登录注册
请使用微信扫一扫
关注公众号完成登录
图1(a)由单层MoS2组装而成的3D纳米管;(b) 3D MoS2纳米管的HRTEM图像;(c) 3D GO/MoS2复合材料制备
(1)
式中,rij为纳米粒子i和j中心之间的距离;θ′和φ为球极坐标系中的标准角度参数;k为德拜长度的倒数;ε0为真空介电常数;ε为两个纳米晶体之间溶液层的有效介电常数;μi和μj为纳米粒子的偶极矩。从该方程可以看出,可以通过改变溶液的ε来调节粒子间相互作用。通过使用具有不同介电常数的醇类溶液,可以实现直径和长度可控的3D纳米管。例如,使用丁醇(ε=8)和乙醇(ε=25)可以合成平均直径分别为400 nm和200 nm的3D组装管。当溶剂中没有乙醇时,只能获得MoS2纳米片。水/溶剂热法另一目的是将TMDs纳米材料与碳材料混合以提高TMDs的导电性。通过水/溶剂热法合成了多种层状TMDs/碳杂化物,如MoS2/石墨烯(GO)、MoS2/还原氧化石墨烯(RGO)、MoS2@C、MoS2@碳纳米管(CNT)等。Zeng等通过简单的溶剂热法制备了3D GO/MoS2复合材料[图1(c)]。MoS2纳米花颗粒均匀分散在3D GO基体中,作者认为3D GO能促进电解液的渗透、增加导电性,并且在充放电过程能抑制嵌钠/脱钠带来的体积膨胀。当用作NIBs负极时,在2 A/g电流密度下,可提供约310 mAh/g的可逆容量。
1.2 化学气相沉积法(CVD)
CVD是一种常见的自下而上的方法,该方法可以在各种类型的衬底上生长TMDs纳米材料。例如,Ji等通过CVD工艺在SiO2/Si衬底上制备了VS2纳米片[图2(a)]。他们通过将VCl3、硫脲及SiO2/Si基板置于不同的加热区,在Ar/H2混合气体氛围下,VCl3和硫脲在275~300 ℃的温度下蒸发,在600 ℃左右沉积在基体上。通过控制Ar/H2混合气体流量,可以生长出10~40 μm的VS2纳米片。随后,可以通过聚甲基丙烯酸甲酯(PMMA)辅助转移法,将得到的VS2纳米片从SiO2/Si衬底转移到任意衬底上,从而进一步丰富其应用。与Si/SiO2衬底相比,金属箔更常被用于制备TMDs纳米材料,这是因为涂覆了TMDs纳米材料后的金属箔可以直接作为电池电极,而无需再进一步转移。
图2(a) CVD法生长VS2纳米片;(b)在W箔上制备WO3/WS2核壳结构
除了在金属基底上生长TMDs纳米材料外,CVD法还可用于在其他材料上生长TMDs纳米材料,从而形成复合材料。例如,碳材料和金属氧化物常常通过这种策略与TMDs纳米材料杂化。Choudhary等通过CVD法在氧化的钨箔上制备了WO3@WS2核壳结构[图2(b)]。首先,他们使用定向氧化的方法在钨箔上生长垂直排列的六边形WO3纳米线,然后将WO3纳米线通过CVD工艺与硫蒸气反应形成WO3@WS2核壳结构。形成的WS2壳的厚度为7~8 nm。
1.3 液相剥离法
与水/溶剂热法和CVD法不同,剥离法是一种自上而下的方法,以块状TMDs作为原材料制备TMDs纳米片。剥离法原理为:通过物理化学方法将块状TMDs相邻层之间的范德华力减弱,使得其很容易分离获得TMDs纳米片。在所有剥离方法中,溶剂辅助剥离和Li+插层辅助剥离是两种常用的剥离方法。溶剂辅助剥离是将材料浸入有机溶剂中,然后进行超声处理。Coleman等进行实验发现,对TMDs进行剥离最有效的有机溶剂是1-甲基-2-吡咯烷酮(NMP),通过NMP辅助剥离的材料能观察到明显单层结构[图3(a)],因此,NMP被广泛用于TMDs的剥离。除了溶剂辅助剥离,Li+插层辅助剥离也被广泛使用。典型的Li+插层辅助剥离过程包括3个步骤:①Li+嵌入TMDs的层间空间中;②将嵌入Li+的化合物浸入水中;③将化合物超声处理。受Li+插层辅助剥法的启发,开发了各种方法,包括使用有机金属化合物(例如正丁基锂)作为嵌入剂的剥离。