登录注册
请使用微信扫一扫
关注公众号完成登录
图1电池储能装置内部结构示意图
图2电池舱内部空气流向示意图
1.2 电池模块及电池单体
图3是电池模块内部结构及气流在其中的流动方向示意图。电池模块内装有24个容量为117 Ah的磷酸铁锂电池单体,电池模块采用12串38.4 V设计,每个电池模块选用2P的组合方式,容量为234 Ah。电池模块有3个空气入口,分别为后部、左侧和右侧,一个空气出口,通过风扇抽气后流出。为了更好地组织气流,通过调整电池单体的位置布局,使气冷流能够沿着电池模块两侧流入,从中间通道流出,有利于对电池单体进行充分冷却。电池模块的几何尺寸为0.69 m×0.63 m×0.18 m。电池单体的几何尺寸为70 mm×148 mm×112 mm,其标称电压为3.2 V。
图3电池模块内部结构及电池单体示意图
2 分析方法
2.1 计算域
由于电池舱中的电池簇沿中分面呈对称布局,两侧各有一台空调进行冷却,流场和温度场具有较好的对称性,为了节约计算资源,提高数值计算速度,采用1/2空间为计算域进行分析。为减小数值计算网格划分的难度,降低计算量,将在不影响流动传热主要特性的前提下对电池舱内的复杂结构进行简化。电池舱中存在大面积的薄壁结构(壁厚约为1 mm),例如:风道的钣金结构,电池模块的箱体外壳等。其壁厚很薄,且对气体流动影响很小,计算中均简化为厚度为零的薄壁面模型,并在传热分析中考虑了其材料属性和壁厚效应。此外,电池簇和电池模块中的倒角、圆角、螺栓、缝隙、凸起小部件等也均进行了简化处理,便于进行网格划分,提高网格质量。简化后的计算区域如图4所示,其主要包括如下几部分:
图4电池舱内流动传热数值分析计算域
① fluid——电池簇以外的流体计算域;② box-out-air——电池模块中电池单体以外的流体区域;③ box-in-air——电池模块中两侧电池单体中间的流体区域;④ por-left——电池模块中左侧的电池单体区域(模化成多孔介质);⑤ por-right——电池模块中右侧的电池单体区域(模化成多孔介质);⑥ fan——电池模块中风扇周围的流体区域;⑦ tunnel——风道(薄壁处理)。
2.2 电池模块的多孔介质模化
图3所示的电池模块内部结构非常复杂,如果对本工作计算域中60个电池模块进行全尺寸数值计算,则网格节点规模将达到十亿级,这在工程应用中极为困难。考虑到电池单体在电池模块内有规律地紧密排布,气流在电池单体密集区的流动阻力最大,且分配规律复杂。根据空气在其中的流动情况对该区域进行多孔介质模化。在本工作研究中,电池模块内电池单体的分布具有对称性,主要分为两个电池单体密集区,如图5所示。对电池单体密集区采用多孔介质模型来模拟其流动阻力特性。同时,对多孔介质施加热源模型来模拟电池的放热过程。
图5电池模块中的多孔介质模化区域
为简化研究问题,本工作的电池单体密集区模化为均匀多孔介质,且通过的为单相流体介质。多孔介质模型通过在动量方程中增加源项来模拟计算域中的流动阻力。该源项由黏性阻力项(Darcy)和惯性损失项组成,来源于Darcy-Forchheimer模型。
(1)
其中K为渗透率;f为惯性阻力系数;μ为动力黏性系数;ρ为流体密度。多孔介质模型通过在能量方程中修正扩散项为
(2)
其中Sf为流体焓的源项,根据电池单体热功率给定。keff为多孔介质的有效导热系数,采用流体导热系数kf与多孔介质中固体材料的导热系数ks的体积加权平均获得
(3)
