登录注册
请使用微信扫一扫
关注公众号完成登录
图1 预钠化原理
1 负极预钠化
负极预钠化按照预钠化方法的原理不同可分为物理预钠化、电化学预钠化以及化学反应预钠化。
1.1 物理预钠化
物理预钠化是将钠粉或钠箔在一定的压力下直接辊压到极片表面,或者将钠金属粉末加入到浆料中,与活性物质、导电剂、黏结剂混合均匀后制成电极,从而实现预钠化的目的。
应用于预钠化的钠金属粉末源于预锂化工艺中的稳定锂金属粉末(SLMP)。稳定锂金属粉末是由FMC Corporation开发并已经实现商业化的预锂化产品,可以在不对电池制造工艺进行较大修改的前提下对电极进行预锂化,已广泛应用于不同负极材料的预锂化工艺中。SLMP在锂金属表面包覆一层Li2CO3保护层,通过隔绝外部环境来保证锂粉的稳定性。而相较于金属锂,金属钠的质地更软,难以形成稳定的粉末。并且与金属锂相同,金属钠的活性极高,难以在空气中稳定和安全地存放,因此使用金属钠粉末的预钠化方法只能够在无氧无水的手套箱中进行。同时,钠金属粉末的制造过程繁琐、难度大,使得制造成本高昂,且当金属钠粉末与负极进行压力涂覆时还存在热失控的风险,安全性也无法得到很好地保障。此外,过量的钠粉投入会促进钠枝晶的生长,引发安全问题,因此金属钠的使用量需要经过精确的计算。因此,考虑到金属钠粉末的成本、安全性等问题,物理预钠化方法尚不成熟,难以实现商业化生产。
正因如此,许多科研人员尝试采用各种方法来改善物理预钠化的上述弊端,例如Tang等开发了一种基于钠粉的预钠化技术(图2),利用脉冲超声分散在矿物油中的熔融金属钠得到钠金属粉末,再将悬浮在己烷中的钠粉作为添加剂滴加到电极上,随后通过真空干燥除去己烷,采用辊压使电极与钠金属粉末接触良好,即可达到预钠化的目的。该方法易于得到分散的钠金属粉末,且能够方便地将钠金属粉末滴加至电极表面。结果发现,钠金属粉末对全电池的循环行为没有不利影响,且缓解了电池极化,提高了电池循环性能。该添加剂应用于葡萄糖衍生硬碳负极(GC1100),可降低开路电位约1 V,并使首次循环的不可逆库仑效率从19.3%降低到8%。应用于GC1100和NaCrO2组成的全电池中,使全电池循环容量提高了10%,能量密度提高了5%。该实验中除离心外的所有环节均在充满氩气的手套箱内完成,以减少在空气中的暴露,如果将钠金属粉末短暂暴露于空气中也会导致钠与氧气、水分或二氧化碳发生反应。总体而言,使用钠金属粉末作为预钠化试剂能够提高电池的综合性能,但提高钠金属粉末的稳定性是未来急需攻克的难题。
图2 超声分散钠金属粉末及极片制备
1.2 电化学预钠化
电化学预钠化是先将电池负极与金属钠辅助电极组装成半电池,经过一定的循环或达到一定的电位后将半电池拆卸,然后与电池正极组装成全电池以达到预钠化的目的。在使用电化学预钠化方法时需要注意几点:①预钠化的循环过程都必须在较低的电流密度下进行,以确保电化学过程的完整性和均匀性;②必须完成足够的循环,使副反应充分完成,保证生成的SEI膜的稳定性。
电化学方法最早被Aida等报道应用于锂离子电池的预锂化,然后被拓展为钠离子电池的预钠化,尤其在负极材料的预钠化中得到广泛研究。其中,Bublil等采用电化学预钠化方法对软碳材料进行预钠化处理,并在该材料上沉积氧化铝薄层(人工SEI膜)以改善其电化学性能。固态核磁共振研究表明,软碳材料的预钠化就是钠离子进入活性储钠位点的过程。在沉积氧化铝薄层前先对软碳材料进行预钠化处理,可以在减少寄生反应的同时保留大量的活性位点。Yang等用电化学预钠化方法对NiCo2O4进行预钠化处理,随后将其作为负极与活性炭正极组成钠离子电容器。实验发现预钠化后电容器的电容、功率密度和能量密度都有大幅提升。预钠化NiCo2O4电容器在0.1 A/g的电流密度下提供的电容为54.2 F/g,在200 W/kg和10000 W/kg的功率密度下分别提供了120.3 Wh/kg和60.0 Wh/kg的能量密度。