Li+插层辅助剥法是最有效的剥离方法,但是,该方法将外来离子引入制备的TMDs纳米片中,且这些残留物很难去除。为了避免这个问题,Feng等开发了一种氨(NH3)辅助剥离方法获得了少层金属VS2纳米片[图3(b)]。他们首先以Na3VO4·12H2O和硫代乙酰胺为前体,通过水热法合成了NH3插层的VS2(VS2-NH3)。在水热过程中,硫代乙酰胺水解产生的NH3分子嵌入到VS2中。随后,将VS2-NH3在冰水中进行超声处理将NH3渗出,成功地获得4~5层厚度的VS2纳米片。
图3(a)单层BN、MoS2和WS2的高分辨率TEM图像;(b) VSq2纳米片的制备示意图
2 常见TMDs在NIBs中的应用
相对于其他金属氧化物或者磷化物电极材料,TMDs独特的物理化学特性使其成为NIBs负极的潜在候选者之一(表1)。在过去的几十年里,研究人员通过改变物理化学性质来合成不同的TMDs及其复合材料以增强其作为NIBs负极的电化学性能。例如:合成不同形貌结构、与不同碳质材料(石墨烯、碳纳米管、多孔碳、碳纳米结构、导电聚合物等)复合、与其他二维材料形成异质结构、与过渡金属氧化物/氢氧化物复合等。接下来将对几种常见的TMDs(MoS2、SnS2、WS2、VS2)在NIBs中的研究进展进行综述。
表1常见钠离子电池电化学性能
2.1 二硫化钼(MoS2)
MoS2有明确的层状结构,由范德华力形成独特的S—Mo—S夹层结构,其层间距为0.615 nm。已提出的MoS2在NIBs的电化学反应机制如下:
为了便于Na+的嵌入/脱出、保留更多钠储存活性位点、减少扩散距离和缓解大的体积变化,设计具有更大层间距的MoS2纳米结构被认为是改善其电化学性能的有效方法。Hu等制备具有扩展层间距的MoS2纳米片(FG-MoS2)。如图4(a)、(b)所示,所制备的MoS2纳米片的层间距分别为0.67 nm和0.64 nm(FG-MoS2,CG-MoS2),而原始MoS2(B-MoS2)的层间距仅为0.62 nm。放电/充电曲线中FG-MoS2纳米片显示出较高的电压平台和低电压极化,这可归因于Na+嵌入MoS2纳米片的能垒降低。将FG-MoS2纳米片作为NIBs负极时,在1 A/g电流密度下的可逆充放电容量约为200 mAh/g,在10 A/g时可逆充放电容量约为175 mAh/g,比B-MoS2容量高出不少(其中1 A/g电流密度下高45%,10 A/g电流密度下高43%)。值得注意的是,FG-MoS2纳米片可以在10 A/g电流密度下循环1500次后仍保持约195 mAh/g的可逆放电容量。Li等使用聚环氧乙烷(PEO)作为插层剂,通过一种简便的剥离-重堆叠的方法合成了PEO-MoS2纳米复合材料[图4(c)],通过在合成过程中控制PEO的量,分别实现了在两层MoS2板之间包含一层和两层PEO(PEO1L-MoS2,PEO2L-MoS2)。其中PEO2L-MoS2复合材料表现出优异的电化学活性,在0.05 A/g的电流密度下具有约225 mAh/g的高比容量,高于商业的MoS2(113 mAh/g),同时也具有更高循环稳定性。作者还通过GITT曲线,根据式(2)计算了PEO2L-MoS2和商业MoS2的扩散率,发现PEO2L-MoS2即使在Na+扩散量较高的情况下也能保持优异的扩散率。
图4(a) FG-MoS2的HRTEM图;(b) CG-MoS2的HRTEM图;(c)通过剥离-重堆叠方法合成PEO-MoS2纳米复合材料的示意图;(d) MoS2/RGO异质结构制备示意图;(e) MoS2/RGO中Na吸附的不同能量可能位点及其异质结构模拟图
(2)
