登录注册
请使用微信扫一扫
关注公众号完成登录
图 1锂离子单体电池实验布置
1.2.2 单个锂离子电池组实验工况
在室温条件下,以27 A(2 C)电流对锂离子电池组进行恒流过充,最高电压上限设置为80 V。
实验现场条件与锂离子单体电池实验条件相同,实验布置如图2所示。实验时采用8支热电偶(T1~T8)测量电池组表面壳体温度以及火焰温度。T1、T2、T3位于电池表面上,其中T2位于电池壳体中心处,向两侧偏移15 cm分别为T1和T3,T1靠近接线端。T4、T5、T6、T7、T8与电池的最短距离分别为10 cm、10 cm、10 cm、20 cm、45 cm。设置3个压力传感器(P1~P3)监测电池组热失控后的压力波。P1、P2、P3与电池的最短距离分别为45 cm、45 cm、30 cm。
图 2锂离子电池组实验布置
1.2.3 多个锂离子电池组实验工况
为了考察多个锂离子电池组在一定间距下相互引燃的情况,采用3个锂离子电池组在间距6.5 cm的条件下开展实验,布置如图3所示。实验时将3个电池组放置于铁支架上,其中1号不带BMS的电池组水平放置,安全阀方向朝向2号电池组,2号、3号电池组侧立放置,安全阀方向朝上。采用4支热电偶测量电池表面温度及烟气、火焰温度。实验仍在爆炸洞内完成,在室温条件下,以27 A(2 C)电流对1号锂离子电池组进行恒流过充,最高电压上限设置为80 V。
图 3多组锂离子电池组实验布置
2 实验结果与讨论
2.1 单体电池过充实验
2.1.1 燃烧爆炸行为
锂离子单体电池过充实验现象见图4。实验过程可大致分为3个阶段:第一阶段为电池壳体鼓胀变形阶段,从实验开始至743 s时可见电池壳体变形,电池试样周边散逸少量白色烟气。这一阶段,过充仅导致电池内部材料发生各类反应并产生一定的气体,电池壳体内部压力增大导致电池出现外观鼓胀变形。少量白色烟气的产生主要是因为随着电池过充释放出一定的热量,导致电池外壳及不燃隔热材料等产生热分解。第二阶段射流火及爆炸阶段,持续时间仅为1 s。实验进行至744 s时安全阀打开,在1 s时间内电池释放大量白色烟气、急剧喷射火焰并瞬时发生爆炸,形成巨大火球。由于实验最高电压上限设置为10倍额定电压(37 V),在较高的截止电压过充下,电解质、电极以及集流体的电阻显著增大,电池动力学性能及热稳定性显著降低,内部化学反应增强。随着持续过充电池内部反应的加剧,产气量不断增大导致电池内部压力也急剧增大,仅安全阀破裂泄压难以实现电池内部和外部的平衡,因而发生电池壳体撕裂出现爆炸。电池内部热失控反应产生的可燃气体和电解液与空气混合后被引燃,形成初次射流火并伴随着爆炸形成了强烈的火球。第三阶段为稳定燃烧阶段,爆炸后能量得到泄放,支架上电池内部残余的电解液及可燃材料仍持续猛烈燃烧,火焰持续53 s后完全熄灭。实验后观测图片可见,电芯中铜箔和铝箔表面的所有物质均已过火,电池爆裂位置并未发生在安全阀附近,而是在位于电池壳体约1/3处完全撕裂,进一步表明爆炸瞬间安全阀的破裂不足以实现电池壳体内外压力平衡,在744 s时电池内部产气压力大大超过了安全阀设定的阈值。
2.1.2 实验数据分析
单体电池试样过充实验温度、电压变化曲线如图5所示。
图 5锂离子单体电池过充实验温度及电压变化曲线
