登录注册
请使用微信扫一扫
关注公众号完成登录
图1(a)由单层MoS2组装而成的3D纳米管;(b) 3D MoS2纳米管的HRTEM图像;(c) 3D GO/MoS2复合材料制备
(1)
式中,rij为纳米粒子i和j中心之间的距离;θ′和φ为球极坐标系中的标准角度参数;k为德拜长度的倒数;ε0为真空介电常数;ε为两个纳米晶体之间溶液层的有效介电常数;μi和μj为纳米粒子的偶极矩。从该方程可以看出,可以通过改变溶液的ε来调节粒子间相互作用。通过使用具有不同介电常数的醇类溶液,可以实现直径和长度可控的3D纳米管。例如,使用丁醇(ε=8)和乙醇(ε=25)可以合成平均直径分别为400 nm和200 nm的3D组装管。当溶剂中没有乙醇时,只能获得MoS2纳米片。水/溶剂热法另一目的是将TMDs纳米材料与碳材料混合以提高TMDs的导电性。通过水/溶剂热法合成了多种层状TMDs/碳杂化物,如MoS2/石墨烯(GO)、MoS2/还原氧化石墨烯(RGO)、MoS2@C、MoS2@碳纳米管(CNT)等。Zeng等通过简单的溶剂热法制备了3D GO/MoS2复合材料[图1(c)]。MoS2纳米花颗粒均匀分散在3D GO基体中,作者认为3D GO能促进电解液的渗透、增加导电性,并且在充放电过程能抑制嵌钠/脱钠带来的体积膨胀。当用作NIBs负极时,在2 A/g电流密度下,可提供约310 mAh/g的可逆容量。
1.2 化学气相沉积法(CVD)
CVD是一种常见的自下而上的方法,该方法可以在各种类型的衬底上生长TMDs纳米材料。例如,Ji等通过CVD工艺在SiO2/Si衬底上制备了VS2纳米片[图2(a)]。他们通过将VCl3、硫脲及SiO2/Si基板置于不同的加热区,在Ar/H2混合气体氛围下,VCl3和硫脲在275~300 ℃的温度下蒸发,在600 ℃左右沉积在基体上。通过控制Ar/H2混合气体流量,可以生长出10~40 μm的VS2纳米片。随后,可以通过聚甲基丙烯酸甲酯(PMMA)辅助转移法,将得到的VS2纳米片从SiO2/Si衬底转移到任意衬底上,从而进一步丰富其应用。与Si/SiO2衬底相比,金属箔更常被用于制备TMDs纳米材料,这是因为涂覆了TMDs纳米材料后的金属箔可以直接作为电池电极,而无需再进一步转移。
图2(a) CVD法生长VS2纳米片;(b)在W箔上制备WO3/WS2核壳结构
除了在金属基底上生长TMDs纳米材料外,CVD法还可用于在其他材料上生长TMDs纳米材料,从而形成复合材料。例如,碳材料和金属氧化物常常通过这种策略与TMDs纳米材料杂化。Choudhary等通过CVD法在氧化的钨箔上制备了WO3@WS2核壳结构[图2(b)]。首先,他们使用定向氧化的方法在钨箔上生长垂直排列的六边形WO3纳米线,然后将WO3纳米线通过CVD工艺与硫蒸气反应形成WO3@WS2核壳结构。形成的WS2壳的厚度为7~8 nm。
1.3 液相剥离法
与水/溶剂热法和CVD法不同,剥离法是一种自上而下的方法,以块状TMDs作为原材料制备TMDs纳米片。剥离法原理为:通过物理化学方法将块状TMDs相邻层之间的范德华力减弱,使得其很容易分离获得TMDs纳米片。在所有剥离方法中,溶剂辅助剥离和Li+插层辅助剥离是两种常用的剥离方法。溶剂辅助剥离是将材料浸入有机溶剂中,然后进行超声处理。Coleman等进行实验发现,对TMDs进行剥离最有效的有机溶剂是1-甲基-2-吡咯烷酮(NMP),通过NMP辅助剥离的材料能观察到明显单层结构[图3(a)],因此,NMP被广泛用于TMDs的剥离。除了溶剂辅助剥离,Li+插层辅助剥离也被广泛使用。典型的Li+插层辅助剥离过程包括3个步骤:①Li+嵌入TMDs的层间空间中;②将嵌入Li+的化合物浸入水中;③将化合物超声处理。受Li+插层辅助剥法的启发,开发了各种方法,包括使用有机金属化合物(例如正丁基锂)作为嵌入剂的剥离。Li+插层辅助剥法是最有效的剥离方法,但是,该方法将外来离子引入制备的TMDs纳米片中,且这些残留物很难去除。为了避免这个问题,Feng等开发了一种氨(NH3)辅助剥离方法获得了少层金属VS2纳米片[图3(b)]。他们首先以Na3VO4·12H2O和硫代乙酰胺为前体,通过水热法合成了NH3插层的VS2(VS2-NH3)。在水热过程中,硫代乙酰胺水解产生的NH3分子嵌入到VS2中。随后,将VS2-NH3在冰水中进行超声处理将NH3渗出,成功地获得4~5层厚度的VS2纳米片。