式中,τ为恒流脉冲时间;mB、MB和VM分别为材料质量、摩尔质量和摩尔体积;S为电极-电解质界面的面积;∆Es为稳态电压减去原始电压得到的变化量;∆Et为恒流脉冲期间电压的总变化量。电极材料的循环稳定性和倍率性能取决于材料的电子电导率,将MoS2与碳质材料(石墨烯、碳纳米管、多孔碳等)的复合也是提高其电化学性能的重要方法。Li等报道了一种在含氮还原氧化石墨烯片(N-RGO)上生长垂直取向的MoS2,作者研究发现垂直取向的MoS2高度和密度对其电化学性能影响很大,片层密度高但片层高度短有助于促进Na+的嵌入与脱出。该复合材料在1 A/g电流密度下具有约245 mAh/g的可逆容量,并且其循环稳定性与硬碳材料相当(在1300圈循环后容量仅下降约5%)。Xie等通过简便的水热法制备了具有二维异质界面的MoS2/RGO纳米复合材料[图4(d)],他们工作的主要目的是介绍2D层状金属硫化物和2D石墨烯之间的协同效应,这种协同效应在之前的研究中从未有过深入报道。通过计算后结果表明,Na+更倾向于吸附在MoS2/RGO异质结构中的MoS2上,而不是嵌入到MoS2/RGO异质界面中,但是MoS2/RGO异质界面又可以显著提高MoS2的电子电导率,使其储存更多的Na+的同时保持Na+在MoS2表面的高扩散迁移率和电子转移效率[图4(e)]。
2.2 二硫化锡(SnS2)
SnS2是层状六方CdI2型晶体结构,层间距为0.589 nm,两层紧密排列的硫离子层中间通过与锡离子的弱范德华力作用结合在一起。已研究得出的SnS2在NIBs中的反应机制如下:
SnS2的大层间距有利于Na+的嵌入和脱出。然而,Na15Sn4的形成将导致420%的体积膨胀率,这导致充电/放电过程中材料的循环稳定性严重下降。解决体积膨胀的一种有效策略是构筑特殊的形貌结构。少层SnS2的大表面积可以容纳更多的Na+、缩短Na+的扩散路径、提供有效的电解质渗透和界面反应。Sun等通过回流工艺将SnCl2和1,3,4-噻二唑-2,5-二硫醇(DMCT)合成了厚度为3~4 nm的超薄SnS2纳米片,作者通过改变温度来优化材料的厚度,发现最薄的纳米片是在160 ℃的回流温度下实现的。所制备的SnS2纳米片在0.1 A/g的电流密度下表现出约733 mAh/g的高可逆容量和高倍率性能(在2 A/g下具有约435 mAh/g的比容量)。除了制备少层的SnS2外,制备特殊的形貌结构也可以提升其电化学性能。本课题组设计了一种通过自模板化和选择性蚀刻方法以及自组装策略合成了卵黄-双壳立方状SnS@N-S共掺杂碳(YDSC-SnS@NSC)[图5(a)]。用于NIBs负极材料时,在8 A/g下显示出约257 mAh/g的出色倍率能力和超稳定的循环性能(电流密度为1 A/g下循环100圈后容量保持率为83.5%)。
图5(a)通过自模板化和选择性蚀刻方法以及自组装策略合成YDSC-SnS@NSC的示意图;(b)含有Li+/Na+的SnS2-rGO-SnS2复合材料结构模型;(c) SnS2/CNT作为NIBs负极不同扫描速率的赝电容贡献率
为了进一步提高倍率能力和循环稳定性,与导电碳基体形成复合材料也是一种有效的方法,它可以缓冲嵌钠/脱钠时的大体积变化。Jiang等采用一步水热法制备了SnS2-石墨烯(GO)-SnS2夹层结构,作者认为C—S键的特殊结构显著增强了复合材料的电化学性能[图5(b)]。当用作NIBs负极时,即使在10 A/g电流密度下,复合材料也表现出约765 mAh/g的比容量。Cui等使用两步合成方法制备了SnS2-CNT气凝胶。在第1步中,作者采用水热法制备了SnO2-CNT气凝胶复合材料。然后,将所制备的复合材料和硫脲混合,并在密封的不锈钢容器中,300 ℃退火后制备了SnS2-CNT气凝胶复合材料。用作NIBs负极时,在0.2 A/g电流密度下表现出约630 mAh/g的容量,即使在100次循环后,它仍保持约536 mAh/g的容量,赝电容贡献高是优异的电化学性能的解释[图5(c)]。除了GO、CNT外,3D多孔碳纳米结构也能促进离子的快速传输。Liu等通过引入电容性质,制备了中空碳包裹的SnS2纳米片。该复合材料的主要优点是中空碳结构可以缓冲合金化反应过程中SnS2的体积膨胀。该材料采用多步法合成,其中使用不同的金属氧化物(MnOx、Fe2O3和SiO2)作为模板合成该结构,结构成型后使用草酸去除Fe2O3和MnOx,使用NaOH蚀刻SiO2。该复合材料在0.1 A/g时表现出约556 mAh/g的可逆容量。