电压方面,在第一阶段时电压从前期持续保持恒定,实验进行至587 s时出现电压迅速升高,并在621 s时出现第一个峰值16.5 V,之后电压骤降至接近0 V。结合试验现象可知,电压升高至极值时刻比电池爆炸发生早约123 s,表明随着电池持续恒流过充,正负电极表面发生大量破损,已偏离常态电化学电位,正负电极无法维护有效的电荷收纳,转为大量分布在电极表面,表现出电容效应,即电荷越多,电压越高,因而电压达到极值16.5 V;随着正负极接触短路,电压骤降至0 V,此后电池内化学反应将更为剧烈,且持续时间达到123 s,因而电池内部聚集能量较高,引发第二阶段射流火和爆炸。第二阶段电压再次升高,表明电池爆炸后的残余物成为了一个带有电阻的导电性混合物,随着燃烧的持续在较高电压上持续24 s后,正负极再次接触短路,电压降至0 V。
温度方面,第一阶段随着过充的持续,电池表面温度缓慢升高,电池电压降至0 V时对应电池表面温度为115 ℃,考虑热传递损失,电池内部反应体系温度相对更高,但此时电池表面升温速率仍保持在12 ℃/min左右,未发生明显突变。第二阶段电池爆炸瞬间,T1位置温度从142 ℃迅速升至223 ℃,可能是爆炸发生速度过快热电偶未能及时感应到最高温度所致。由于实验时热电偶布置为水平方向,整个过程中燃烧为垂直方向,因此各测点温度均偏低,T3测点最高温度为72 ℃,其余位置最高温度均不高于50 ℃。单体电池试样过充实验过程中测得的压力波曲线见图6,实验中测到的距离爆心45 cm处最大压强达到556 kPa。根据实验观测分析,电池爆炸裂口方向正对P1传感器压力面,因而此处测到的压力波最大,表明电池单体爆炸事故的破坏力与电池开口方向密切相关。压力波数据分析可知,容量为13.5 Ah的锂离子电池爆炸可导致周边人员发生一定程度的损伤[18]。
图 6锂离子单体电池爆炸压力波曲线
2.2 单个电池组过充实验
2.2.1 燃烧爆炸行为锂离子电池组过充实验现象如图7所示。
图 7锂离子电池组过充实验照片
锂离子电池组燃烧爆炸行为主要可分为3个阶段:第一阶段为电池开始过充至2401 s首个电池安全阀破裂之前,这一阶段电池组外观未见明显变化,电池受到整包电池外壳及电池之间的约束,形变在一定程度上受限。此时多个电池在过充过程中发生反应并产气,但尚未达到安全阀破裂的阈值。第二阶段为2401~2729 s,全部13个电池安全阀依次破裂,过程中出现明显射流火、局部爆炸并喷溅、燃烧等现象。首个电池安全阀破裂后4 s,靠近充电口位置的电池组塑料外壳被引燃,随着外部火势逐渐增大,23 s后第二个电池安全阀破裂,形成明显的射流火,2456 s时第三个电池安全阀破裂并伴随有局部爆炸,部分燃烧的物质喷溅出来。之后持续听到安全阀破裂的声音,看到射流火、瞬时爆炸、猛烈燃烧等现象,直至所有电池安全阀全部破裂。出现这一现象的原因在于,持续过充状态下,电池组内每一块单体电池受到内部剧烈化学反应和外部火焰高温加热的双重作用,产气量不断增大,同时电池之间相互挤压受到电池组塑料外壳空间限制,进一步推动了安全阀的破裂及电池内部能量的释放。第三阶段为2729 s至试验结束,最后一块电池安全阀破裂后,电池组整体呈现稳定燃烧状态,塑料外壳基本烧尽,电池内部的可燃物及反应产生的可燃物质完全燃烧。实验后观察可见,部分电池铝壳已经发生撕裂,出现正负极金属材料裸露的情况,表明实验时反应非常剧烈,形成了爆炸,其余部位的部分电池仅出现鼓胀形变,保留了完整的安全阀孔洞。
2.2.2 实验数据分析
锂离子电池组试样过充温度、电压变化曲线如图8所示。
图 8锂离子电池组过充实验温度与电压变化曲线
