登录注册
请使用微信扫一扫
关注公众号完成登录
图1电池储能装置内部结构示意图
图2电池舱内部空气流向示意图
1.2 电池模块及电池单体
图3是电池模块内部结构及气流在其中的流动方向示意图。电池模块内装有24个容量为117 Ah的磷酸铁锂电池单体,电池模块采用12串38.4 V设计,每个电池模块选用2P的组合方式,容量为234 Ah。电池模块有3个空气入口,分别为后部、左侧和右侧,一个空气出口,通过风扇抽气后流出。为了更好地组织气流,通过调整电池单体的位置布局,使气冷流能够沿着电池模块两侧流入,从中间通道流出,有利于对电池单体进行充分冷却。电池模块的几何尺寸为0.69 m×0.63 m×0.18 m。电池单体的几何尺寸为70 mm×148 mm×112 mm,其标称电压为3.2 V。
图3电池模块内部结构及电池单体示意图
2 分析方法
2.1 计算域
由于电池舱中的电池簇沿中分面呈对称布局,两侧各有一台空调进行冷却,流场和温度场具有较好的对称性,为了节约计算资源,提高数值计算速度,采用1/2空间为计算域进行分析。为减小数值计算网格划分的难度,降低计算量,将在不影响流动传热主要特性的前提下对电池舱内的复杂结构进行简化。电池舱中存在大面积的薄壁结构(壁厚约为1 mm),例如:风道的钣金结构,电池模块的箱体外壳等。其壁厚很薄,且对气体流动影响很小,计算中均简化为厚度为零的薄壁面模型,并在传热分析中考虑了其材料属性和壁厚效应。此外,电池簇和电池模块中的倒角、圆角、螺栓、缝隙、凸起小部件等也均进行了简化处理,便于进行网格划分,提高网格质量。简化后的计算区域如图4所示,其主要包括如下几部分:
图4电池舱内流动传热数值分析计算域
① fluid——电池簇以外的流体计算域;② box-out-air——电池模块中电池单体以外的流体区域;③ box-in-air——电池模块中两侧电池单体中间的流体区域;④ por-left——电池模块中左侧的电池单体区域(模化成多孔介质);⑤ por-right——电池模块中右侧的电池单体区域(模化成多孔介质);⑥ fan——电池模块中风扇周围的流体区域;⑦ tunnel——风道(薄壁处理)。
2.2 电池模块的多孔介质模化
图3所示的电池模块内部结构非常复杂,如果对本工作计算域中60个电池模块进行全尺寸数值计算,则网格节点规模将达到十亿级,这在工程应用中极为困难。考虑到电池单体在电池模块内有规律地紧密排布,气流在电池单体密集区的流动阻力最大,且分配规律复杂。根据空气在其中的流动情况对该区域进行多孔介质模化。在本工作研究中,电池模块内电池单体的分布具有对称性,主要分为两个电池单体密集区,如图5所示。对电池单体密集区采用多孔介质模型来模拟其流动阻力特性。同时,对多孔介质施加热源模型来模拟电池的放热过程。
图5电池模块中的多孔介质模化区域
为简化研究问题,本工作的电池单体密集区模化为均匀多孔介质,且通过的为单相流体介质。多孔介质模型通过在动量方程中增加源项来模拟计算域中的流动阻力。该源项由黏性阻力项(Darcy)和惯性损失项组成,来源于Darcy-Forchheimer模型。
(1)
其中K为渗透率;f为惯性阻力系数;μ为动力黏性系数;ρ为流体密度。多孔介质模型通过在能量方程中修正扩散项为
(2)
其中Sf为流体焓的源项,根据电池单体热功率给定。keff为多孔介质的有效导热系数,采用流体导热系数kf与多孔介质中固体材料的导热系数ks的体积加权平均获得
(3)
如前所述,由于实验测量的电池单体各向导热系数不同,因此多孔介质的有效导热系数也为各向异性。上式中,γ为孔隙率,即流体区域所占空间体积的比值。为获得多孔介质的流动阻力特性,首先对电池单体密集区进行独立的局部流动数值分析,以获得压力损失-速度曲线,从而为下一步开展电池舱的整体流动传热分析提供计算条件。图6是对电池单体密集区的模型简化、计算域及计算网格。在数值计算中,通过给定不同的入口速度,通过数值求解,获得对应的进、出口流动压力损失,处理后获得电池单体密集区的压力损失-速度曲线。