2.3 二硫化钨(WS2)
在WS2中,W原子位于三棱柱配位球中,与其他TMDs一样,它也具有层状结构。WS2理论容量为432 mAh/g,与MoS2一样,它也表现出嵌入后的转化反应,在反应过程中最多可以转移4个电子,其在NIBs中的电化学反应机制如下:
近年来,WS2作为NIBs负极的报道并不多。有一些报告指出该材料作为NIBs负极的缺点主要是由于转化反应引起的大体积变化,导致WS2通常存在循环稳定性较差的问题。扩大其层间距是提高插层类TMDs电化学性能的常用策略。Liu等通过溶剂热法处理,然后进行热处理,获得了层间距扩大的WS2NWs纳米线[图6(a)]。作者将所制备的材料在0.01~2.5 V及0.5~2.5 V两个电压窗口测试其作为NIBs负极的电化学性能。当截止电压为0.01 V时,WS2NWs纳米线在0.1 A/g电流密度下展示出约605.3 mAh/g的容量,但会发生不可逆的转化反应。当截止电压限制在0.5 V时,WS2NWs纳米线则遵循可逆嵌入型反应,纳米线结构得到很好的保持。较宽的层间距不仅促进了电子和Na+的扩散动力学,而且为Na+储存提供了更多的活性位点。因此,在0.5~2.5 V电压窗口下WS2NWs纳米线在0.2 A/g电流密度下循环500次后保持约415 mAh/g的容量,在1 A/g电流密度下循环1400次仍有约330 mAh/g的高容量。
图6(a) WS2NWs纳米米线的合成;(b) WS2@S/N-C纳米纤维的合成;(c) WS2/RGO异质结构的合成
为了进一步提高WS2的电化学性能,与导电碳复合也是一种有效的策略。Li等采用多步合成路线将WS2纳米片嵌入到具有分级管的连根状硫、氮掺杂的碳纤维中,形成WS2@硫和氮掺杂碳纳米纤维(WS2@S/N-C)[图6(b)]。作者首先使用常规水热法制备WO3,然后在600 ℃下通过静电纺丝合成S和N掺杂的WS2@C纤维。WS2在碳纤维上的嵌入不仅限制了WS2片材的重新堆叠,而且还增大了其电导率。该复合材料在0.11 A/g下表现出约381 mAh/g的容量,最重要的是即使在30 A/g电流密度下,它也保持了约108 mAh/g的可逆容量。Choi等使用简单的硫化工艺分两步制造了WS2/RGO异质结构[图6(c)]。其首先通过喷雾热解制备WO2/RGO微球,随后在400 ℃下使用硫脲进行硫化。用作NIBs负极时,该复合材料在0.2 A/g电流密度下循环200圈后仍保持约334 mAh/g的比容量,并在循环过程具有高库仑效率。说明异质结构的制造也是提高TMDs的负极材料电化学性能的另一个有效选择。
2.4 二硫化钒(VS2)
近年来,二硫化钒(VS2)由于其独特的电子特性引起了电池研究人员的兴趣,但是目前VS2作为NIBs负极的电化学反应机制尚未得到很好的探索。VS2的H相的谱带仅为0.187 eV,而MoS2的H相为1.91 eV,这说明了VS2具有半金属性质,而半金属通常具有快速的电子转移能力。在晶体结构方面,VS2表现出二维六方晶格,它的块状结构通常由单层VS2(层间距为0.64 nm)堆叠而成。理论上讲,VS2作为NIBs负极的最大比容量约为932 mAh/g。根据目前的报道,VS2的电化学反应机制应该与MoS2和WS2的插层和转化反应机制类似,具体反应如下:
Putugan等通过DFT计算研究了VS2单层中的钠离子插入机制和性质[图7(a)]。他们通过基于第一性原理计算发现,与MoS2和WS2类似,VS2在从1 H到1 T的转变过程中也表现出了类似的过渡势垒(0.66 eV/VS2),随着Na吸附量的增加,VS2的过渡势垒值增加(增加1和2个Na吸附量时,VS2的过渡势垒值分别为0.98 eV/VS2和1.12 eV/VS2),这表明VS2将在充放电过程中表现出了很好的结构稳定性。Sun等通过传统的水热法,在300 ℃下退火合成了VS2纳米片。作者发现聚乙烯吡咯烷酮(PVP)在形成一层一层堆叠的VS2纳米片中发挥了重要作用。作为NIBs负极时,69%的容量是由赝电容行为贡献的,这不仅提高了其倍率能力,而且循环稳定性也得到提高。在5 A/g电流密度下经过600次循环后几乎没有容量损失。此外,为了进一步提高循环稳定性和倍率性能,还探索了VS2与碳材料的复合。Xu等通过一步溶剂热法将碗状VS2纳米片均匀且稳固地固定在CNF上。这种独特的结构设计不仅可以促进Na+的快速扩散,而且可以抑制VS2在0.3 V以下的转换反应过程引起的容量衰减,保持了结构的完整性[图7(b)]。将其应用于NIBs负极时,即使在2 A/g的大电流密度下循环6000次仍能保持约345 mAh/g的容量[图7(c)]。
图7(a)单层VS2从1H到1T结构相变。还显示了初始VS2结构(Ⅰ、Ⅱ和Ⅲ)、过渡态结构(Ⅳ、Ⅴ和Ⅵ),以及最终结构(Ⅶ、Ⅷ和Ⅸ);(b)经过6000次循环后CNF@VS2的SEM;(c) CNF@VS2在2 A/g电流密度下的长循环
3 总结与展望
在过去的十几年里,TMDs在NIBs中的应用研究得到了长足发展。目前,常见TMDs的制备工艺主要有水/溶剂热法、化学气相沉积法(CVD)、液相剥离法。其中水/溶剂热法合成方法简单,适用于大规模合成材料,但是该方法反应发生在密闭容器内,因此难以预测产物的生长机制,且该方法通常在非常高的压力和温度下发生,有一定的安全隐患。CVD适合大规模合成高横向尺寸TMDs,但是CVD通常成本较高,且从衬底中分离和收集所合成的材料是一项较为繁琐的工作。液相剥离法是目前最常用的方法,通常可以获得超薄的TMDs,但是该方法产率低,且获得的TMDs通常尺寸较小、晶格缺陷多。此外,常见的TMDs(MoS2、SnS2、WS2、VS2)相比于其他同金属元素NIBs负极材料,其电化学性能也有一定优势:①层状结构可以“额外”地储存Na离子,从而增强电极材料的实际放电容量;②其层状结构可以有效缓解电化学反应中的体积变化,增加材料的循环稳定性。但是,虽然TMDs作为NIBs负极的应用已经取得了很大的进展,但要实现真正产业化仍面临诸多挑战。(1)基于转化和合金化反应的TMDs虽然具有较高的理论容量,但其通常都会表现出非常低的初始库仑效率,这限制了其大规模的应用前景。因此研究人员需要找到一种合适的策略解决这个问题,例如:形成异质结构、金属掺杂等。(2)进一步研究TMDs作为NIBs负极的实际反应机理。虽然少数反应机理已经得到了很好的解释,但大多数TMDs的反应机理仍未明确。例如,SnS2与Na+反应形成硫化钠时遵循转化机理,但产物是Na2S2还是Na2S仍存在很多不确定。所有这些歧义都应该通过研究得到明确定义。(3)目前TMDs的主要合成方法通常是水/溶剂热法,通过改变反应条件可以很好地调整其形貌。然而,这种方法存在一些问题,例如:当需要大规模制备材料时,其重复率能否得到保证。因此,确定一个标准的合成策略对于TMDs实现产业化来说是至关重要的。综上所述,将TMDs作为NIBs负极并大规模应用非常具有前景,但同时也具有挑战性。要弄清楚材料的反应机理,就必须进行详细的基础研究。希望在不久的将来能真正实现TMDs作为NIBs负极的产业化应用。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