图3(a)单层BN、MoS2和WS2的高分辨率TEM图像;(b) VSq2纳米片的制备示意图
2 常见TMDs在NIBs中的应用
相对于其他金属氧化物或者磷化物电极材料,TMDs独特的物理化学特性使其成为NIBs负极的潜在候选者之一(表1)。在过去的几十年里,研究人员通过改变物理化学性质来合成不同的TMDs及其复合材料以增强其作为NIBs负极的电化学性能。例如:合成不同形貌结构、与不同碳质材料(石墨烯、碳纳米管、多孔碳、碳纳米结构、导电聚合物等)复合、与其他二维材料形成异质结构、与过渡金属氧化物/氢氧化物复合等。接下来将对几种常见的TMDs(MoS2、SnS2、WS2、VS2)在NIBs中的研究进展进行综述。
表1常见钠离子电池电化学性能
2.1 二硫化钼(MoS2)
MoS2有明确的层状结构,由范德华力形成独特的S—Mo—S夹层结构,其层间距为0.615 nm。已提出的MoS2在NIBs的电化学反应机制如下:
为了便于Na+的嵌入/脱出、保留更多钠储存活性位点、减少扩散距离和缓解大的体积变化,设计具有更大层间距的MoS2纳米结构被认为是改善其电化学性能的有效方法。Hu等制备具有扩展层间距的MoS2纳米片(FG-MoS2)。如图4(a)、(b)所示,所制备的MoS2纳米片的层间距分别为0.67 nm和0.64 nm(FG-MoS2,CG-MoS2),而原始MoS2(B-MoS2)的层间距仅为0.62 nm。放电/充电曲线中FG-MoS2纳米片显示出较高的电压平台和低电压极化,这可归因于Na+嵌入MoS2纳米片的能垒降低。将FG-MoS2纳米片作为NIBs负极时,在1 A/g电流密度下的可逆充放电容量约为200 mAh/g,在10 A/g时可逆充放电容量约为175 mAh/g,比B-MoS2容量高出不少(其中1 A/g电流密度下高45%,10 A/g电流密度下高43%)。值得注意的是,FG-MoS2纳米片可以在10 A/g电流密度下循环1500次后仍保持约195 mAh/g的可逆放电容量。Li等使用聚环氧乙烷(PEO)作为插层剂,通过一种简便的剥离-重堆叠的方法合成了PEO-MoS2纳米复合材料[图4(c)],通过在合成过程中控制PEO的量,分别实现了在两层MoS2板之间包含一层和两层PEO(PEO1L-MoS2,PEO2L-MoS2)。其中PEO2L-MoS2复合材料表现出优异的电化学活性,在0.05 A/g的电流密度下具有约225 mAh/g的高比容量,高于商业的MoS2(113 mAh/g),同时也具有更高循环稳定性。作者还通过GITT曲线,根据式(2)计算了PEO2L-MoS2和商业MoS2的扩散率,发现PEO2L-MoS2即使在Na+扩散量较高的情况下也能保持优异的扩散率。
图4(a) FG-MoS2的HRTEM图;(b) CG-MoS2的HRTEM图;(c)通过剥离-重堆叠方法合成PEO-MoS2纳米复合材料的示意图;(d) MoS2/RGO异质结构制备示意图;(e) MoS2/RGO中Na吸附的不同能量可能位点及其异质结构模拟图
(2)