如前所述,由于实验测量的电池单体各向导热系数不同,因此多孔介质的有效导热系数也为各向异性。上式中,γ为孔隙率,即流体区域所占空间体积的比值。为获得多孔介质的流动阻力特性,首先对电池单体密集区进行独立的局部流动数值分析,以获得压力损失-速度曲线,从而为下一步开展电池舱的整体流动传热分析提供计算条件。图6是对电池单体密集区的模型简化、计算域及计算网格。在数值计算中,通过给定不同的入口速度,通过数值求解,获得对应的进、出口流动压力损失,处理后获得电池单体密集区的压力损失-速度曲线。
图6电池单体密集区的局部流动数值分析计算域及网格
根据多孔介质的Darcy-Forchheimer模型
(4)
其中,dp/dx为多孔介质单位长度的压力损失;K为渗透率;f为阻力系数。由数值计算获得的压力损失-速度曲线可获得多孔介质的渗透率K和阻力系数f。
2.3 风扇特性模化
每个电池模块均设计有一个风扇,用于将电池模块内的热空气抽吸出箱体外。风扇的增压效应对于电池舱内的流动传热特性,尤其是空气流量分配有重要的影响。为减小计算量,将风扇区域模化成薄层风扇模型。并将反映风扇特性的压比-流量曲线,转换为压比-速度曲线,以便于在电池仓的整体流动传热分析中进行调用。
2.4 数值方法及边界条件
本工作采用有限体积法求解雷诺平均的N-S方程。数值计算基于Ansys Fluent程序开展,采用标准k-ε湍流模型计算该流热耦合问题,利用二阶迎风格式离散控制方程,并采用SIMPLEC方法作为压力-速度解耦算法,分离式迭代求解控制方程,直至计算收敛。湍流模型方程如下
(5)
(6)
其中模型常数;
;
;
;湍流生成项
。
图7为电池舱流动传热数值分析的边界条件示意图。入口空气来自于空调冷却后的冷空气,出口边界为空调的抽风口。由于电池储能装置外壁有隔热层,故假设外侧壁面为绝热壁面。计算模型中两侧均有流体流动的壁面采用流热耦合计算,主要包括风道壁面和电池模块箱体壁面。其中风道钣金厚度为0.8 mm,电池模块箱体壁面厚度为1.2 mm。如前所述,为简化计算,均采用薄层模型,并在传热分析中考虑了其材料属性和壁厚效应。
图7电池舱流热耦合数值计算的边界条件
入口边界条件为速度入口,折合空气质量流量为1.97 kg/s,温度为25 ℃。出口边界条件为101.325 kPa。空气的物性根据理想气体状态方程计算,其导热系数和黏性系数根据Sutherland公式进行计算。在流热耦合计算中,风道钣金材料为304不锈钢,电池模块箱体为SPCC冷轧钢板材料,通过查阅《中国材料工程大典》获得其导热系数。根据实验测量,电池单体的导热系数为各向异性,分别给定了宽度、厚度、高度方向上的导热系数为10.75 W/(m2·K)、4.32 W/(m2·K)、10.49 W/(m2·K)。本工作数值分析中,分别探讨了电池单体在1.0 C充电速率平均热功率12 W,以及最大热功率29 W条件下的流动传热特性。
2.5 网格及网格无关解
本工作采用四面体非结构网格构建流-固耦合计算域,网格示意图如图8所示。流体侧网格边界层区域进行了加密,第一层高度设置为0.001 mm,此时第一层网格的无量纲高度y+<1。网格增长比设置为1.1,边界层内设置了12层网格。
图8电池舱流热耦合数值分析的计算网格
对本工作研究问题进行网格独立性分析,分别取网格数量为1082万、2434万、5415万、8742万4种网格,计算得到的压力损失、固体最高温度如图9所示。可以看到,当网格数量在5415万时,网格数继续增长对结果的影响很小,因此采用数量为5415万的网格开展后续计算。
图9网格无关解验证
3 结果与分析
3.1 电池舱内的流动传热特性
图10是各电池模块风扇出口的温度云图。从图中可以看出,总体来说,左侧偏上区域的风扇出口温度较高,而右侧偏下区域的风扇出口温度较低。而由于计算中考虑了电池模块内的流动情况,单个电池模块风扇出口截面上的温度分布也呈现明显的不均匀性,通常截面左侧温度要高于右侧温度,这反映出电池模块箱体内部流动传热存在不均匀性。