电化学预钠化方法有两个显著的优势:一是可以通过调节放电截止电压来精确控制预钠化程度;二是该方法形成的SEI膜较为均匀和稳定。但组装半电池-拆卸-再组装的复杂工艺流程使得电化学预钠化在大规模生产中的可行性大大降低,严重阻碍了该预钠化方法的商业化。
1.3 化学反应预钠化
1.3.1 液相浸泡
该方法将金属钠浸入含有萘或联苯的醚类有机溶剂中,金属钠与萘或联苯发生电子转移生成高活性多环芳香基钠,随后与醚类溶剂形成络合物,如果将电池负极浸泡于该溶液中,则可实现预钠化并在负极表面预先形成致密的SEI膜,从而减少后续循环中活性钠离子的损失。
该方法首先被应用于预锂化,近年来在预钠化领域也逐渐得到关注。Cao等[54]利用该性质将萘加入乙二醇二甲醚(DME)中搅拌至完全溶解后,再加入金属钠,得到较为稳定的液态钠源Na-Naph-DME,随后将Na2Ti6O13极片在该溶液中浸泡10 min,再用DME溶液洗涤完成预钠化处理(图3)。结果表明,预钠化Na2Ti6O13负极的首次库仑效率从65%提高至100%。在Na3V2(PO4)3//Na2Ti6O13全电池中,预钠化可将全电池的首效由40%提高至80%,预钠化后的电极仍具有良好的倍率性能和循环性能。液相浸泡方法可通过改变溶液中钠离子的浓度和浸泡时间来控制预钠化程度,与金属钠相比,液态钠源的安全性大大提高,该溶液能够在干燥空气中较长时间稳定存在,即使在有水的极端环境下也较为安全。这种预钠化方法预计能够广泛应用于各种不同的负极材料,具有一定的应用潜力。
图3 预钠化过程示意图:(a) 金属钠;(b) Na-Naph-DME溶液;(c) 卷对卷工艺
利用液相浸泡法进行负极预钠化有几个优点:首先,采用该方法在负极表面形成的SEI膜是均匀且致密的,液相浸泡保证了钠离子和负极表面接触的均匀性和连续性,确保了SEI膜的均匀致密;其次,液相浸泡法的过程简单,且可在较短的时间内完成,大大提高了效率。最后,可通过调节试剂浓度或浸泡时间来控制预钠化的程度。虽然有上述的优点,但萘和联苯等有机试剂比较昂贵,这将大大增加生产成本,且溶剂对保存环境的水分要求较为严格,是阻碍该方法应用的重要因素。
1.3.2 化学喷涂
化学喷涂法的原理与液相浸泡法相同,是液相浸泡的衍生方法,只是将浸泡的方式改为喷涂。该方法将金属钠浸入含有萘或联苯的醚类有机溶剂中,形成预钠化溶液,然后将其喷涂于负极表面,从而在负极表面形成SEI膜。与液相浸泡法相比,化学喷涂法的特点在于:首先,喷涂法中形成的SEI膜的均匀性不如液相浸泡法,但也减少了预钠化试剂的用量,降低了预钠化过程的成本;其次,喷涂法操作过程简单,效率高,且可通过调节试剂浓度或喷涂剂量来控制预钠化程度,有望实现连续生产。
为了避免预钠化溶液过量,化学喷涂法需要严格控制溶液中的钠含量。Liu等将适量的萘晶体溶解在四氢呋喃中,然后添加与萘1/1摩尔比的金属钠,得到四氢呋喃-萘钠溶液(Naph-Na),最后将溶液喷涂到硬碳负极上实现预钠化(图4)。结果表明预钠化后Na0.9[Cu0.22Fe0.30Mn0.48]O2//HC全电池的可逆容量提高了60 mAh/g,首次库仑效率提高了20%,能量密度从141 Wh/kg提高至240 Wh/kg,而且预钠化对全电池循环性能也有一定提高。