式中,τ为恒流脉冲时间;mB、MB和VM分别为材料质量、摩尔质量和摩尔体积;S为电极-电解质界面的面积;∆Es为稳态电压减去原始电压得到的变化量;∆Et为恒流脉冲期间电压的总变化量。电极材料的循环稳定性和倍率性能取决于材料的电子电导率,将MoS2与碳质材料(石墨烯、碳纳米管、多孔碳等)的复合也是提高其电化学性能的重要方法。Li等报道了一种在含氮还原氧化石墨烯片(N-RGO)上生长垂直取向的MoS2,作者研究发现垂直取向的MoS2高度和密度对其电化学性能影响很大,片层密度高但片层高度短有助于促进Na+的嵌入与脱出。该复合材料在1 A/g电流密度下具有约245 mAh/g的可逆容量,并且其循环稳定性与硬碳材料相当(在1300圈循环后容量仅下降约5%)。Xie等通过简便的水热法制备了具有二维异质界面的MoS2/RGO纳米复合材料[图4(d)],他们工作的主要目的是介绍2D层状金属硫化物和2D石墨烯之间的协同效应,这种协同效应在之前的研究中从未有过深入报道。通过计算后结果表明,Na+更倾向于吸附在MoS2/RGO异质结构中的MoS2上,而不是嵌入到MoS2/RGO异质界面中,但是MoS2/RGO异质界面又可以显著提高MoS2的电子电导率,使其储存更多的Na+的同时保持Na+在MoS2表面的高扩散迁移率和电子转移效率[图4(e)]。
2.2 二硫化锡(SnS2)
SnS2是层状六方CdI2型晶体结构,层间距为0.589 nm,两层紧密排列的硫离子层中间通过与锡离子的弱范德华力作用结合在一起。已研究得出的SnS2在NIBs中的反应机制如下:
SnS2的大层间距有利于Na+的嵌入和脱出。然而,Na15Sn4的形成将导致420%的体积膨胀率,这导致充电/放电过程中材料的循环稳定性严重下降。解决体积膨胀的一种有效策略是构筑特殊的形貌结构。少层SnS2的大表面积可以容纳更多的Na+、缩短Na+的扩散路径、提供有效的电解质渗透和界面反应。Sun等通过回流工艺将SnCl2和1,3,4-噻二唑-2,5-二硫醇(DMCT)合成了厚度为3~4 nm的超薄SnS2纳米片,作者通过改变温度来优化材料的厚度,发现最薄的纳米片是在160 ℃的回流温度下实现的。所制备的SnS2纳米片在0.1 A/g的电流密度下表现出约733 mAh/g的高可逆容量和高倍率性能(在2 A/g下具有约435 mAh/g的比容量)。除了制备少层的SnS2外,制备特殊的形貌结构也可以提升其电化学性能。本课题组设计了一种通过自模板化和选择性蚀刻方法以及自组装策略合成了卵黄-双壳立方状SnS@N-S共掺杂碳(YDSC-SnS@NSC)[图5(a)]。用于NIBs负极材料时,在8 A/g下显示出约257 mAh/g的出色倍率能力和超稳定的循环性能(电流密度为1 A/g下循环100圈后容量保持率为83.5%)。
图5(a)通过自模板化和选择性蚀刻方法以及自组装策略合成YDSC-SnS@NSC的示意图;(b)含有Li+/Na+的SnS2-rGO-SnS2复合材料结构模型;(c) SnS2/CNT作为NIBs负极不同扫描速率的赝电容贡献率
为了进一步提高倍率能力和循环稳定性,与导电碳基体形成复合材料也是一种有效的方法,它可以缓冲嵌钠/脱钠时的大体积变化。Jiang等采用一步水热法制备了SnS2-石墨烯(GO)-SnS2夹层结构,作者认为C—S键的特殊结构显著增强了复合材料的电化学性能[图5(b)]。当用作NIBs负极时,即使在10 A/g电流密度下,复合材料也表现出约765 mAh/g的比容量。Cui等使用两步合成方法制备了SnS2-CNT气凝胶。在第1步中,作者采用水热法制备了SnO2-CNT气凝胶复合材料。然后,将所制备的复合材料和硫脲混合,并在密封的不锈钢容器中,300 ℃退火后制备了SnS2-CNT气凝胶复合材料。用作NIBs负极时,在0.2 A/g电流密度下表现出约630 mAh/g的容量,即使在100次循环后,它仍保持约536 mAh/g的容量,赝电容贡献高是优异的电化学性能的解释[图5(c)]。除了GO、CNT外,3D多孔碳纳米结构也能促进离子的快速传输。Liu等通过引入电容性质,制备了中空碳包裹的SnS2纳米片。该复合材料的主要优点是中空碳结构可以缓冲合金化反应过程中SnS2的体积膨胀。该材料采用多步法合成,其中使用不同的金属氧化物(MnOx、Fe2O3和SiO2)作为模板合成该结构,结构成型后使用草酸去除Fe2O3和MnOx,使用NaOH蚀刻SiO2。该复合材料在0.1 A/g时表现出约556 mAh/g的可逆容量。