电压方面,第一阶段,由于该电池组试样前期做了过放电的试验,电池组状态不同于正常的电池组。此时,电池组内的电池由于过放造成了内部电化学体系的破坏,导致电池欧姆内阻提高,使得电池组的欧姆电阻(1.23 Ω)大于常规电池组的欧姆电阻(毫欧级别),所以,在恒流充电的瞬间,电池组电压明显上升,从10.7 V到了44 V。在40 min之前,电池组首先从过放电状态转变为满电态,此时电池组电压表现平稳,幅度相对较小,然后从满电态转变为过充电状态,此时电压明显上升,幅度逐渐变大。第二阶段在实验进行40 min以后,电池组电压开始剧烈波动,最低电压接近20 V,这表明电池内部结构已经发生显著变化,电池发生部分内短路,释放大量热量,电池内部压力迅速提高,导致泄压阀打开。而后电池完全内短路,电压为0 V,温度进一步升高,电池热失控。
温度方面,第一阶段,实验开始至40 min时电池组表面温度缓慢上升,温度从初始的16.3 ℃升至48.8 ℃,升温速率仅为0.8 ℃/min,表明这一阶段电池过充时内部反应产热量不大,单体电池过充产生的热量主要在电池组内部的电池之间发生了热传递。第二阶段伴随着电池组安全阀破裂后电池表面发生了燃烧和喷射火,电池组表面温度也两次快速上升,第一次在40~41.5 min时温度迅速从48.8 ℃上升至200 ℃,主要表现为电池组外壳材料被引燃初期,塑料在高温下发生了热解和熔化。第二次200 ℃左右温度下持续至44 min后再次迅速升高,并于45.9 min时达到最高温度809 ℃,此时外壳材料和电池均猛烈燃烧,各测点温度均达到最高值。峰值温度的出现时间较电压峰值的出现时间晚5.9 min,表明电压的急剧变化可作为电池组热失控和火灾预警的重要参数之一。第三阶段随着燃烧的逐渐减弱,电池温度缓慢下降。
锂离子电池组爆炸压力波曲线如图9所示。实验过程中,电池组发生了多次电池射流火,形成了多次压力峰值,距离爆心45 cm处最高测量压强达到915 kPa。这一数值约为单只锂离子电池压力峰值的1.6倍,且短期内频次较高,对周边人员和构件可能造成的损害更大。
图 9锂离子电池组爆炸压力波曲线
2.3 多组锂离子电池组实验
2.3.1 燃烧爆炸行为
本组实验中,每个电池组燃烧爆炸依次进行,实验现象如图10所示。1号电池组中电池安全阀破裂时间集中于39.1~46.3 min之间。40.6 min时电池组塑料外壳起火,之后出现多次射流火、爆炸,火势逐渐增大,46.1 min时1号电池组燃烧最为猛烈,形成一个较大的火球。此后1号电池火势逐渐减小。由于1号电池组安全阀正对2号电池组,因此电池射流火及燃烧均能对2号电池组塑料外壳造成热辐射和直接火焰冲击,但由于塑料外壳燃烧性能为B1级,属于难燃材料,直至1号电池组猛烈燃烧后,46.2 min时2号电池组边缘外壳塑料出现零星火焰,随后火势缓慢扩大。在外壳燃烧持续高温作用下,2号电池组电池安全阀在61.2~67.4 min依次发生破裂。这一阶段出现多次射流火,但电池组整体燃烧剧烈程度较1号电池组低,这是因为未经过充的电池组电量低于过充电池组,总体能量较低所致。由于2号电池组安全阀朝向向上,射流火对3号电池组影响较小,但随着燃烧和热辐射作用的持续影响,75.8 min时3号电池组壳体也被引燃,电池安全阀在75.8~81.2 min依次发生破裂,随后出现多次射流火。81.2 min以后,仅电池残余物仍在燃烧,火势逐渐减弱。
图 10多个锂离子电池组燃烧爆炸实验照片
实验后对电池组燃烧残余物的观测可知,电池组塑料外壳燃烧完全烧尽,1号电池组损毁严重,电池组结构完全破坏,电池被冲散,且多个电池壳体破裂,表明实验中多个电池发生爆炸。2号电池组和3号电池组中单体电池基本保持在初始位置且形变较小,安全阀全部破裂。
2.3.2 实验数据分析