图4 (a) 溶液预钠化过程示意图;(b) 使用Naph-Na-THF溶液的硬碳负极预钠化机制
2 正极预钠化
2.1 正极添加剂
将补钠试剂与正极材料混合制成浆料,并涂覆在集流体上制成电极能够实现预钠化的目标,通常将这样的补钠试剂称为正极添加剂。正极添加剂在第一次充放电过程中被电化学氧化,从而不可逆地释放出额外的钠离子来补偿在循环中损失的活性钠离子。在理想情况下,用于补钠的正极添加剂应满足以下要求:
(1)正极添加剂的脱钠电位应低于全电池的工作电位,以保证全电池在正常工作循环中能够使正极添加剂被完全电化学氧化,释放出所有钠离子。
(2)在全电池的正常工作电位窗口下,正极添加剂的氧化还原反应为不可逆过程,以确保钠离子在被释放后能够在电池正负极之间正常工作,而不会被还原到正极添加剂当中。
(3)正极添加剂的选取应当符合当前的工业标准和加工技术,以保证所选取的正极添加剂能够应用于大规模生产当中,为正极添加剂的商业化提供可能。
(4)正极添加剂应当具有实现高效预钠化的高比容量,使得单位质量以及单位体积的正极添加剂能够释放更多的钠离子,以减少正极添加剂在完成预钠化过程后残留物的“死质量”和“死体积”。
目前已经被报道的正极添加剂种类繁多,包括Na2S、NaN3、Na2O、Na2NiO2、NaCrO2、Na3C6H5O7、Na2C6O6、Na2CO3等,不同的正极添加剂应用于不同电池时也可能表现出不同的性能。更多性能优异的正极添加剂有待研究者的开发,更加深入的机理也有待进一步的研究和拓展。目前对于正极添加剂的一些研究成果如下。
Pan等以硫化钠(Na2S)作为正极牺牲添加剂加入到活性炭(AC)正极材料中以实现对AC//Sn4P3钠离子电容器的预钠化。结果表明,预钠化后的钠离子电容器在1 kW/kg的功率密度下具有约48 Wh/kg的高比能量,且在180 mA/g下循环3500次后放电容量仅下降了3%。因此,Na2S是一种优良的正极补钠添加剂,可以提高钠离子电容器的综合性能。Xu等在合成碳包覆二硫化铁材料(FeS2@C)时加入硫化钠(Na2S)添加剂,以获得预钠化碳包覆二硫化铁(NaFeS2@C)作为正极材料。研究表明,NaFeS2@C//Na全电池获得了96.7%的极高初始库仑效率和751 mAh/g的高比容量,而未添加Na2S的全电池仅有68.7%的较低首效。预钠化后的电池在5.0 A/g的电流密度下循环2500次后依然表现出323 mAh/g的可逆容量。
Martinez De Ilarduya等将NaN3作为正极添加剂作用于Na0.67[Fe0.5Mn0.5]O2//HC钠离子全电池中。正极添加剂的反应方程式为:2NaN3→3N2↑+2Na++2e-。在添加10% NaN3的情况下,可逆容量增加了60%,而不会影响电池的循环寿命,且NaN3可在空气中处理。值得注意是过量的NaN3添加剂对循环稳定性产生一定负面影响。
Zhang等采用电催化驱动Na2O分解以补偿Na[Li0.05Mn0.50Ni0.30Cu0.10Mg0.05]O2//HC软包电池的钠离子损失(图5)。添加剂的反应方程式为:2Na2O→4Na++O2↑。结果表明,预钠化后该全电池的初始库仑效率可达90%,能量密度可高达295 Wh/kg,循环性能也有明显提升,且该方法解决了正极添加剂分解释放气体以及添加剂残留等问题。