北极星储能网讯:四川省发展和改革委员会印发《四川省电网侧新型储能项目清单(2025年度)》,包括27个项目,规模合计3022.5MW/8240MWh。其中,从储能技术上看,清单涵盖压缩空气、固态电池、超级电容、钠离子电池、全钒液流电池、锂离子电池。从申报单位上看,共有16家国有控股公司,包括华能、大唐、
北极星储能网获悉,7月4日,深圳坪山区人民政府发布《深圳市坪山区落实“双碳”战略进一步推动新能源产业高质量发展的若干措施》。其中指出,支持企业建设新型电池及储能、充电设施、光伏、氢能、智能电网和综合能源服务等领域中试生产线,对项目总投资额(不含土建)在500万元以上的,按设备投资额的1
近日,普利特公告,公司控股孙公司广东海四达钠星技术有限公司与南方电网电力科技股份有限公司签署了30MWh钠离子(聚阴离子体系)电池储能系统采购合同。合同自双方加盖公章或合同专用章之日起立即生效。本次合作有助于公司在储能业务中进一步提升和拓展竞争力。公司形成了涵盖各个技术路线的电芯到模
北极星储能网讯:7月7日,中国能源建设集团广东省电力设计研究院有限公司发布2则广东华电汕尾大容量高安全的半固态锂电池#x2B;钠电池混合储能招标公告,该项目位于广东汕尾陆丰市。合计采购规模为200MW/400MWh。其中半固态磷酸铁锂电池,高压级联全液冷储能系统195MW/390MWh;钠离子电池,低压组串式储
北极星储能网获悉,6月27日,奇台县与钠美新能源科技(洛阳)有限公司正式签署合作协议,总投资5亿元的钠离子电芯及电源系统项目落户奇台产业园区。该项目规划建设1GWh钠离子电芯生产线、2GWh电源系统集成基地,总用地约200亩。项目建成后预计年产值达20亿元,新增就业岗位500个,带动正负极材料、隔膜
北极星储能网获悉,7月6日,在2025甘肃兰州市重点招商引资项目集中签约活动上,上海经证实业集团投资21亿元的5GWh储能及动力钠离子电池项目签约落户。该项目将有力推动兰州新能源产业发展,助力实现“双碳”目标。
北极星储能网获悉,7月8日,上海普利特复合材料股份有限公司发布关于孙公司签署钠离子电池储能系统采购合同的公告,普利特控股孙公司广东海四达钠星技术有限公司近期与南方电网电力科技股份有限公司签署了30MWh钠离子(聚阴离子体系)电池储能系统采购合同。公告显示,该项目作为国内当前最大规模的聚
北极星碳管家网获悉,7月7日,天津市工业和信息化局天津市委网信办天津市发展改革委天津市科技局天津市财政局发布关于修订印发天津市推动制造业高质量发展若干政策措施实施细则的通知。内容指出,支持工业企业高质量投资,给予最高5000万元支持;推进产业基础再造,给予最高3000万元支持。全文如下:市
作者:刘德帅1朱慧琴1孙睿浩1李蒙2巩文豪2李晓辉2钱伟伟2,3单位:1.郑州中科新兴产业技术研究院,河南省储能材料与过程重点实验室2.龙子湖新能源实验室,氢能储能中心3.中国科学院过程工程研究所,离子液体清洁过程国家重点实验室引用本文:刘德帅,朱慧琴,孙睿浩,等.双添加剂协同提升钠离子电池循环稳
7月7日,天津市工业和信息化局天津市委网信办天津市发展改革委天津市科技局天津市财政局发布关于修订印发天津市推动制造业高质量发展若干政策措施实施细则的通知。内容指出,支持新能源发展。围绕先进新型电池(锂电池、半/全固态电池、钠离子电池、氢燃料电池等)产品及关键材料,高效光伏产品、风电
北极星储能网获悉,7月8日消息,天津市工业和信息化局市委网信办市发展改革委市科技局市财政局关于修订印发天津市推动制造业高质量发展若干政策措施实施细则的通知,提到,围绕先进新型电池(锂电池、半/全固态电池、钠离子电池、氢燃料电池等)产品及关键材料,高效光伏产品、风电整机及关键部件,制