图6电池单体密集区的局部流动数值分析计算域及网格
根据多孔介质的Darcy-Forchheimer模型
(4)
其中,dp/dx为多孔介质单位长度的压力损失;K为渗透率;f为阻力系数。由数值计算获得的压力损失-速度曲线可获得多孔介质的渗透率K和阻力系数f。
2.3 风扇特性模化
每个电池模块均设计有一个风扇,用于将电池模块内的热空气抽吸出箱体外。风扇的增压效应对于电池舱内的流动传热特性,尤其是空气流量分配有重要的影响。为减小计算量,将风扇区域模化成薄层风扇模型。并将反映风扇特性的压比-流量曲线,转换为压比-速度曲线,以便于在电池仓的整体流动传热分析中进行调用。
2.4 数值方法及边界条件
本工作采用有限体积法求解雷诺平均的N-S方程。数值计算基于Ansys Fluent程序开展,采用标准k-ε湍流模型计算该流热耦合问题,利用二阶迎风格式离散控制方程,并采用SIMPLEC方法作为压力-速度解耦算法,分离式迭代求解控制方程,直至计算收敛。湍流模型方程如下
(5)
(6)
其中模型常数;
;
;
;湍流生成项
。
图7为电池舱流动传热数值分析的边界条件示意图。入口空气来自于空调冷却后的冷空气,出口边界为空调的抽风口。由于电池储能装置外壁有隔热层,故假设外侧壁面为绝热壁面。计算模型中两侧均有流体流动的壁面采用流热耦合计算,主要包括风道壁面和电池模块箱体壁面。其中风道钣金厚度为0.8 mm,电池模块箱体壁面厚度为1.2 mm。如前所述,为简化计算,均采用薄层模型,并在传热分析中考虑了其材料属性和壁厚效应。
图7电池舱流热耦合数值计算的边界条件
入口边界条件为速度入口,折合空气质量流量为1.97 kg/s,温度为25 ℃。出口边界条件为101.325 kPa。空气的物性根据理想气体状态方程计算,其导热系数和黏性系数根据Sutherland公式进行计算。在流热耦合计算中,风道钣金材料为304不锈钢,电池模块箱体为SPCC冷轧钢板材料,通过查阅《中国材料工程大典》获得其导热系数。根据实验测量,电池单体的导热系数为各向异性,分别给定了宽度、厚度、高度方向上的导热系数为10.75 W/(m2·K)、4.32 W/(m2·K)、10.49 W/(m2·K)。本工作数值分析中,分别探讨了电池单体在1.0 C充电速率平均热功率12 W,以及最大热功率29 W条件下的流动传热特性。
2.5 网格及网格无关解
本工作采用四面体非结构网格构建流-固耦合计算域,网格示意图如图8所示。流体侧网格边界层区域进行了加密,第一层高度设置为0.001 mm,此时第一层网格的无量纲高度y+<1。网格增长比设置为1.1,边界层内设置了12层网格。
图8电池舱流热耦合数值分析的计算网格
对本工作研究问题进行网格独立性分析,分别取网格数量为1082万、2434万、5415万、8742万4种网格,计算得到的压力损失、固体最高温度如图9所示。可以看到,当网格数量在5415万时,网格数继续增长对结果的影响很小,因此采用数量为5415万的网格开展后续计算。
图9网格无关解验证
3 结果与分析
3.1 电池舱内的流动传热特性
图10是各电池模块风扇出口的温度云图。从图中可以看出,总体来说,左侧偏上区域的风扇出口温度较高,而右侧偏下区域的风扇出口温度较低。而由于计算中考虑了电池模块内的流动情况,单个电池模块风扇出口截面上的温度分布也呈现明显的不均匀性,通常截面左侧温度要高于右侧温度,这反映出电池模块箱体内部流动传热存在不均匀性。
图10电池模块风扇出口温度云图