图5 基于软包电池的Na2O添加剂预钠化过程
Park等将Na2NiO2作为正极添加剂应用于NaCrO2//Sb/C全电池。结果表明,Na2NiO2不可逆地转化为NaNiO2,在正极中用Na2NiO2替代10%的NaCrO2后,全电池首圈可逆容量从74.6 mAh/g提升至92.1 mAh/g。Shen等采用NaCrO2添加剂,使Na3V2O2(PO4)2F//HC全电池获得了更高的容量、更少的极化、更高的能量密度和优异的循环稳定性(图6)。无添加剂的全电池在首次循环过程中分别显示出132 mAh/g和50.7 mAh/g的充放电容量,而有添加剂的全电池分别显示出308 mAh/g和118 mAh/g的充放电容量。有添加剂的全电池在50次循环后表现出90 mAh/g的容量和80%的容量保持率,远远高于没有添加剂全电池的10.7 mAh/g的容量和21.4%的容量保持率。
图6 电池循环示意图:(a) 常规电池;(b) 使用正极添加剂的电池
柠檬酸钠(Na3C6H5O7)被Zhang等用作正极添加剂以改善Na3V2(PO4)2F3/rGO//HC全电池的电化学性能。该添加剂的反应方程式为:2C6H5O7Na3→C6H4O8+6CO↑+3H2↑+6Na++6e-。结果发现,全电池的能量密度明显提高了28.9%。在半电池中,相比于不含添加剂的NVPOF/rGO电极,含有10%柠檬酸钠添加剂的电极的首次充电容量从136 mAh/g提升至180 mAh/g。全电池在添加10%添加剂后,可逆容量提高了22 mAh/g,在50次循环后的容量保持率也从83%提升至95%,能量密度增加28.9%。
正极添加剂预钠化机理的研究也逐渐深入。最近,Zou等通过实验和理论计算深入分析了有机补钠添加剂的预钠化原理。分析表明,羧酸钠的电化学氧化电位由HOMO能级决定,较高的HOMO能级可以导致正极添加剂获得较低的氧化电位。具有p-π共轭结构、取代基的强给电子效应、共振效应都能有效提高HOMO能级,降低添加剂的氧化电位,可以获得更好的预钠化性能。这一研究揭示了官能团的电子效应与有机添加剂的氧化电位之间的关系,为将来预钠化正极添加剂的设计提供了理论参考。
正极添加剂拥有诸多的优点,首先,正极预钠化工艺简单,其总成本取决于添加剂材料本身的成本,因此能够应用于工业生产;其次,部分正极添加剂对环境要求低,与现有的电池生产工艺高度兼容。此外,正极预钠化可通过控制用量来准确调节预钠化程度,操作简单且安全。目前,正极预钠化的缺点主要是在完成预钠化后,正极添加剂的残留物将会保留在电池内部,带来无用的“死质量”和“死体积”,从而降低电池的能量密度。由于正极预钠化方法具有低成本、高性能、操作简单和安全性高等优点,因此是目前最具有商业化潜力的预钠化方法。
但目前正极预钠化仍然存在一些挑战。首先,目前对正极添加剂的残留物和部分添加剂释放的气体对整个电池体系的影响还缺乏系统地研究,特别是释放的气体很可能会影响正极活性材料的微观结构,对电池的长期运行有较大的影响。因此,为避免添加剂产生的气体对电池的不利影响,应采用小电流使添加剂在化成阶段充分反应以便于排出气体,同时获得良好的预钠化效果;还应根据产生的气体类型开发合适的添加剂,避免产生高活性气体与电解液发生反应;其次,目前还没有成功商业化的正极补钠添加剂,应结合其对钠离子电池物化性能的综合影响,开发可实际应用的正极添加剂预钠化方法。
2.2 富钠正极