2.3 二硫化钨(WS2)
在WS2中,W原子位于三棱柱配位球中,与其他TMDs一样,它也具有层状结构。WS2理论容量为432 mAh/g,与MoS2一样,它也表现出嵌入后的转化反应,在反应过程中最多可以转移4个电子,其在NIBs中的电化学反应机制如下:
近年来,WS2作为NIBs负极的报道并不多。有一些报告指出该材料作为NIBs负极的缺点主要是由于转化反应引起的大体积变化,导致WS2通常存在循环稳定性较差的问题。扩大其层间距是提高插层类TMDs电化学性能的常用策略。Liu等通过溶剂热法处理,然后进行热处理,获得了层间距扩大的WS2NWs纳米线[图6(a)]。作者将所制备的材料在0.01~2.5 V及0.5~2.5 V两个电压窗口测试其作为NIBs负极的电化学性能。当截止电压为0.01 V时,WS2NWs纳米线在0.1 A/g电流密度下展示出约605.3 mAh/g的容量,但会发生不可逆的转化反应。当截止电压限制在0.5 V时,WS2NWs纳米线则遵循可逆嵌入型反应,纳米线结构得到很好的保持。较宽的层间距不仅促进了电子和Na+的扩散动力学,而且为Na+储存提供了更多的活性位点。因此,在0.5~2.5 V电压窗口下WS2NWs纳米线在0.2 A/g电流密度下循环500次后保持约415 mAh/g的容量,在1 A/g电流密度下循环1400次仍有约330 mAh/g的高容量。
图6(a) WS2NWs纳米米线的合成;(b) WS2@S/N-C纳米纤维的合成;(c) WS2/RGO异质结构的合成
为了进一步提高WS2的电化学性能,与导电碳复合也是一种有效的策略。Li等采用多步合成路线将WS2纳米片嵌入到具有分级管的连根状硫、氮掺杂的碳纤维中,形成WS2@硫和氮掺杂碳纳米纤维(WS2@S/N-C)[图6(b)]。作者首先使用常规水热法制备WO3,然后在600 ℃下通过静电纺丝合成S和N掺杂的WS2@C纤维。WS2在碳纤维上的嵌入不仅限制了WS2片材的重新堆叠,而且还增大了其电导率。该复合材料在0.11 A/g下表现出约381 mAh/g的容量,最重要的是即使在30 A/g电流密度下,它也保持了约108 mAh/g的可逆容量。Choi等使用简单的硫化工艺分两步制造了WS2/RGO异质结构[图6(c)]。其首先通过喷雾热解制备WO2/RGO微球,随后在400 ℃下使用硫脲进行硫化。用作NIBs负极时,该复合材料在0.2 A/g电流密度下循环200圈后仍保持约334 mAh/g的比容量,并在循环过程具有高库仑效率。说明异质结构的制造也是提高TMDs的负极材料电化学性能的另一个有效选择。
2.4 二硫化钒(VS2)
近年来,二硫化钒(VS2)由于其独特的电子特性引起了电池研究人员的兴趣,但是目前VS2作为NIBs负极的电化学反应机制尚未得到很好的探索。VS2的H相的谱带仅为0.187 eV,而MoS2的H相为1.91 eV,这说明了VS2具有半金属性质,而半金属通常具有快速的电子转移能力。在晶体结构方面,VS2表现出二维六方晶格,它的块状结构通常由单层VS2(层间距为0.64 nm)堆叠而成。理论上讲,VS2作为NIBs负极的最大比容量约为932 mAh/g。根据目前的报道,VS2的电化学反应机制应该与MoS2和WS2的插层和转化反应机制类似,具体反应如下:
Putugan等通过DFT计算研究了VS2单层中的钠离子插入机制和性质[图7(a)]。他们通过基于第一性原理计算发现,与MoS2和WS2类似,VS2在从1 H到1 T的转变过程中也表现出了类似的过渡势垒(0.66 eV/VS2),随着Na吸附量的增加,VS2的过渡势垒值增加(增加1和2个Na吸附量时,VS2的过渡势垒值分别为0.98 eV/VS2和1.12 eV/VS2),这表明VS2将在充放电过程中表现出了很好的结构稳定性。Sun等通过传统的水热法,在300 ℃下退火合成了VS2纳米片。作者发现聚乙烯吡咯烷酮(PVP)在形成一层一层堆叠的VS2纳米片中发挥了重要作用。作为NIBs负极时,69%的容量是由赝电容行为贡献的,这不仅提高了其倍率能力,而且循环稳定性也得到提高。在5 A/g电流密度下经过600次循环后几乎没有容量损失。此外,为了进一步提高循环稳定性和倍率性能,还探索了VS2与碳材料的复合。Xu等通过一步溶剂热法将碗状VS2纳米片均匀且稳固地固定在CNF上。这种独特的结构设计不仅可以促进Na+的快速扩散,而且可以抑制VS2在0.3 V以下的转换反应过程引起的容量衰减,保持了结构的完整性[图7(b)]。将其应用于NIBs负极时,即使在2 A/g的大电流密度下循环6000次仍能保持约345 mAh/g的容量[图7(c)]。
图7(a)单层VS2从1H到1T结构相变。还显示了初始VS2结构(Ⅰ、Ⅱ和Ⅲ)、过渡态结构(Ⅳ、Ⅴ和Ⅵ),以及最终结构(Ⅶ、Ⅷ和Ⅸ);(b)经过6000次循环后CNF@VS2的SEM;(c) CNF@VS2在2 A/g电流密度下的长循环
3 总结与展望
在过去的十几年里,TMDs在NIBs中的应用研究得到了长足发展。目前,常见TMDs的制备工艺主要有水/溶剂热法、化学气相沉积法(CVD)、液相剥离法。其中水/溶剂热法合成方法简单,适用于大规模合成材料,但是该方法反应发生在密闭容器内,因此难以预测产物的生长机制,且该方法通常在非常高的压力和温度下发生,有一定的安全隐患。CVD适合大规模合成高横向尺寸TMDs,但是CVD通常成本较高,且从衬底中分离和收集所合成的材料是一项较为繁琐的工作。液相剥离法是目前最常用的方法,通常可以获得超薄的TMDs,但是该方法产率低,且获得的TMDs通常尺寸较小、晶格缺陷多。此外,常见的TMDs(MoS2、SnS2、WS2、VS2)相比于其他同金属元素NIBs负极材料,其电化学性能也有一定优势:①层状结构可以“额外”地储存Na离子,从而增强电极材料的实际放电容量;②其层状结构可以有效缓解电化学反应中的体积变化,增加材料的循环稳定性。但是,虽然TMDs作为NIBs负极的应用已经取得了很大的进展,但要实现真正产业化仍面临诸多挑战。(1)基于转化和合金化反应的TMDs虽然具有较高的理论容量,但其通常都会表现出非常低的初始库仑效率,这限制了其大规模的应用前景。因此研究人员需要找到一种合适的策略解决这个问题,例如:形成异质结构、金属掺杂等。(2)进一步研究TMDs作为NIBs负极的实际反应机理。虽然少数反应机理已经得到了很好的解释,但大多数TMDs的反应机理仍未明确。例如,SnS2与Na+反应形成硫化钠时遵循转化机理,但产物是Na2S2还是Na2S仍存在很多不确定。所有这些歧义都应该通过研究得到明确定义。(3)目前TMDs的主要合成方法通常是水/溶剂热法,通过改变反应条件可以很好地调整其形貌。然而,这种方法存在一些问题,例如:当需要大规模制备材料时,其重复率能否得到保证。因此,确定一个标准的合成策略对于TMDs实现产业化来说是至关重要的。综上所述,将TMDs作为NIBs负极并大规模应用非常具有前景,但同时也具有挑战性。要弄清楚材料的反应机理,就必须进行详细的基础研究。希望在不久的将来能真正实现TMDs作为NIBs负极的产业化应用。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