北极星储能网获悉,7月4日,深圳坪山区人民政府发布《深圳市坪山区落实“双碳”战略进一步推动新能源产业高质量发展的若干措施》。其中指出,支持企业建设新型电池及储能、充电设施、光伏、氢能、智能电网和综合能源服务等领域中试生产线,对项目总投资额(不含土建)在500万元以上的,按设备投资额的1
北极星储能网获悉,6月27日,奇台县与钠美新能源科技(洛阳)有限公司正式签署合作协议,总投资5亿元的钠离子电芯及电源系统项目落户奇台产业园区。该项目规划建设1GWh钠离子电芯生产线、2GWh电源系统集成基地,总用地约200亩。项目建成后预计年产值达20亿元,新增就业岗位500个,带动正负极材料、隔膜
我国固态电池再获里程碑式进展。近日,由奇瑞参股的安徽安瓦新能源宣布,其自主研发的GWh级新型固态电池生产线首批工程样件成功下线。至此,我国目前的GWh级固态电池生产线有望增至7条,并且超过30条固态电池中试线几乎齐头并进。这些项目的推进,一方面标志着国内固态电池产业快速发展,另一方面已预
作者:刘德帅1朱慧琴1孙睿浩1李蒙2巩文豪2李晓辉2钱伟伟2,3单位:1.郑州中科新兴产业技术研究院,河南省储能材料与过程重点实验室2.龙子湖新能源实验室,氢能储能中心3.中国科学院过程工程研究所,离子液体清洁过程国家重点实验室引用本文:刘德帅,朱慧琴,孙睿浩,等.双添加剂协同提升钠离子电池循环稳
电池的研发与设计创新模式,正在被重构。中国科学院院士欧阳明高曾预测,锂电下一个十年的技术竞争核心在于材料,而人工智能(AI)正在改变材料的研发范式。欧阳明高院士这一预测,正在被一家有着深厚电池基因和AI技术能力的企业变为现实。(文章来源:电池中国)今年4月底,SESAICorporation(简称“S
北极星售电网获悉,7月4日,深圳坪山区人民政府发布关于印发《深圳市坪山区落实“双碳”战略进一步推动新能源产业高质量发展的若干措施》的通知。文件明确,鼓励建设资源聚合平台并接入深圳市虚拟电厂管理中心参与电网调控,开展数字能源服务衍生业务。对虚拟电厂资源聚合平台投资主体每年按响应收益的
作者:贺瑞璘1张通1吴镓淳1王朝阳3邓永红1张光照1许晓雄2单位:1.南方科技大学材料科学与工程系2.南方科技大学创新创业学院3.华南理工大学材料学院引用本文:贺瑞璘,张通,吴镓淳,等.骨架型材料与设计在高比能锂电池中的应用研究进展[J].储能科学与技术,2025,14(5):1758-1775.DOI:10.19799/j.cnki.2095
日前,河南林州市人民政府网站发布《关于2025年6月27日拟对林州创锦新能源有限公司年产100万支聚合物锂电池生产项目环境影响报告表作出审批意见的公示》,这一锂电池项目正式迎来阶段性进展。公示信息显示,项目选址河南省安阳市林州市红旗渠经济技术开发区电子产业园,林州创锦新能源有限公司拟投资51
作者:陈英健1吴尚1曹元成2杜宝帅3王振兴1欧阳钟文1汤舜2单位:1.华中科技大学,2.华中科技大学电气与电子工程学院,3.国网山东省电力公司电力科学研究院引用本文:陈英健,吴尚,曹元成,等.磁场分选在废旧锂电池正负极材料回收中的应用[J].储能科学与技术,2025,14(5):1918-1927.DOI:10.19799/j.cnki.209
作者:陈海生1李泓2徐玉杰1徐德厚3王亮1周学志1陈满4胡东旭1林海波1,2李先锋5胡勇胜2安仲勋6刘语1肖立业7蒋凯8钟国彬9王青松10李臻11康飞宇14王选鹏15尹昭1戴兴建1林曦鹏1朱轶林1张弛1张宇鑫1刘为11岳芬11张长昆5俞振华11党荣彬2邱清泉7陈仕卿1史卓群1张华良1李浩秒8徐成8周栋14司知蠢14宋振11赵新宇16
6月30日,硅宝科技在投资者互动平台表示,公司硅碳负极材料主要用于高能量密度锂电池制备,可以应用于液态、半固态和固态电池。公司将积极拓展市场,加大销售,满足客户及市场需求。