图11是各电池模块风扇出口平均温度和流量。风扇出口平均温度值的对比进一步表明了各电池模块出口温度分布的特点,即左侧偏上区域温度较高,右侧偏下区域温度略低,且高低温区域的最大温差为11 ℃左右。对比风扇出口流量分布可以看到,左侧偏上区域的流量较低,右侧偏下区域的流量较高,与风扇出口平均值分布相对应。这反映出,电池舱内的热管理设计,尤其是风道布局,使得各电池模块内的空气流量分布不均,也是造成各电池模块内温度分布不均匀的主要原因之一。同时,由于空气通过电池模块后整体从右向左流动并沿程吸热,使得风扇出口平均温度从右向左逐渐升高。
图11电池模块风扇出口平均温度和流量分布
为研究空气经过电池模块前后的温度变化,图12显示了X方向各电池模块对称中截面处的温度分布和速度分布。从温度分布可以看到,空气的主要温升出现在电池模块箱体内部。在远离空调的X1、X2截面,空气在进入电池模块前,其温度水平较低,基本接近供气温度。而在靠近空调的X5、X6截面,由于回流高温空气的换热,空气在进入电池模块前即有了4 ℃左右的温升,这也是造成各电池模块风扇出口温度不均匀的原因之一。此外,从温度分布中还可观察到电池模块风扇明显的抽吸效应,电池模块内的高温气流经风扇形成射流,并在横向流动的影响下发生流动偏转及高低温气流的掺混。
图12X方向各电池模块对称中截面处的温度分布和速度分布
从速度分布可以看到,空气在从主风道进入到电池模块前的收敛型风道时,均存在不同程度的流动分离现象。尤其在X2、X3截面,存在较大的分离低速区,由此造成较大的局部压力损失,以及流量分配不均。这在风道设计中应引起注意。
3.2 电池模块内的流动传热特性
为进一步观察各电池模块内的流动传热特性,图13显示了Y方向各电池模块对称截面的温度分布。从温度分布可以看到,在各个Y截面上,电池模块风扇抽吸排出的高温空气向左侧(即空调吸气口方向)流动汇集,使得气流温度不断升高。气流与电池模块固体的传热呈现明显的耦合效应,气流温度升高后,由于对流换热,使得冷却空气在进入左侧电池模块前就升温,进而造成电池模块固体温度更高。
图13Y方向各电池模块对称中截面处的温度分布
从Y5、Y4截面上各电池模块固体的温度分布可以看到,电池模块固体的温度呈现明显的不对称性。以Y5截面上最右侧电池模块为例,其相对高温区呈现从右上到左下的分布特点。这是由于电池单体密集区模化成多孔介质后,空气在多孔介质内的流动方向受到周围环境压力的影响。而冷却空气可从3个侧面进入电池模块,电池舱内空气整体从右向左流动,使得冷却空气在电池模块内具有从右上向左下的流动趋势,造成左下区域的温度更高。类似的温度分布特点同样出现在多个电池模块中。
值得注意的是,Y5、Y4截面左侧电池模块和Y2、Y1截面右侧电池模块固体的温度分布特点差异明显,高温区分别呈现为“正三角”和“倒三角”形状。对于Y2、Y1截面右侧电池模块,由于电池仓该区域的空气从右向左的横向流动较弱,且低温空气不断从电池模块左右两侧进入进行冷却,使得电池模块固体高温区域呈现“倒三角”形状。而对于Y5、Y4截面左侧电池模块,由于电池仓该区域的空气温度已经较高,其从电池模块左右两侧进入后,冷却效果较弱,使得电池模块固体高温区域呈现“正三角”形状。
图14为各电池模块中电池单体密集区(即模化为多孔介质)的温度分布,反映的是各电池单体固体的温度水平。可以看到,电池单体的温度差异较大,最大温差接近20 ℃。各电池单体的温度分布趋势与各电池箱体内的空气流量及电池舱内的流场和温度场分布相互对应,反映出空气冷却设计布局所产生的影响。同时也能明确看到,由于考虑了空气在电池模块箱体内的流动,同一电池模块内的两侧电池单体密集区的温度呈现明显差异,且高温区出现的位置也各不相同。