北极星储能网获悉,3月12日,领克汽车官方宣布,旗舰大6座SUV领克900同级首搭宁德时代骁遥超级增混电池。此次搭载52.38kWh的超大电池包,能量密度达253Wh/kg,CLTC纯电续航里程280km。去年10月,宁德时代正式发布“骁遥”超级增·混电池,用于增程/混动车型。骁遥电池号称是全球首款纯电续航400km+兼具
北极星储能网获悉,3月10日,北京华夏佳业新能源有限公司与浙江湖钠能源有限责任公司在北京成功签署1GWH储能系统战略合作协议。双方就江阴徐霞客镇、南京高淳、镇江鑫华等多个储能电站达成合作,具体采购量将通过后续采购合同确定,以上项目预计均将于6月30日并网运营。值得关注的是,本次签约的1GWH储
2月25日,中国铁塔股份有限公司发布中国铁塔2025年钠离子换电电池标准化产品研究及规模验证项目直接采购事前公示,项目采购内容包括优化电芯生产工艺,进一步提升一致性、稳定性及安全性;完善BMS功能,增强换电钠离子电池与车辆适配性,并实现与能源网管平台间的通讯;开展PACK标准化设计,优化内部结
随着全球能源转型加速,锂电池储能技术正经历前所未有的革新。2025年,储能市场将从“规模扩张”转向“价值重构”,技术创新成为行业竞争的核心变量。本文将罗列锂电池储能十大技术进化趋势预测,涵盖热管理、系统架构、材料迭代等多个维度,也欢迎业界留言。趋势一:组串式架构将主导大储系统设计组串
北极星储能网获悉,2月24日,三峡能源在投资者互动平台上回答有关公司目前钠离子储能规划和实际量产情况。三峡能源回复,2022年1月,公司控股子公司与北京中科海钠科技有限责任公司成立的合资公司阜阳海钠科技有限责任公司,建成投产1GWh级钠离子电池生产线,目前产线达到设计生产能力。据北极星储能网
近日,湖南钠能时代科技发展有限公司(以下简称“钠能时代”)、长沙经阁新材料有限公司(以下简称“经阁新材料”)与湖南睿阁精密制造有限公司(以下简称“睿阁精密”)宣布达成战略合作,共同成立长沙润泽能源科技有限公司(以下简称“润泽能源”),合作各方将在钠离子电芯、锂离子电芯、储能等多个
2月19-21日,由上海交通大学与唐山三友集团联合研发和组织实施、钠创新能源与比亚迪储能联合体完成的兆瓦级NFPP钠离子电池储能系统在唐山南堡经济开发区通过项目(一期)验收。该项目于2024年7月正式启动,参与各方精诚合作、紧密配合,从钠电材料化学体系选择与优化、电芯与储能系统设计,到储能系统
北极星储能网获悉,2月18日,广西院贺州钟山200MW/400MWh集中共享新型储能项目钠电池储能系统采购中标候选人公示,招标总容量11.25MW/22.5MWh。第一中标候选人为中广核新能源综合能源服务(深圳)有限公司,投标报价3590万元,折合单价1.596元/Wh;第二中标候选人为北京昆兰新能源技术有限公司,投标报
北极星电池网获悉,2月17日,四川省遂宁市船山区人民政府与江西东驰新能源产业有限公司合作项目签约仪式在四川遂宁举行。据悉,双方此次合作的为钠转干电池项目,规划占地约500亩、固定资产投资约52亿元。项目建成后,预计日产钠转干电池1500万支,年产值约100亿元。东驰新能源自2021年成立以来,锚定
2月12日上午,2025年新能源产业第一次工作专班会议在湖南省政协召开。省政协副主席、省新能源产业链链长胡伟林出席。会议听取了新能源产业工作专班办公室、新能源及电工装备小组、锂电池及先进储能材料小组、技术创新专项小组、招商引资专项小组、金融保障小组2024年主要工作和2025年工作初步打算等,
北极星储能网获悉,2月10日,鹏辉能源在投资者关系活动中提出,对于,国家发改委、能源局联合发布《关于深化新能源上网电价市场化改革促进新能源高质量发展的通知》(以下简称“《通知》”),明确新能源电价全面由市场形成,并推出一系列配套机制包括取消强制配储政策。由于政策刚推出,为新能源强制