除了正极添加剂之外,富钠正极也是正极预钠化的方法之一。富钠正极即通过一定方法在正极材料中加入过饱和的钠,并使过饱和的钠在循环过程中不可逆地释放到电解液中以实现对活性钠离子的补偿。
该方法需要所使用的正极材料能够储存过量的钠离子,Na4V2(PO4)3就是一种富钠材料。Mirza等采用电化学方法将Na3V2(PO4)3(Na3VP)转化为Na4V2(PO4)3(Na4VP),并将Na4VP作为正极直接应用于钠离子电池,从而提高了钠离子电池的综合性能(图7)。在首次循环中,Na4VP将不可逆地脱钠转变为Na3VP,脱出的钠离子将补偿首次循环中损耗的钠离子,进而提高全电池的首次库仑效率。结果表明,Na4VP//HC全电池获得了265 Wh/kg的高比能量,比Na3VP//HC全电池高76%。Na4VP//HC全电池及Na3VP//HC全电池的可逆容量分别为103.76 mAh/g和51.02 mAh/g,Na4VP//HC全电池首次库仑效率约为95%,几乎两倍于Na3VP//HC全电池。
图7 使用Na4VP的预钠化示意图
此预钠化方法对正极材料的结构几乎没有任何负面影响,制备的中间产物在脱钠后无任何残留物,这对于能够形成过饱和产物的钠离子正极材料而言是一种优异的预钠化方法。但是其特殊的选择性也导致该方法难以得到广泛地应用,更多的富钠正极材料有待开发,在将来有一定的商业化前景。
3 总结与展望
钠离子电池为电化学储能提供了一种低成本、可持续的替代方案,但其应用受到首次循环效率低等多因素的限制。预钠化是缓解这些问题的重要手段,不仅能够补偿不可逆钠的损失,而且可提高能量密度、倍率性能和循环寿命。
基于金属钠粉末或钠箔的物理方法是最直接的预钠化方法,但也是气氛要求最严苛的方法。由于金属钠的活性极高,暴露在空气中就会发生激烈反应,使得该方法很难实现大规模的商业化应用。电化学方法能够形成均匀的SEI膜,获得较好的预钠化效果,但繁琐的工艺过程极大增加了该方法的成本。此外,电解锂盐溶液的预锂化方法也有望在钠离子电池的预钠化中得到尝试。通过液相浸泡和化学喷涂的方法对钠离子电池负极进行预钠化显示出较好的补偿活性钠离子损失的能力,但溶液中阴离子的种类有进一步调整的空间,这可能会影响到SEI膜的均匀性和致密性,该方法有较大的应用潜力。
正极添加剂预钠化方法具有低成本、高性能、操作简单和安全性高等优点,是目前最具有商业化潜力的预钠化方法。但该预钠化方法不可避免地会受到正极添加剂产生的“死质量”“死体积”或是释放的气体造成的不利影响,如何缓解这些缺点带来的不良后果是将来的重点研究方向。
总之,预钠化将在钠离子储能器件的推广应用方面发挥关键作用,在新型预钠化技术的研究和开发中,应当综合考虑以下要求。
(1)安全性好。物理预钠化中可能产生的钠枝晶和热失控等问题,以及部分正极添加剂产生的气体等问题都是未来预钠化研究亟需解决的重点。
(2)环保。主要针对采用有机溶剂的预钠化方法,确保在预钠化过程中不会产生有害物质。
(3)稳定性好。特别是采用钠粉及其衍生物的方法,对气氛要求极高,改善其在空气中的稳定性也是重要且艰巨的挑战。
(4)工艺简单。简单的工艺有助于降低成本,而电化学预钠化正因其工艺的繁琐而不利于大规模生产。
第一作者:陈杰(2000—),男,硕士研究生,研究方向为钠离子电池,E-mail:836326106@qq.com;
通讯作者:张五星,博士,副教授,研究方向为锂离子电池、钠离子电池及其在动力与储能上的应用,E-mail:zhangwx@hust.edu.cn。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