图14电池模块中电池单体密集区(即多孔介质模化区)的温度分布
上述分析表明,电池舱的整体空气流动传热特性,对于电池模块内的流动传热特性具有重要的影响,导致了电池舱不同区域的电池模块形成了不同的温度分布特点。为获得更准确的电池模块温度分布,评估热管理系统的作用效果,就有必要同时考虑电池舱和电池模块内的流动传热特性。
3.3 电池热功率负荷变化的影响
电池在工作过程中,不同荷电状态下(state of charge,SOC)的生热功率各异。为研究电池热功率负荷对电池储能流动传热的影响,分别比较了电池单体在1.0 C充电速率平均热功率12 W,以及最大热功率29 W条件下的流动传热特性。图15是Z1截面上的温度分布对比。可以看出,虽然不同电池热功率下的温度水平不相同,但两种工况条件下的流场结构和温度整体分布情况非常接近,依然是左侧区域温度最高,右侧偏下区域温度最低。同时注意到,随着电池单体热功率的增大,电池储能中的最高温度提高,高低温的温差进一步增大。因此,左侧区域的电池更容易处于超温乃至热失控状态。
图15不同电池热功率条件下Z1截面处的电池舱温度分布
表1是不同电池热功率条件下电池舱的整体流动传热耦合计算结果对比。可以看出,电池热功率对电池舱进出口压力损失的影响很小,均为255 Pa左右。而电池舱出口温度从33.88 ℃升高到46.22 ℃。因此,在不改变电池储能热管理系统整体布局的前提下,要降低电池模块的温度水平,需要增大空气流量,或进一步降低入口空气温度。而考虑到现有电池储能系统中的温度差异,则有必要对热管理系统的布局进行调整。
表1电池舱整体流动传热耦合计算结果
4 结论
本工作针对电池储能装置的结构特点,提出了电池模块的多孔介质模化方法,并针对大容量电池储能空气冷却热管理系统开展了流动传热数值分析。主要结论如下:
(1)将电池模块模化为多孔介质后,能大幅减少对数值计算资源的需求量,为同时开展电池舱和电池模块内的整体流热耦合特性分析提供了一种方法。
(2)电池舱内的风道布局设计,使得各电池模块内的空气流量分配不均,电池模块内温度分布与其空气流量分配具有较强的相关性。高温空气的积聚和换热,使得部分冷却空气在进入电池模块前即有4 ℃左右的温升,是形成电池模块高温区的另一主要原因.
(3)电池舱和电池模块内呈现明显的耦合流动传热特性。由于考虑了空气在电池模块箱体内的流动,电池模块内的固体高温区分别呈现为“正三角”和“倒三角”形状。
(4)电池生热功率对电池舱气流进出口压力损失和流场结构影响较小。随着热功率的增大,电池储能中的最高温度提高,高低温的温差进一步增大。原本高温区域的电池单体更容易处于超温乃至热失控状态。为更准确地评估热管理系统的作用效果,需要同时考虑电池舱和电池模块内的流动传热特性。本工作所提出的分析方法,可为大容量集中式电池储能热管理系统的设计和优化提供借鉴。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
北极星售电网获悉,3月14日,新疆电力交易中心发布关于征求《新疆电力市场管理委员会工作(议事)规则(征求意见稿)》等4个征求意见稿意见建议的通知。其中包括《新疆电力市场结算方案(修订稿)》部分修订条款。补充增加独立储能结算相关条款,明确独立储能充放电分别按照用电侧、发电侧进行结算。第
北极星储能网获悉,3月10日,中煤于田新能源有限公司成立,法定代表人为于建民,注册资本约8.4亿人民币,经营范围包括太阳能发电技术服务、新兴能源技术研发、储能技术服务等,由中国中煤旗下中煤电力有限公司全资持股。今年以来,中煤电力有限公司已成立中煤电力(哈密)新能源投资有限公司、中煤(南