行业过去几年投资的负极材料项目,正加速进入产能释放期。近日,有报道称,山西凯达新材料科技有限责任公司(简称“山西凯达”)年产20万吨锂电池负极材料前驱体及余热低碳节能综合利用项目一期土建工程,目前已完成90%,部分设备已进场,预计7月份将投入运行。据了解,该项目占地67.2亩,总建筑面积3
硅碳负极最近越来越火,曾经借势高镍三元,现在又搭上了固态电池。贝瑞特、璞泰来等负极大厂也纷纷押宝其中。然而,硅碳负极相关材料是否真能带领锂电负极企业走出盈利困境?目前市场显然期待过高。01技术突破,市场期待过于迫切2024年以来,硅碳负极技术取得了突飞猛进的发展。其中,2月12日,贝特瑞
2025年初,干法电极技术领域传来两则最新动态,均指向这项被视为下一代电池制造关键的技术正在加速走向商业化。1月初,广东国立科技控股有限公司宣布,计划投资约30亿元人民币,分三期建设干法电极固态电池产业项目。尽管相关技术路线、应用场景等具体信息尚未明确,但该规划产能代表着国内干法电极量
储能创造价值,市场牵引发展。历经2023年来行业疯狂“内卷”和价格血拼,我国储能产业逐渐从“卷价格”、“卷产能”,开始走向“卷技术”、“卷价值”的新型竞争轨道。低端劣质产能的市场出清加速,头部与二三线企业的行业分化加剧,电力市场改革推动的储能市场化盈利机制亦正在形成,云计算、AI人工智
北极星售电网获悉,近日,内蒙古乌兰察布市人民政府发布2025年政府工作报告,其中提到,2024年,乌兰察布绿电入京9.3亿度,绿算进京超2万P。能源和战略资源基地建设成效显著,新能源产业增加值增长35%,项目建设速度和并网容量居全区前列,全国首个“源网荷储”示范项目顺利并网。“源网荷储”技术试验
当地时间2月3日,美国总统特朗普签署行政命令,暂停对墨西哥、加拿大商品加征关税,将其实施时间推迟到2025年3月4日。就在两天前,特朗普刚刚签署行政令,对中国进口商品加征10%关税,对进口自墨西哥、加拿大两国的商品加征25%的关税。据悉,特朗普2月3日曾与加拿大总理特鲁多、墨西哥总统辛鲍姆通话,
近日,研究机构EVTank联合伊维经济研究院共同发布了《中国锂离子电池负极材料行业发展白皮书(2025年)》。白皮书数据显示,2024年全球负极材料出货量达到220.6万吨,同比增长21.3%,其中中国负极材料出货量达到211.5万吨,全球占比进一步提升至95.9%。EVTank表示,由于天然石墨出口管制,部分海外客户
北极星储能网获悉,近日一则报道引起讨论,北京大学材料科学与工程学院庞全全团队开发了一种新型玻璃相硫化物固态电解质材料,并采用该材料研制出具有优异快充性能和超长循环寿命的全固态锂硫电池,该项研究成果已于1月16日发表在国际学术期刊《自然》,固态电池又迎来一轮热度。据统计,2025年以来,
北极星储能网获悉,杉杉股份1月17日在投资者互动平台表示,公司已开发针对固态电池用的石墨产品和硅碳产品,并已在客户处进行多轮测试;公司固态电解质复合型负极材料正在开发当中;公司正在自主建立固态电池负极材料评测体系,加速固态电池专用新型负极材料研发。
北极星电池网获悉,1月16日,中科电气发布2024年度业绩预告,预计2024年实现净利润盈利28780万元-32534万元,较去年的4171万元同比增长590%-680%。据悉,中科电气主营产品为锂离子电池负极材料,应用于动力类、储能类、消费类锂离子电池等领域,并与宁德时代、比亚迪、中创新航、亿纬锂能、瑞浦兰钧、
北极星储能网获悉,1月14日,贝特瑞发布公告,公司董事长贺雪琴夫妇因涉嫌违法违规内幕交易“龙蟠科技”,收到中国证券监督管理委员会的行政处罚决定书。公告显示,涉嫌违法违规的事实为:因贺雪琴内幕交易“龙蟠科技”及贺雪琴、罗某某共同内幕交易“龙蟠科技”的行为违反了《证券法》第五十条、第五