多个锂离子电池组燃烧爆炸实验温度变化曲线见图11。3个电池组依次发生燃烧,因而温度曲线呈现出3次明显的峰值。其中,1号电池组从41.6 min开始快速升高,在41.6 min时达到峰值982 ℃,此时燃烧最为猛烈。约53.4 min时1号电池组燃烧完全结束,随后开始2号电池组的燃烧,并于62.4 min时达到温度峰值1096 ℃,燃烧结束时间约为72.3 min。由于3号电池组上未设置温度测点,因而3号电池组发生燃烧时主要从2号电池组上布置的温度测点显现,其最高温度691 ℃出现在76.6 min,之后燃烧逐渐减弱,温度缓慢降低。
图 11多个锂离子电池组燃烧爆炸温度变化曲线
3 结论
针对锂离子单体电池、不带BMS的锂离子电池组,以2 C电流进行恒流过充,研究了单体电池、锂离子电池组的燃烧爆炸及其火灾蔓延情况,得到以下结论:
(1)在以2 C大电流恒流过充,且设置较高截止电压(锂离子单体电池37 V,锂离子电池组80 V)的实验条件下,锂离子单体电池和电池组中的单体电池均可发生爆炸,其中,锂离子单体电池瞬时同时出现安全阀破裂、射流火和爆炸。较大的过充倍率和较高的截止电压可能造成电池火灾爆炸风险增大,因此在火灾防控过程中,需采用可靠的控制手段,防止大电流和高电压对电池自身造成的冲击。
(2)以6.5 cm间距布置锂离子电池组后,过充其中一个锂离子电池组引发的燃烧和爆炸可引燃周边其他锂离子电池组形成火灾蔓延。锂离子电池组之间的火灾扩散与安全阀的位置无关,即使不受射流火的直接影响,单个锂离子电池组燃烧产生的辐射热也可促使周边锂离子电池组发生燃烧。为了防止电池组之间火灾蔓延,需采取防火分隔或加大电池组间距等措施。
(3)锂离子电池单体距离爆心45 cm处最大爆炸压强为556 kPa,锂离子电池组出现多次射流火,形成了多次压力峰值,距离爆心45 cm处最高爆炸压强达到915 kPa,约为单块电池压力峰值的1.6倍,且短期内频次较高,对周边人员和构件可能造成的损害更大。
(4)锂离子电池和电池组过充实验中,燃烧发生前均可测到电压发生较大幅度波动,可将电压信号纳入电池热失控或燃烧的预警信号,通过多信号融合预警并采取相应的联动措施尽可能防止火灾爆炸事故发生。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
电化学储能系统在电力系统中的应用场景大致可以分为5类,分别是源侧、网侧(主网)、台区(配网)、工商业以及户用储能。在这些场景中,储能有不同的接入位置,根据市场主体与电网公司的产权分界点来区分,可以把源侧、工商业以及户用都放置于表后的区域,可称为表后大小储,因为这些接入场景中,除了
2025年年初,高盛集团(GoldmanSachs)在其发布的报告中指出:电池储能系统(BESS)正成为全球电池市场的核心增长点。报告数据显示,BESS市场份额已从五年前的5%上升到2024年的25%,到2030年预计将累计装机3.2TWh,是市场此前预期(300GWh)的10倍,年复合增速达到70%。高盛判断,储能行业将走向更强的
北极星储能网获悉,6月24日,大连海关发布鲅鱼圈海关机房UPS蓄电池采购项目的公告,项目预算为肆万陆仟元(46000.00元),为解决鲅鱼圈海关机房不间断电源(UPS)设备安全隐患问题,科技处组织技术人员对该关接入机房进行现场巡检,判定UPS蓄电池老化严重(蓄电池出厂日期为2018年,正常使用年限一般为
“电池行业正突破单一化学体系束缚,进入真正以用户需求为核心的多核时代。”宁德时代创始人曾毓群在今年4月的公开演讲中曾阐述上述观点。他强调,多核时代是宁德时代的新阶段,无论是追求极致性能,还是强调性价比,多核技术都能让定制化成为现实,消费者无需在续航、寿命、安全、快充等维度进行妥协