更高的安全水平,是储能进入交易时代的入场券。安全是储能一切价值发挥的基石。面对电力现货市场交易场景下高频调用的需求,储能电站的安全风险也随之增大,但现阶段的储能系统能否经受住高频调用的考验?海外成熟电力市场中,储能电站早已实现高频调用,因此也更早暴露出储能电站严峻的安全问题。近期
北极星储能网讯:7月11日,高台华景丝路新能源有限公司发布北部滩300MW/1200MWh独立储能电站EPC总承包工程,项目位于甘肃省张掖市高台县,工期270日历天。北部滩300MW/1200MWh独立储能电站建设容量为1200MWh,建设功率为300MW,储能电站分为储能场地区域和330kV升压站区域。储能场地区域采用户外一体舱
北极星储能网讯:近日,楚能新能源先后中标和签约两单,订单规模合计接近1.4GWh,订单将于今年第四季度陆续交付至南美和欧洲市场,进一步加速全球化布局。340MWh直流侧系统!打开出海新通道7月8日,运达智储通过其招标平台发布“运达智储洪都拉斯85MW340MWh直流侧系统单一来源公告说明”,确定该项目采
7月10日,新疆生产建设兵团第四师电力有限责任公司旗下新疆蔚蓝能源科技发展有限公司启动第四师73团金岗园区300MW丨1200MWh共享储能项目设计采购施工一体化总承包招标。项目实施地点为新疆生产建设兵团·四师,本项目拟建设一座300MW/1200MWh储能电站,储能系统按照300MW/1200MWh的总规模进行配置,每
北极星储能网获悉,7月10日,中国西电电气股份有限公司委托西安西电供应链科技有限公司拟通过公开竞争谈判方式对西电电力系统河北氢天储能设备5MWh电池集装箱采购项目进行集中采购。
近日,一批来自江门泽塔电源技术有限公司的储能锂电池通过“合并批次+组箱出口”模式申报出口,顺利通过海关查检后,即将运往美国。作为“深圳总部+江门基地”“深圳研发+江门生产”的新能源企业,江门泽塔电源技术有限公司于2024年10月投产,截止目前,该公司出口储能锂电池突破2.3亿元,成为江门第一
7月10日,洛阳平洛新能源有限公司发布洛阳平洛新能源有限公司孟津区独立储能项目EPC总承包招标公告。项目位于洛阳市孟津区白鹤镇雷湾村炎黄大道与王铎路交叉口东南角,项目总占地面积1.9267公顷,进站道路自项目场站北侧边界与会小线相连,总长194m,路基宽度6.5m,采用双车道四级公路标准,混凝土路面
北极星储能网获悉,7月7日,兰州新区年产30吉瓦时(GWh)新能源电池生产基地项目签约。项目估算总投资90亿元,由安徽国科能源科技有限公司投资建设。项目是兰州新区抢抓新能源产业风口、打造先进制造业高地的关键布局。项目计划分三期建设,每期产能10GWh,最终形成年产30GWh的新能源电池的规模化生产
北极星储能网获悉,6月27日,奇台县与钠美新能源科技(洛阳)有限公司正式签署合作协议,总投资5亿元的钠离子电芯及电源系统项目落户奇台产业园区。该项目规划建设1GWh钠离子电芯生产线、2GWh电源系统集成基地,总用地约200亩。项目建成后预计年产值达20亿元,新增就业岗位500个,带动正负极材料、隔膜
北极星储能网获悉,7月6日,在2025甘肃兰州市重点招商引资项目集中签约活动上,上海经证实业集团投资21亿元的5GWh储能及动力钠离子电池项目签约落户。该项目将有力推动兰州新能源产业发展,助力实现“双碳”目标。
北极星储能网获悉,7月8日,西高院在投资者互动平台上表示,核电领域,公司大力开展研究开发,公司主导的核电领域科技成果顺利通过中机联行业鉴定,实现了核电领域的高压限流熔断器产品的技术突破。新能源领域,公司主要开展风电、光电、储能等新能源设备的检测业务,已建成7.5MW大容量光储变流器电性
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!