图10电池模块风扇出口温度云图
图11是各电池模块风扇出口平均温度和流量。风扇出口平均温度值的对比进一步表明了各电池模块出口温度分布的特点,即左侧偏上区域温度较高,右侧偏下区域温度略低,且高低温区域的最大温差为11 ℃左右。对比风扇出口流量分布可以看到,左侧偏上区域的流量较低,右侧偏下区域的流量较高,与风扇出口平均值分布相对应。这反映出,电池舱内的热管理设计,尤其是风道布局,使得各电池模块内的空气流量分布不均,也是造成各电池模块内温度分布不均匀的主要原因之一。同时,由于空气通过电池模块后整体从右向左流动并沿程吸热,使得风扇出口平均温度从右向左逐渐升高。
图11电池模块风扇出口平均温度和流量分布
为研究空气经过电池模块前后的温度变化,图12显示了X方向各电池模块对称中截面处的温度分布和速度分布。从温度分布可以看到,空气的主要温升出现在电池模块箱体内部。在远离空调的X1、X2截面,空气在进入电池模块前,其温度水平较低,基本接近供气温度。而在靠近空调的X5、X6截面,由于回流高温空气的换热,空气在进入电池模块前即有了4 ℃左右的温升,这也是造成各电池模块风扇出口温度不均匀的原因之一。此外,从温度分布中还可观察到电池模块风扇明显的抽吸效应,电池模块内的高温气流经风扇形成射流,并在横向流动的影响下发生流动偏转及高低温气流的掺混。
图12X方向各电池模块对称中截面处的温度分布和速度分布
从速度分布可以看到,空气在从主风道进入到电池模块前的收敛型风道时,均存在不同程度的流动分离现象。尤其在X2、X3截面,存在较大的分离低速区,由此造成较大的局部压力损失,以及流量分配不均。这在风道设计中应引起注意。
3.2 电池模块内的流动传热特性
为进一步观察各电池模块内的流动传热特性,图13显示了Y方向各电池模块对称截面的温度分布。从温度分布可以看到,在各个Y截面上,电池模块风扇抽吸排出的高温空气向左侧(即空调吸气口方向)流动汇集,使得气流温度不断升高。气流与电池模块固体的传热呈现明显的耦合效应,气流温度升高后,由于对流换热,使得冷却空气在进入左侧电池模块前就升温,进而造成电池模块固体温度更高。
图13Y方向各电池模块对称中截面处的温度分布
从Y5、Y4截面上各电池模块固体的温度分布可以看到,电池模块固体的温度呈现明显的不对称性。以Y5截面上最右侧电池模块为例,其相对高温区呈现从右上到左下的分布特点。这是由于电池单体密集区模化成多孔介质后,空气在多孔介质内的流动方向受到周围环境压力的影响。而冷却空气可从3个侧面进入电池模块,电池舱内空气整体从右向左流动,使得冷却空气在电池模块内具有从右上向左下的流动趋势,造成左下区域的温度更高。类似的温度分布特点同样出现在多个电池模块中。
值得注意的是,Y5、Y4截面左侧电池模块和Y2、Y1截面右侧电池模块固体的温度分布特点差异明显,高温区分别呈现为“正三角”和“倒三角”形状。对于Y2、Y1截面右侧电池模块,由于电池仓该区域的空气从右向左的横向流动较弱,且低温空气不断从电池模块左右两侧进入进行冷却,使得电池模块固体高温区域呈现“倒三角”形状。而对于Y5、Y4截面左侧电池模块,由于电池仓该区域的空气温度已经较高,其从电池模块左右两侧进入后,冷却效果较弱,使得电池模块固体高温区域呈现“正三角”形状。
图14为各电池模块中电池单体密集区(即模化为多孔介质)的温度分布,反映的是各电池单体固体的温度水平。可以看到,电池单体的温度差异较大,最大温差接近20 ℃。各电池单体的温度分布趋势与各电池箱体内的空气流量及电池舱内的流场和温度场分布相互对应,反映出空气冷却设计布局所产生的影响。同时也能明确看到,由于考虑了空气在电池模块箱体内的流动,同一电池模块内的两侧电池单体密集区的温度呈现明显差异,且高温区出现的位置也各不相同。