今年上海SNEC光伏展,几乎成了储能企业的主场。各大厂商轮番上阵推出储能新品,尤其是针对第三代储能电芯定义权之争的序幕就此拉开。尤其宁德时代、海辰储能587Ah之间的角力,成为“赛事焦点”。但我们应该看到,这并不是单纯的数字游戏,而是行业热盼的一场“技术”亮剑。市场驱动力切换,产品研发逻
北极星储能网获悉,近日,中科能源发展(辽宁)有限公司与大连金帝建设工程有限公司正式签署战略合作协议。标志着辽宁省新能源产业建设迈出关键一步,为打造新能源全产业链生态体系奠定了坚实基础。合作将重点聚焦于中科能源发展在辽宁本溪投资20亿建设的准固态动力电池与储能电池生产基地项目需求。大
近日,福建龙岩市生态环境局就年产1GWh三维固态锂电池项目环评文件审批意见进行公示。文件显示,项目位于龙岩高新区(经开区)高陂镇平在村北环路,主要建设标准化厂房1栋7层、办公综合楼、原料库、产品库及配套建设环保工程和纯水制备、制氮相关辅助工程,用地面积27675平方米。项目以磷酸铁锂、NMP、
深圳证券交易所发行上市审核信息公开网站显示,杭州高特电子设备股份有限公司创业板上市注册于今日(2025年6月23日)被受理,正式开启上市新征程!招股说明书显示,高特电子成立于1998年,自成立以来始终聚焦于电池监测和电池管理相关领域,从铅酸电池监测起步到锂电池管理系统,紧跟全球电池技术和新
近日,天合储能Elementa金刚2储能系统顺利通过了TV南德颁发的IEC62619认证,以及SGS通标颁发的NFPA68与NFPA855两项北美消防认证报告。天合储能始终秉持对产品质量与安全的极致追求,致力于为全球客户提供安全可靠、高效经济的储能系统解决方案。随着全球新能源行业加速迈向市场化交易新阶段,对储能系
北极星储能网获悉,6月21日,火爆出圈的“苏超”迎来第五轮首场比赛。小编注意到,龙蟠科技、理想皆在苏超1-4轮品牌赞助名单中。据了解,龙蟠科技成立于2003年,位于江苏省南京市,注册资本66507.8903万人民币,实缴资本56507.89万人民币,并已于2025年完成了战略融资,交易金额1597.09万美元。主要从
6月20日,三峡集团旗下长峡电力工程(安徽)有限公司全资子公司中卫市利浩综合能源服务有限公司发布利浩能源穆和200MW/400MWh新能源共享储能项目EPC总承包工程项目招标公告。项目位于宁夏中卫,建设200MW/400MWh储能电站一座,配套建设配电室、二次设备室等建筑,购置安装储能成套系统预制舱、箱式变压
废旧电池是一座“城市矿山”。废旧电池通过正规回收处理可以实现资源循环利用,对保障动力电池生产原材料供给、降低原矿资源需求、保障动力电池产业安全具有重要意义。近年来,随着动力电池退役规模的快速增长,相关利好政策已不断落地。就在不久前,广州市工信局发布关于2025年废旧动力电池梯次利用及
6月23日,苏州市生态环境局发布受理环境影响报告书(表)情况的公示。其中,江苏都桐科技有限公司新建锂离子电池用再生黑粉生产及再生磷酸铁锂测试电芯研发项目在列,标志着这家“锂电新秀”进一步构建产业布局。江苏都桐科技有限公司,是一家成立于2024年8月22日的高新技术企业,位于江苏省苏州市
2025年年初,高盛集团(GoldmanSachs)在其发布的报告中指出:电池储能系统(BESS)正成为全球电池市场的核心增长点。报告数据显示,BESS市场份额已从五年前的5%上升到2024年的25%,到2030年预计将累计装机3.2TWh,是市场此前预期(300GWh)的10倍,年复合增速达到70%。高盛判断,储能行业将走向更强的