北极星储能网获悉,3月11日,全球产能最大的短流程钒电解液制备项目在内江投运,这是四川发展(控股)公司贯彻落实国家“双碳”战略、加速布局新型储能战略性新兴产业的第一个重大产业化项目,标志着四川省储能产业建圈强链迈出新步伐。此次投产的年产60000m短流程钒电解液制备项目,采用自主研发的新
北极星储能网获悉,3月12日,四川宜宾组织申报2024年度新型储能项目补助。对宜宾市内纳入四川省新型储能示范项目且装机规模10万千瓦/20万千瓦时及以上的电网侧独立储能电站,按年度参与电网统一调度,单个项目每年最高补助400万元。对2024年以来在宜宾市内新建设投运且装机规模不低于100千瓦的用户侧储
2021年以来,储能市场风起云涌、群雄争霸,储能行业进入蓬勃发展阶段。与此同时,储能的“商业模式”与“收益率”也成为大家讨论的热点。而这个热点问题,离不开电力市场,可谓是储能收益“成也电力市场,败也电力市场”。仅凭一纸账单,虽能够得知储能收益情况,但这些数字背后的形成原因更值得我们挖
日前,澳大利亚能源市场运营商(AEMO)透露,在最近进行的新南威尔士州路线图竞争性招标中,将近14GWh长时储能系统成功中标。其中包括两个电池储能系统和一个位于Mudgee镇以西35公里的抽水蓄能发电设施(PHES),总计规模为1.03GW/13.79GWh。三个成功中标的储能项目分别是由Enervest公司拥有并运营的12
近日,2025年“北极星杯”储能影响力企业评选颁奖典礼在浙江杭州隆重举行。天合光能凭借前瞻性技术创新、卓越的系统集成能力以及出色的市场表现,荣获“储能影响力系统集成商”“储能技术创新企业”两大奖项,充分彰显其在储能全产业链的技术实力与在全球新能源赛道中的领跑地位。天合光能始终将科技创
近期,多座储能电站获最新进展,北极星储能网特将2025年3月10日-2025年3月14日期间发布的储能项目动态整理如下:1GW/2GWh!山东烟台储能中心项目开工近日,山东烟台举办春季高质量发展重大项目建设现场推进会,321个重点项目集中开工,其中包括烟台储能中心(西部)1GW/2GWh项目。据了解,山东烟台储能
国家能源局发布的数据显示,截至2024年年底,全国已建成投运的新型储能项目,累计装机规模达73.8GW/168GWh,较2023年底增长超过130%。平均储能时长2.3小时,较2023年底增加约0.2小时。从储能时长看,4小时及以上新型储能电站项目逐步增加,截至2024年年底装机占比为15.4%,较2023年底提高约3个百分点。
继订单调价后,赣锋锂电又一则消息引起广泛关注。赣锋锂业3月13日公告,赣锋锂电拟用自有资金以定向减资回购的方式,回购部分股东持有的赣锋锂电股份。本次赣锋锂电实施定向减资回购的股份数量拟不超过4.99亿股,对应的回购资金约16.00亿元。01对赌“败了”的锂王细究下来,赣锋锂电此举与公司上市遇阻
北极星储能网获悉,3月11日,广东肇庆市高要区人民政府印发《肇庆市高要区碳达峰实施方案》。其中提出,因地制宜拓展新型储能多元化应用,推进新能源发电配建新型储能,规划引导独立储能合理布局,鼓励用户侧储能发展。大力推进“新能源+储能”项目建设,落实“新能源+储能”标准配置政策,2023年7月1
可再生能源开发商EnergyAustralia公司在2月28日确认,在融资结束几天后,该公司已经开工建设350MW/1400MWh的Wooreen电池储能系统。EnergyAustralia公司在2月20日完成了Wooreen电池储能系统融资该项目部署在维多利亚州拉特罗布山谷。旨在部分取代EnergyAustralia公司计划于2028年中退役的1450MWYalourn
据外媒报道,日前,总部位于瑞典的锂离子电池制造商Northvolt公司宣布,该公司已经对外出售了其旗下的工业部门,其中包含在波兰运营的一座电池储能系统生产工厂,此举是在该公司实施其剥离非核心资产战略的一部分。Northvolt公司已与一家行业领先的工业集团(未透露名称)的买家为此签署了一项出售与收