图14电池模块中电池单体密集区(即多孔介质模化区)的温度分布
上述分析表明,电池舱的整体空气流动传热特性,对于电池模块内的流动传热特性具有重要的影响,导致了电池舱不同区域的电池模块形成了不同的温度分布特点。为获得更准确的电池模块温度分布,评估热管理系统的作用效果,就有必要同时考虑电池舱和电池模块内的流动传热特性。
3.3 电池热功率负荷变化的影响
电池在工作过程中,不同荷电状态下(state of charge,SOC)的生热功率各异。为研究电池热功率负荷对电池储能流动传热的影响,分别比较了电池单体在1.0 C充电速率平均热功率12 W,以及最大热功率29 W条件下的流动传热特性。图15是Z1截面上的温度分布对比。可以看出,虽然不同电池热功率下的温度水平不相同,但两种工况条件下的流场结构和温度整体分布情况非常接近,依然是左侧区域温度最高,右侧偏下区域温度最低。同时注意到,随着电池单体热功率的增大,电池储能中的最高温度提高,高低温的温差进一步增大。因此,左侧区域的电池更容易处于超温乃至热失控状态。
图15不同电池热功率条件下Z1截面处的电池舱温度分布
表1是不同电池热功率条件下电池舱的整体流动传热耦合计算结果对比。可以看出,电池热功率对电池舱进出口压力损失的影响很小,均为255 Pa左右。而电池舱出口温度从33.88 ℃升高到46.22 ℃。因此,在不改变电池储能热管理系统整体布局的前提下,要降低电池模块的温度水平,需要增大空气流量,或进一步降低入口空气温度。而考虑到现有电池储能系统中的温度差异,则有必要对热管理系统的布局进行调整。
表1电池舱整体流动传热耦合计算结果
4 结论
本工作针对电池储能装置的结构特点,提出了电池模块的多孔介质模化方法,并针对大容量电池储能空气冷却热管理系统开展了流动传热数值分析。主要结论如下:
(1)将电池模块模化为多孔介质后,能大幅减少对数值计算资源的需求量,为同时开展电池舱和电池模块内的整体流热耦合特性分析提供了一种方法。
(2)电池舱内的风道布局设计,使得各电池模块内的空气流量分配不均,电池模块内温度分布与其空气流量分配具有较强的相关性。高温空气的积聚和换热,使得部分冷却空气在进入电池模块前即有4 ℃左右的温升,是形成电池模块高温区的另一主要原因.
(3)电池舱和电池模块内呈现明显的耦合流动传热特性。由于考虑了空气在电池模块箱体内的流动,电池模块内的固体高温区分别呈现为“正三角”和“倒三角”形状。
(4)电池生热功率对电池舱气流进出口压力损失和流场结构影响较小。随着热功率的增大,电池储能中的最高温度提高,高低温的温差进一步增大。原本高温区域的电池单体更容易处于超温乃至热失控状态。为更准确地评估热管理系统的作用效果,需要同时考虑电池舱和电池模块内的流动传热特性。本工作所提出的分析方法,可为大容量集中式电池储能热管理系统的设计和优化提供借鉴。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
时光奔涌向前,2025年已悄然过半。这半年,科林电气以“智慧能源创新者”之姿,在全球能源变革中破浪前行,交出一份亮眼答卷。订单攻坚,市场拓展的“科林速度”国内市场持续深耕:▶科林电气在南方电网2024年配网设备招标中斩获3.69亿元大单;▶在数据中心、储能等战略领域深入布局并取得显著成果。海
北极星储能网获悉,广东电网公司2025年配网分布式电化学储能系统专项招标(二次招标)中标结果(采购编号:CG0300022002022130)发布,该项目南方电网电力科技股份有限公司中标。
6月16日,南方电网公司在国内首座大型锂钠混合储能站——宝池储能站,圆满完成国内规模最大、电压等级最高构网型储能带纯新能源广域黑启动试验,成功实现20秒快速黑启动,及时恢复供电,黑启动速度处于全国领先水平。宝池储能站位于云南省文山壮族苗族自治州,总容量200兆瓦/400兆瓦时,是国家新型储能
