功率密度在4.0kW/L以上,额定效率53%-57%、最高达到60%以上,电堆寿命根据应用场景和客户需求,可以达到15000-40000小时寿命,且成本低于行业平
北极星氢能网获悉,12月6日,位于武汉经开区的国家电投华中氢能产业基地一派忙碌,新建成的氢燃料电池电堆万台套产线上,武汉绿动氢能能源技术有限公司(简称武汉绿动)的工程师们正通过机器手臂,将膜电极、双极板等上千个氢燃料电池关键核心部件进行全自动叠片组装。本月底,30套功率120KW的“氢腾”
11月15日,由秦创原总窗口企业,陕西同尘和光低温科技有限公司与中国石油天然气管道工程有限公司、中国科学院理化技术研究所联合建设的0.5吨/天小型撬装液氢试验平台正式开工。项目采用高效、低能耗的液化系统,为液氢生产提供可靠的冷量保障,同时配置液氢薄膜罐和球罐的组合方案,大幅提升了液氢储存
北极星氢能网获悉,2024年11月8日,广州市生态环境局印发了《广州市氢燃料电池汽车行驶碳普惠方法学(2024年试行版)》。原文如下:广州市生态环境局关于印发《广州市氢燃料电池汽车行驶碳普惠方法学(2024年试行版)》《广州市餐饮外卖行业无需餐具碳普惠方法学(2024年试行版)》的通知各有关单位:
北极星氢能网获悉,2024年11月11日,中汽协会发布2024年10月汽车工业经济运行情况。其中,2024年10月燃料电池汽车产销分别完成491和563辆,同比分别增长19.2%和18.8%。1-10月,燃料电池汽车产销分别完成4679辆和4695辆,同比分别增长25.9%和27.4%。根据公布的数据显示,10月,新能源汽车产销分别完成14
11月15日,现代汽车将携旗下氢能、电动化及高性能N品牌在内的多款产品集中亮相2024年广州国际汽车展览会,展现现代汽车在新能源领域全球领先的技术实力与在华发展的最新成果。其中,现代汽车最新氢燃料电池概念车INITIUM也将继10月全球发布之后首次亮相中国。现代汽车集团海外首家氢燃料电池研发、生产
据北极星氢能网不完全统计,2024年三季度,国家及地方层面共计发布氢能产业支持性政策条例37条,其中便包括吉林省、陕西省和山西省吕梁市对氢能车辆高速费进行减免的政策。有业内专家表示,在很多终端用户的眼中,真正能让氢能车辆推广普及的要素不见得是初期成本,而是使用成本。而氢能车辆目前最好的
北极星氢能网获悉,近日,中原内配在投资者互动平台表示,公司与吉凯恩就固态储氢系统展开合作,主要负责促进该系统在中国区域的营销。该合作将在合作有效期内结合市场情况适时推进。2023年,公司子公司焦作同声氢能科技有限公司已向宇通商用车有限公司销售50台氢燃料电池系统。未来,公司将继续联合宇
北极星氢能网获悉,11月8日,湖北省政府官网正式公开了《湖北省加快发展氢能产业行动方案(2024—2027年)》。解读如下:原文如下:省经信厅解读:《省人民政府办公厅关于印发<湖北省加快发展氢能产业行动方案(2024-2027年)>的通知》现对《省人民政府办公厅关于印发<湖北省加快发展氢能产业行动
北极星氢能网获悉,11月6日,巴西米纳斯吉拉斯州(MG州)州长罗梅乌·泽马·内托先生携随行代表团到访长城氢能业务板块未势能源的上燃动力园区,就绿色氢能技术和氢燃料电池卡车等应用场景合作推广进行深入交流,并见证MG州经济发展厅(SEDE)、MG州投促局(InvestMinas)、米纳斯吉拉斯联邦大学(UNIF
北极星储能网获悉,11月6日,广东清远市人民政府办公室关于印发《清远市低空经济高质量发展三年行动方案(2024-2026年)》(以下简称《方案》)的通知。《方案》指出,前瞻布局前沿技术研究。推动航空固态电池、氢燃料电池、可持续航空燃料等动力技术的商业化,以未来低空产业应用和运行场景为驱动,依
北极星氢能网获悉,11月4日,安徽省发改委发布关于征询社会公众对《安徽省加氢站管理办法(暂行)(征求意见稿)》意见的公告,共40条。原文如下:安徽省加氢站管理办法(暂行)(征求意见稿)第一章总则第一条为贯彻国家发展改革委等部门《关于加快推动氢能产业高质量发展的若干政策措施》(发改高技
北极星氢能网获悉,11月4日蜀道装备发布公告,公司及控股股东蜀道集团与丰田汽车公司(简称“丰田汽车”)、丰田汽车(中国)投资有限公司(简称“丰田中国”)签署了《氢能产业合作协议》,就氢燃料电池生产研发事项开展合作。四方拟成立合资公司,于成都市内选址建设氢燃料电池动力系统生产线。其中
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!