3月17日,申能集团旗下上海申能新动力储能研发有限公司发布奉贤星火综合多种新型储能技术路线对比测试示范基地(一期)项目钠离子电池储能系统采购招标公告。本标的钠离子电池储能总容量5MW/20MWh,合同分两批次生效,第一批次为可扩展的最小单元容量(不大于2.5MWh),剩余容量为第二批次,第二批次合同生
北极星储能网获悉,3月17日,孚能科技在投资者互动平台上回答有关两轮车布局和钠电池进展问题。孚能科技表示,公司是国内最早布局电动两轮车的动力电池企业,拥有超14年的两轮车产品应用经验,服务客户包括Zero、春风动力、虬龙、雅迪、新日、EMC、Lightfighter、Polaris等国内外知名品牌。公司两轮车
北极星储能网获悉,3月17日,赣锋锂业披露公司2025年3月17日股东大会股东交流记录表。对于短期锂价,赣锋锂业认为目前的锂价已经处于相对底部区域的概率较大,这一判断主要基于:近期锂价感受到较强的成本端支撑、行业库存处于历史相对低位、以及近期需求有显著改善。未来锂价是否能上涨取决于供给侧是
行业概况钠离子电池是一种以钠离子为电荷载体的充电电池,其工作原理及结构与锂离子电池相似,差别只在利用在元素周期表同组、化学特性相近的钠取代锂。实际工作场景中,充电时,钠离子从正极材料脱出,正极发生氧化反应,经过电解液和隔膜扩散到负极。在放电时,钠离子从负极材料中脱出,外电路中电子
北极星储能网获悉,3月12日,领克汽车官方宣布,旗舰大6座SUV领克900同级首搭宁德时代骁遥超级增混电池。此次搭载52.38kWh的超大电池包,能量密度达253Wh/kg,CLTC纯电续航里程280km。去年10月,宁德时代正式发布“骁遥”超级增·混电池,用于增程/混动车型。骁遥电池号称是全球首款纯电续航400km+兼具
北极星储能网获悉,3月10日,北京华夏佳业新能源有限公司与浙江湖钠能源有限责任公司在北京成功签署1GWH储能系统战略合作协议。双方就江阴徐霞客镇、南京高淳、镇江鑫华等多个储能电站达成合作,具体采购量将通过后续采购合同确定,以上项目预计均将于6月30日并网运营。值得关注的是,本次签约的1GWH储
2月25日,中国铁塔股份有限公司发布中国铁塔2025年钠离子换电电池标准化产品研究及规模验证项目直接采购事前公示,项目采购内容包括优化电芯生产工艺,进一步提升一致性、稳定性及安全性;完善BMS功能,增强换电钠离子电池与车辆适配性,并实现与能源网管平台间的通讯;开展PACK标准化设计,优化内部结
随着全球能源转型加速,锂电池储能技术正经历前所未有的革新。2025年,储能市场将从“规模扩张”转向“价值重构”,技术创新成为行业竞争的核心变量。本文将罗列锂电池储能十大技术进化趋势预测,涵盖热管理、系统架构、材料迭代等多个维度,也欢迎业界留言。趋势一:组串式架构将主导大储系统设计组串
北极星储能网获悉,2月24日,三峡能源在投资者互动平台上回答有关公司目前钠离子储能规划和实际量产情况。三峡能源回复,2022年1月,公司控股子公司与北京中科海钠科技有限责任公司成立的合资公司阜阳海钠科技有限责任公司,建成投产1GWh级钠离子电池生产线,目前产线达到设计生产能力。据北极星储能网
近日,湖南钠能时代科技发展有限公司(以下简称“钠能时代”)、长沙经阁新材料有限公司(以下简称“经阁新材料”)与湖南睿阁精密制造有限公司(以下简称“睿阁精密”)宣布达成战略合作,共同成立长沙润泽能源科技有限公司(以下简称“润泽能源”),合作各方将在钠离子电芯、锂离子电芯、储能等多个