据浙江省海港集团24日消息,宁波舟山港梅山低碳码头示范工程风光储一体化项目3号风机已正式并网使用,标志着浙江省首个“绿电码头”全面建成投用。作为浙江省首个港口分散式风电、光伏、储能、微网一体化示范项目,宁波舟山港梅山港区风光储一体化项目包含建设5台6.25兆瓦风机、1个1.72兆峰瓦光伏项目
近日,上能电气股份有限公司(以下简称“上能电气”)与土耳其领先的新能源公司ArdeEnerji正式签署框架合作协议。这是上能电气在土耳其市场再一次取得重要突破,也将进一步加速其在欧亚光储市场的战略布局进程。ArdeEnerji作为土耳其本土新能源领域的标杆企业,汇聚了一支拥有十余年行业积淀的专业团队
近日,尼泊尔能源、水资源和灌溉部部长迪帕克・卡德卡率访问团到访国内,与四川省电力企业协会及相关企业代表开展中尼能源合作交流座谈会,就能源发展及合作议题进行深度探讨,高泰昊能作为企业代表参与了此次交流活动。右1为高泰昊能代表-总经理助理兼济南分公司总经理朱楠座谈会上,中尼双方围绕能源
废旧电池是一座“城市矿山”。废旧电池通过正规回收处理可以实现资源循环利用,对保障动力电池生产原材料供给、降低原矿资源需求、保障动力电池产业安全具有重要意义。近年来,随着动力电池退役规模的快速增长,相关利好政策已不断落地。就在不久前,广州市工信局发布关于2025年废旧动力电池梯次利用及
6月24日,国家能源局山东监管办公室发布关于征求《山东省新能源和新型并网主体涉网安全能力提升工作方案》意见的函。方案指出,纳入涉网安全管理范围的新能源和新型并网主体(以下简称并网主体)包括并入电网的各类集中式风电、集中式光伏、分散式风电、分布式光伏、新型储能、虚拟电厂、分布式智能电
低碳化浪潮下,电气化重构能源脉络,能源转化效率成破局关键。碳化硅作为功率半导体能效革命先锋,正引领能效与设计双重创新。英飞凌深耕碳化硅技术,主张“最值得信赖的技术革命”。IPAC碳化硅直播季震撼回归!深度拆解技术奥秘,一起解锁碳化硅的无限可能!7月2日14:00,英飞凌行业与技术专家将为您分
北极星储能网获悉,6月24日,川金诺发布变更募集资金用途公告,提到,根据公司长期战略规划和现阶段发展需求,经谨慎研究和论证分析,公司拟将“5万吨/年电池级磷酸铁锂正极材料前驱体材料磷酸铁及配套60万吨/年硫磺制酸项目”、“广西川金诺新能源有限公司10万吨/年电池级磷酸铁锂正极材料项目(一期
近日,全球领先的绿色科技企业远景能源宣布与欧洲可再生能源企业KallistaEnergy签署EPC(工程、采购和施工)协议。双方将在法国上法兰西大区(Hauts-de-France)萨勒(Saleux)地区萨勒(Saleux)地区建设一座120MW/240MWh磷酸铁锂(LFP)电池储能项目,这是远景能源在法国落地的首个独立储能项目,也
2025年年初,高盛集团(GoldmanSachs)在其发布的报告中指出:电池储能系统(BESS)正成为全球电池市场的核心增长点。报告数据显示,BESS市场份额已从五年前的5%上升到2024年的25%,到2030年预计将累计装机3.2TWh,是市场此前预期(300GWh)的10倍,年复合增速达到70%。高盛判断,储能行业将走向更强的
北极星储能网讯:6月17日,广州市发展和改革委员会公示广州市节能减排技术应用典型案例(2025年),本次入围9个,与能源相关的3个,包括光储充氢、综合能源等。其中广州发展新能源集团股份有限公司申报的广州发展南沙电动汽车充电站光储充一体式站点项目入围。广州发展南沙电动汽车充电站光储充一体式