北极星储能网获悉,6月11日,中国汽车动力电池产业创新联盟发布2025年5月动力电池月度信息,5月,我国动力电池装车量57.1GWh,环比增长5.5%,同比增长43.1%。其中三元电池装车量10.5GWh,占总装车量18.4%,环比增长13.1%,同比增长1.6%;磷酸铁锂电池装车量46.5GWh,占总装车量81.6%,环比增长3.9%,同
北极星储能网获悉,6月24日,易成新能披露投资者关系管理信息,回答投资者关于新型储能、源网荷储项目的布局。在新型储能布局方面,易成新能按照技术融合+场景贯通原则,近期收购了主要生产、销售智能锂离子电池储能系统的储能公司,加上已经拥有的行业先进的全钒液流储能系统,公司将实现全钒液流电池
中国在锂电池领域积累的“先手棋”是宝贵优势,但人形机器人核心部件的全面自主与固态电池的制高点争夺,仍是漫漫长路。2025年,人形机器人开始频繁出现在我们的视野当中。从春晚舞台开始,宇树科技的机器人用整齐划一的表演瞬间点燃了社交媒体,也让人形机器人这个曾经科幻感十足的名词,第一次大规模
“电池行业正突破单一化学体系束缚,进入真正以用户需求为核心的多核时代。”宁德时代创始人曾毓群在今年4月的公开演讲中曾阐述上述观点。他强调,多核时代是宁德时代的新阶段,无论是追求极致性能,还是强调性价比,多核技术都能让定制化成为现实,消费者无需在续航、寿命、安全、快充等维度进行妥协
随着电池技术的进步和人工智能的快速发展,人类社会将加速迈向机器人时代。近期,国际知名机构瑞银集团在一份报告中预测,到2035年全球人形机器人潜在市场总规模将达到300亿至500亿美元,到2050年将达到1.4万亿至1.7万亿美元。当下在全球范围内,包括特斯拉、小米、理想、小鹏、广汽等众多汽车厂商,都
6月23日,阳春海螺新能源有限公司源网荷储一体化项目EPC总承包工程(项目编号:25AT137075803544)按照招标文件规定的评审方式,最终确定:第一中标候选人:信息产业电子第十一设计研究院科技工程股份有限公司;第二中标候选人:湖南红太阳新能源科技有限公司;阳春海螺新能源有限公司源网荷储一体化项目
近日,福建龙岩市生态环境局就年产1GWh三维固态锂电池项目环评文件审批意见进行公示。文件显示,项目位于龙岩高新区(经开区)高陂镇平在村北环路,主要建设标准化厂房1栋7层、办公综合楼、原料库、产品库及配套建设环保工程和纯水制备、制氮相关辅助工程,用地面积27675平方米。项目以磷酸铁锂、NMP、
北极星储能网获悉,6月20日,河北恒昌能源100MW/200MWh共享储能电站项目设计施工总承包(EPC)中标候选人公示。第一中标候选人为润建股份有限公司、广州鑫广源电力设计有限公司联合体,投标报价20000万元,折合单价1.000元/Wh;第二中标候选人为保定中泰新能源科技有限公司、河北鼎彩新能源科技有限公司
2025开年以来,国家发改委与能源局连发两道政策“组合拳”,深刻改写储能行业的发展逻辑。2月出台的“136号文”明确不得将储能配置作为新能源项目核准的前置条件,终结了持续8年的“强制配储”模式,4月落地的“394号文”明确要求2025年底前基本实现电力现货市场全覆盖。即将到来的电力市场格局变化,
近日,天合储能Elementa金刚2储能系统顺利通过了TV南德颁发的IEC62619认证,以及SGS通标颁发的NFPA68与NFPA855两项北美消防认证报告。天合储能始终秉持对产品质量与安全的极致追求,致力于为全球客户提供安全可靠、高效经济的储能系统解决方案。随着全球新能源行业加速迈向市场化交易新阶段,对储能系