日前,埃及政府与总部位于迪拜的可再生能源开发商AMEAPower公司签署了部署两个大型电池储能项目的容量采购协议(CPA),这两个电池储能系统是埃及部署的首批此类项目。埃及电力与可再生能源部长MahmoudEsmat博士(中)出席容量采购协议签署仪式AMEAPower公司在2月25日宣布,该公司已经为总容量为1500MW
日前,可再生能源开发商和运营商ApexCleanEnergy公司宣布,该公司已经开通运营在美国德克萨斯州伊达尔戈县部署的100MW/200MWhGreatKiskadee电池储能系统。该项目最初预计于2024年第三季度投入商业运营,并获得了FirstCitizens银行提供的融资,该银行还为ApexCleanEnergy公司在德克萨斯州汤姆格林县部署
据外媒报道,日前,储能系统开发商LionStorage公司表示,该公司已经成完成了计划在荷兰开发部署的1.4GWh电池储能系统融资。Dentons律师事务所为包括荷兰银行、荷兰合作银行、荷兰国际集团银行、Triodos银行、桑坦德银行和ASR在内的六家银行组成的财团提供咨询服务,计划为LionStorage公司部署的电池储
据外媒报道,日前,德国公用事业厂商莱茵集团(RWE)在北莱茵-威斯特伐利亚州的哈姆(Hamm)开通运营了一个230MW/235MWh电池储能系统。该项目采用690块锂离子电池构建,整体开发成本约为1.4亿欧元(1.46亿美元)。值得一提的是,此次开通这个电池储能系统意味着莱茵集团在全球部署了约1.2GW储能系统,
据外媒报道,澳大利亚国有电力基础设施开发商EssentialEnergy公司已经在澳大利亚新南威尔士州的MaloneysBeach、Leeton和Goulburn三个城镇开通运营了三个社区电池储能系统,这三个电池储能系统的规模均为192kW/530kWh。这些社区电池储能系统是EssentialEnergy公司根据澳大利亚联邦政府的家庭太阳能社区
储能系统从早期的集中式发展到今天的组串式,解决了木桶效应,从直流舱拓展到交直流一体,减少了直流侧多级转换的效率损失问题。储能系统架构、集成技术的每一次革新,本质上是通过模块化解耦、功能融合、智能协同等解决传统架构的效率与安全矛盾。然而,随着大容量电芯的不断涌现,传统20尺集装箱如何
日前,行业专家指出,尽管2024年提交的规划部署储能系统规模同比下降了12%,但人们对英国储能市场仍具有浓厚兴趣,其未来市场增长仍然强劲。英国市场中的大多数储能项目仍处于早期阶段:它们或者由开发商对外宣布,或者已经提交规划申请。这其中包括156GWh独立部署电池储能系统,平均储能容量为254MWh
据外媒报道,电池储能系统开发商AkayshaEnergy与大宗商品贸易公司Guvnor集团签署了一项长期电力采购协议,将采购其在澳大利亚昆士兰州部署的205MW/410MWhBrendale电池储能项目电力。2月21日,双方确认这一风险对冲的电力采购协议是一种收益互换协议,与开发商EkuEnergy公司在澳大利亚首都特区部署500MW
目前,德国和英国是欧洲“最热门”的电池储能市场,但欧洲其他国家也提供了令人兴奋的机会。这是2025年欧盟储能峰会中的小组讨论对于“大辩论:最热门的欧洲存储市场在哪里?”话题中得出一个关键结论。会议主持人、WoodMackenzie公司欧洲、中东和非洲地区储能市场首席分析师AnnaDarmani表示,在过去的