国际油服巨头要用百亿家产,换一张“新船票”!(来源:石油Link文|木兰)国际油价波动、能源转型加速、传统油气投资放缓……多重压力下,全球油服行业正经历一场深刻的战略调整。2025年6月,油服巨头贝克休斯宣布以11.5亿美元的价格,将旗下精密传感器与仪器(PSI)业务出售给工业制造集团克兰公司(C
据外媒报道,可再生能源开发商SMTEnergy公司携手公用事业厂商CenterPointEnergy公司以及建筑商Irby公司,计划在美国德克萨斯州部署160MW/320MWh的HoustonIV电池储能系统,日前,该项目已经破土动工。该项目计划在德克萨斯州电力可靠性委员会(ERCOT)服务的休斯顿地区部署,预计将于今年7月初竣工。Irb
根据美国能源信息署的预测,美国开发商计划到2028年向电网增加18.7吉瓦(GW)的天然气联合循环发电能力,其中4.3吉瓦已处于建设阶段。尽管自2016年以来,天然气发电在美国的发电量中一直位居首位,但2024年几乎没有新的天然气发电能力投入运行。(来源:国际能源小数据作者:ESmallData)联合循环燃气
2025年4月,西班牙全国范围内意外停电,此后西班牙继续推动太阳能利用,实现永不枯竭的能源未来。在短短几个月内,西班牙批准了超过65吉瓦的太阳能项目,启动了新的氢能和电池储能试点项目,并增加了对全球聚变研究的支持。西班牙希望打造一个无需进口能源、无需靠天的发电、储能和维持能源的电网。对
在全球能源加速向绿色、低碳、可持续转型的背景下,储能行业正迎来前所未有的发展机遇与挑战,如何深化产业链合作成为重塑储能产业格局的关键路径之一。SNEC展会期间,采日能源与多家行业知名企业进行战略合作签约,旨在通过优势互补,共同应对市场挑战,把握发展机遇,开启合作共赢的新篇章。一系列战
2025年6月11日至13日,全球新能源行业盛会——第十八届(2025)国际太阳能光伏和智慧能源&储能及电池技术与装备(上海)大会暨展览会(简称SNEC)在上海举行。作为行业发展的风向标,中国质量认证中心(CQC)在本届展会上重磅颁发多张行业首张/首批认证证书,并与产业链龙头企业达成系列战略合作,覆盖
北极星储能网获悉,6月17日,首航高科新疆乌什5万千瓦/40万千瓦时磷酸铁锂电化学独立储能项目开工仪式在阿合雅镇举行。项目计划总投3.95亿元,计划新建50MW/400MWh独立储能电站,含储能工程、开关站、送出工程等。工程总占地面积37.13亩,计划工期6个月,拟于年底建成并网。项目建成后,预计实现年产值
作者:于博旭1nbsp;韩瑞2刘倩1廖志荣1巨星1徐超1单位:1.华北电力大学能源动力与机械工程学院2.国电电力发展股份有限公司大同第二发电厂引用本文:于博旭,韩瑞,刘倩,等.耦合火电厂灵活改造的卡诺电池储能系统热力学性能研究[J].储能科学与技术,2025,14(4):1461-1470.DOI:10.19799/j.cnki.2095-4239.20
北极星储能网获悉,6月17日,江苏新能发布国信溧阳储能电站项目并网的公告。2025年6月13日,江苏省新能源开发股份有限公司(以下简称“公司”)全资子公司江苏新能常储科技有限公司投资建设的国信溧阳100MW/200MWh储能电站项目顺利并网。国信溧阳100MW/200MWh储能电站项目位于江苏省溧阳市别桥镇北山南
2025开年以来,国家发改委与能源局连发两道政策“组合拳”,深刻改写储能行业的发展逻辑。2月出台的“136号文”明确不得将储能配置作为新能源项目核准的前置条件,终结了持续8年的“强制配储”模式,4月落地的“394号文”明确要求2025年底前基本实现电力现货市场全覆盖。即将到来的电力市场格局变化,