作者:周洪1,2(),俞海龙3,王丽平4,黄学杰3()单位:1.中国科学院武汉文献情报中心;2.中国科学院大学经济与管理学院信息资源管理系;3.中国科学院物理研究所;4.电子科技大学材料与能源学院引用:周洪,俞海龙,王丽平,等.基于BERTopic主题模型的锂电池前沿监测及主题分析研究[J].储能科学与技术,2025,14(
北极星储能网获悉,3月11日,双登集团向港交所递交招股书,联席保荐人为中金公司、华泰国际、建银国际。双登集团主要专注于设计、研发、制造和销售储能电池及系统,具有对于通信基站、数据中心、电力储能等领域储能应用客户服务十余年的累计的丰富经验。根据弗若斯特沙利文的数据,双登集团2023年在全
行业概况锂电材料指为锂电池的生产过程中所需的各种原材料,能够决定电池的性能、安全性、寿命和成本。目前锂电池由正极、负极、电解质、电解质盐、胶粘剂、隔膜、正极引线、负极引线、中心端子、绝缘材料、安全阀、正温度系数端子(PTC端子)、负极集流体、正极集流体、导电剂、电池壳等构成,锂电材
北极星储能网获悉,近日,福建漳州市发改委宣布位于福建诏安工业园区内的超大圆柱钠离子储能电池中试基地项目正式开工建设,该项目是民营企业诏安金钠新能源科技有限公司在新材料和储能领域的一次重大突破。据了解,该项目总投资1.8亿元,占地面积达37,256.1平方米,总建筑面积47,168平方米,规划建设
北极星储能网获悉,3月4日,安徽省淮南市生态环境局发布“安徽玖仕新能源科技有限公司新能源锂电池回收及综合利用项目”的环境影响评价第一次公示,标志着该项目正式进入环保审查阶段。该项目的建设单位为安徽玖仕新能源科技有限公司,将租用淮南经济技术开发区智慧显示产业园二号厂房,改造面积约1500
北极星储能网获悉,3月10日,中国石油集团济柴动力有限公司再开启5MWh液冷电池系统框架协议采购,招标范围为总容量200MWh液冷电池系统,包含储能系统电气分部件及电气汇流系统预制舱。储能系统电气分部件包括:磷酸铁锂电池、电池模块、电池管理系统、高压盒、内部电缆及附件;电池采用不低于314Ah的磷
北极星储能网讯:据韩国全罗南消防局3月9日消息,当天下午2点07分,接到报告称,位于康津洞的光伏储能设施发生火灾。消防部门启动了第一阶段的响应,动员了18辆消防车和43名人员灭火。主要火势已得到控制,其余火势正在被扑灭。一名消防员因肩部和背部烧伤被送往医院,无生命危险。经确定,500多平方米
近日,2025年中国储能技术创新应用研讨会暨"北极星杯"储能影响力企业评选颁奖典礼在浙江杭州隆重举行。本次盛会由北极星电力网、北极星储能网联合主办,汇聚了储能行业众多领军企业。凭借卓越的产品性能和技术实力,蜂巢能源荣获"储能影响力电池供应商"称号。作为全球领先的储能电芯供应商,蜂巢能源始
AI正加速改变人类的科学研究方式,其极高的效率有望颠覆传统研发。2024年,瑞典皇家科学院将诺贝尔化学奖授予了三位投身于AIforScience领域的科学家,这或许预示着AI驱动科研进步的时代将要到来。事实上,近年来已经有越来越多的新能源企业和科研机构,开始利用AI开拓电池技术和工艺的新领地。2023年12
北极星储能网获悉,3月7日,云山动力(宁波)有限公司一期量产示范线投产仪式暨大圆柱电池产业应用研讨会在宁波市海曙区举行。从市场应用来看,大圆柱电池在新能源汽车领域逐渐崭露头角。此外,因其长循环寿命、高安全性等特点,能够满足储能系统长时间稳定运行的需求,储能领域也开始青睐大圆柱电池。
北极星储能网获悉,3月7日,上交所发布《关于沪港通下港股通标的调整的通知》,文件显示,中创新航纳入名单,相关调整将于2025年3月10日起生效。中创新航发布公告表示,公司股票纳入港股通,将有效提升公司股票的流动性和市场活跃度,内地投资者可以更加便捷地参与公司的股票投资,分享公司的发展成果
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!