作者:张文婧肖伟伊亚辉钱利勤单位:长江大学机械工程学院引用:张文婧,肖伟,伊亚辉,等.锂离子电池安全改性策略研究进展[J].储能科学与技术,2025,14(1):104-123.DOI:10.19799/j.cnki.2095-4239.2024.0579本文亮点:1.根据锂离子电池热失控机制,总结了在电池部件集流体上最具有创新性的改进方法:将集
文丨北京城市管理委员会北极星储能网讯:3月12日,北京市地方标准《电力储能系统建设运行规范》公开征求意见,该文件于2021年首次发布,本次为第一次修订。本文件由北京市城市管理委员会提出并归口,由北京市城市管理委员会组织实施。规定了电力储能系统的设计、施工、验收、运行维护及退役和应急处置
北极星储能网讯:3月10日,由应急管理部天津消防研究所等单位承担的推荐性行业标准《电化学储能系统火灾抑制试验方法》公开征求意见。本标准适用于额定容量不小于100kWh的预制舱式磷酸铁锂电池储能系统火灾抑制试验方法。额定容量小于100kWh的电池储能系统可参照执行。本标准不适用于三元体系的锂离子
北极星储能网讯:据韩国全罗南消防局3月9日消息,当天下午2点07分,接到报告称,位于康津洞的光伏储能设施发生火灾。消防部门启动了第一阶段的响应,动员了18辆消防车和43名人员灭火。主要火势已得到控制,其余火势正在被扑灭。一名消防员因肩部和背部烧伤被送往医院,无生命危险。经确定,500多平方米
为进一步提升我市电化学储能项目安全监管工作水平,2月27日至28日,珠海市发展和改革局党组成员、副局长黄碧青同志带领能源安全监管科相关负责同志、市能源安全专家、市应急安全协会负责人赴广州市发展改革委、佛山市发展改革局及南方电网储能公司开展专题调研,重点调研学习了电化学储能安全监管机制
2025年2月9日,国家发改委联合国家能源局正式取消了持续8年的新能源配储强制要求,上网电量全面进入电力市场。政策解绑后,风光电站初始投资成本将显著降低,伴随2025年煤碳达峰的时间节点,新增用能需求会大幅依赖新能源装机实现,叠加近年来绿电装机快速增长现状,增量项目将对电网产生巨量冲击。新
3月4日,中电联公布了国家电化学储能电站安全监测信息平台业务专家名单,共有106为专家。其中不仅包含国家电网、南方电网、大唐、三峡、国家能源集团等电力单位的专家,也有来自科华数能、海博思创、海辰储能、宁德时代等企业代表。
北极星储能网获悉,近日,奥地利一位34岁男子在网上购买了特斯拉圆柱电池,为了储存屋顶光伏的发电想要自制储能系统。报道称,该男子将电池单元组合在约30X50厘米的板上,由于电池无法成功运行,他将其暂时放在了屋内客厅,随后开始吸烟。当天14点30分左右,电池突然冒烟,他试图举起冒烟的电池跑出客
北极星储能网获悉,3月3日,温州市住建局公开征求《温州市用户侧电化学储能电站消防技术导则(征求意见稿)》意见。本导则适用于温州市新建、改建或者扩建的额定功率为500kW且额定能量为500kW·h及以上的用户侧固定式电化学储能电站。当电化学储能电站充电功率和放电功率不一致时,以额定放电功率为准
北极星电力网、北极星储能网2025年3月4-5日于浙江杭州举办“2025年中国储能技术创新应用研讨会”。会上,华能清洁能源研究院华清储创研发部主任韦宇作了题为《电化学储能电站安全风险与火灾预警》的报告。华能清洁能源研究院华清储创研发部主任韦宇华能清洁能源研究院华清储创研发部主任韦宇表示,在“
北极星储能网讯:2023年4月22日17时56分,甘肃省民勤县某磷酸铁锂储能电站发生火灾,造成站内1个储能电池舱烧损,直接经济损失约410万元。此后,武威市消防救援支队在《中国设备工程》发表《一起储能电站火灾事故的分析与研究》(以下简称《事故分析》),披露了本次事故的详细信息。图1:电站火灾现场
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!