近日,天合储能Elementa金刚2储能系统顺利通过了TV南德颁发的IEC62619认证,以及SGS通标颁发的NFPA68与NFPA855两项北美消防认证报告。天合储能始终秉持对产品质量与安全的极致追求,致力于为全球客户提供安全可靠、高效经济的储能系统解决方案。随着全球新能源行业加速迈向市场化交易新阶段,对储能系
自2024年5月,连续几次复燃,火灾最终足足持续了16天之久的美国加州圣地亚哥市OtayMesa(奥泰梅萨)Gateway储能电站(锂电池)火灾事故后,2025年美国MossLanding储能电站两次起火以及德国、英国储能项目火灾事故,再次将储能安全问题推向风口浪尖。截至2025年1月,全球储能事故发生超过100起,储能系
被业界称为“史上最严电池安全令”的《电动汽车用动力蓄电池安全要求》(GB38031-2025)近日发布,并将于2026年7月实施。新国标首次将动力电池热失控后“不起火不爆炸”纳入强制标准,一场关乎“安全”的技术竞赛已经展开。标准全面升级!热失控后“不起火不爆炸”日前,工业和信息化部组织制定的强制
【中国,上海,2025年6月12日】华为数字能源和德国莱茵TV集团(以下简称“TV莱茵”)于上海SNEC展会期间,联合重磅发布《工商业储能C2C双链安全白皮书》,旨在通过双方在储能安全设计、安全标准方面的探索研究和协同创新成果,提升工商业储能的安全水平和标准,为行业可持续发展奠定坚实基础。同时,倡
从引发行业巨震的136号文,到后来的394号文、411号文,除了“强制配储”政策的退出,政策的有形之手与市场的无形之手,始终在协力重塑中国电力市场格局,同时也深刻影响了新能源储能市场的“底层逻辑”。当行业由“政策驱动”迈向“价值驱动”之时。2025年6月12日,在SNEC2025展会现场,阳光电源举办主
北极星储能网讯:2025年6月11-13日,SNECPV+第十八届(2025)国际太阳能光伏与智慧能源(上海)大会暨展览会在上海国家会展中心盛大举行。美的集团旗下能源业务品牌美的能源(美的能源是科陆电子、合康新能、美的楼宇科技、库卡等品牌的联合体)首次亮相并发布“储能+热泵+AI”三维驱动的能源战略。作为美
北极星储能网讯:2025年6月16日上午8时32分许,韩国庆尚北道浦项市南区大松面东国制钢浦项工厂的62MWh储能电站突发火灾,在经过约28小时后,火势得到初步控制。起火建筑为两层钢结构(面积约1125平方米),内部安装8392个电池模块。消防部门接到报告后,于16日上午10点04分发布第一阶段响应,紧急调动
在第十八届(2025)国际太阳能光伏和智慧能源amp;储能及电池技术与装备(上海)大会(简称“SNEC光伏大会”)上,华为董事、华为数字能源总裁侯金龙发表了“铸就高质量,激发AI潜能,开启全面构网新时代”的主题演讲,系统阐述了华为在新能源领域的战略布局和技术创新。随着全球能源转型加速,新能源产
2025年6月11日至13日,全球瞩目的SNECPVPowerExpo在上海国家会展中心隆重举行。浙江奔一新能源有限公司携带着全新力作#x2014;#x2014;BB1-80直流微型断路器(DCMCB)以及一系列领先的智慧新能源解决方案盛装亮相,展位号为7.1H-E670,为这场新能源行业的盛会注入了强劲的动力与创新活力。重磅新品发布,
13家联合发出构网倡议,捅破能源转型天花板!全球绿色能源的确已经成为不可逆转的时代潮流,而传统燃煤电厂在历史洪流中开始大规模“退役潮”。有数据显示,在2020-2023年间全球退役燃煤机组超100GW,相当于德国全年发电量的1.5倍,而据华泰证券预测,2025到2030年我国每年将有12GW左右的燃煤电厂退役
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!