自2024年5月,连续几次复燃,火灾最终足足持续了16天之久的美国加州圣地亚哥市OtayMesa(奥泰梅萨)Gateway储能电站(锂电池)火灾事故后,2025年美国MossLanding储能电站两次起火以及德国、英国储能项目火灾事故,再次将储能安全问题推向风口浪尖。截至2025年1月,全球储能事故发生超过100起,储能系
被业界称为“史上最严电池安全令”的《电动汽车用动力蓄电池安全要求》(GB38031-2025)近日发布,并将于2026年7月实施。新国标首次将动力电池热失控后“不起火不爆炸”纳入强制标准,一场关乎“安全”的技术竞赛已经展开。标准全面升级!热失控后“不起火不爆炸”日前,工业和信息化部组织制定的强制
【中国,上海,2025年6月12日】华为数字能源和德国莱茵TV集团(以下简称“TV莱茵”)于上海SNEC展会期间,联合重磅发布《工商业储能C2C双链安全白皮书》,旨在通过双方在储能安全设计、安全标准方面的探索研究和协同创新成果,提升工商业储能的安全水平和标准,为行业可持续发展奠定坚实基础。同时,倡
从引发行业巨震的136号文,到后来的394号文、411号文,除了“强制配储”政策的退出,政策的有形之手与市场的无形之手,始终在协力重塑中国电力市场格局,同时也深刻影响了新能源储能市场的“底层逻辑”。当行业由“政策驱动”迈向“价值驱动”之时。2025年6月12日,在SNEC2025展会现场,阳光电源举办主
北极星储能网讯:2025年6月11-13日,SNECPV+第十八届(2025)国际太阳能光伏与智慧能源(上海)大会暨展览会在上海国家会展中心盛大举行。美的集团旗下能源业务品牌美的能源(美的能源是科陆电子、合康新能、美的楼宇科技、库卡等品牌的联合体)首次亮相并发布“储能+热泵+AI”三维驱动的能源战略。作为美
北极星储能网讯:2025年6月16日上午8时32分许,韩国庆尚北道浦项市南区大松面东国制钢浦项工厂的62MWh储能电站突发火灾,在经过约28小时后,火势得到初步控制。起火建筑为两层钢结构(面积约1125平方米),内部安装8392个电池模块。消防部门接到报告后,于16日上午10点04分发布第一阶段响应,紧急调动
在第十八届(2025)国际太阳能光伏和智慧能源amp;储能及电池技术与装备(上海)大会(简称“SNEC光伏大会”)上,华为董事、华为数字能源总裁侯金龙发表了“铸就高质量,激发AI潜能,开启全面构网新时代”的主题演讲,系统阐述了华为在新能源领域的战略布局和技术创新。随着全球能源转型加速,新能源产
2025年6月11日至13日,全球瞩目的SNECPVPowerExpo在上海国家会展中心隆重举行。浙江奔一新能源有限公司携带着全新力作#x2014;#x2014;BB1-80直流微型断路器(DCMCB)以及一系列领先的智慧新能源解决方案盛装亮相,展位号为7.1H-E670,为这场新能源行业的盛会注入了强劲的动力与创新活力。重磅新品发布,
13家联合发出构网倡议,捅破能源转型天花板!全球绿色能源的确已经成为不可逆转的时代潮流,而传统燃煤电厂在历史洪流中开始大规模“退役潮”。有数据显示,在2020-2023年间全球退役燃煤机组超100GW,相当于德国全年发电量的1.5倍,而据华泰证券预测,2025到2030年我国每年将有12GW左右的燃煤电厂退役
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!