2月19-21日,由上海交通大学与唐山三友集团联合研发和组织实施、钠创新能源与比亚迪储能联合体完成的兆瓦级NFPP钠离子电池储能系统在唐山南堡经济开发区通过项目(一期)验收。该项目于2024年7月正式启动,参与各方精诚合作、紧密配合,从钠电材料化学体系选择与优化、电芯与储能系统设计,到储能系统
日前,国际能源署(IEA)指出,随着市场需求日益增长和技术的日益标准化,全球电池产业正在进入一个新的发展阶段,可能进一步整合,同时由政府主导的电池供应链的多元化举措也在重塑格局。随着市场需求急剧上升和价格的持续下降,全球电池市场规模正在快速扩张。2024年电动汽车销量增长了25%,达到1700
北极星储能网获悉,3月20日,纬锂能股份有限公司创业板向不特定对象发行可转换公司债券募集说明书,发行目的用于实施“23GWh圆柱磷酸铁锂储能动力电池项目”和“21GWh大圆柱乘用车动力电池项目”。募投项目达产后,将形成年产约23GWh的圆柱磷酸铁锂动力储能电池产能以及年产约21GWh的46系列三元大圆柱
北极星储能网讯:3月5日,业内广传特斯拉将在德州建造新储能工厂,3月7日,宁德时代福建年产40GWh大型电池工厂规划曝光#x2026;#x2026;一方面是行业回暖,新一轮的产能潮持续扩张,一方面是政策引导,呼吁企业“有效供给与扩大需求相结合,减少低水平重复建设”(详情见2月9日工信部等《新型储能制造业
北极星储能网获悉,3月19日,广东珠海市工业和信息化局发布《珠海市推动固态电池产业发展行动方案(2025-2030)(征求意见稿)》。其中提出,鼓励企业加大对固态电池的研发投入,重点培育能量密度超350Wh/kg的半固态电池和超400Wh/kg的全固态电池项目,推动固态电池产品规模化量产落地。聚焦关键核心技
2025年3月18日,广州融捷能源科技有限公司(以下简称“融捷能源”)宣布,公司自主研发的314Ah储能电池成功通过中国电力科学院的《电力储能用锂离子电池》(GB/T36276-2023)(以下简称“新国标”)型式试验的全部测试项目,并获取正式报告,成为国内率先通过314Ah级别储能电池新国标测试的企业之一,
北极星储能网获悉,3月11日,江苏滨海县人民政府发布盐城市源之曻储能科技有限公司)滨海县年产20GWh储能锂电池产业制造项目(一期10GWh)公示。该项目投资总额500000万元(一期300000万元),位于江苏省盐城市滨海县黄海新区滨海片区滨响大道南侧、海宝路西侧。附件信息显示,源之曻年产20GWh储能锂电
北极星储能网获悉,3月17日,湖南裕能在其投资者关系活动中表示,2024年,公司磷酸盐正极材料销量创下公司历史新高,其中,应用在储能领域的产品销量占比已提升至约41%。新产品方面,CN-5系列、YN-9系列和YN-13系列在2024年下半年合计销售约11.13万吨,在2024年下半年的总销量比例约27%。今年以来,行
此前,宁德时代曾起诉储能系统集成商Powin,共涉及约为3.1亿元人民币(约合4400万美元)。据外媒近期消息,Powin驳斥了宁德时代对有关其财务困境的指控,并直言宁德时代在利用该起纠纷抢占其业务份额。但其提交的法庭文件中暴露出一些明显的疏漏。法官KathleenProctor裁定宁德时代有权获得支持仲裁的临时
北极星储能网获悉,3月18日,中国能建在投资者互动平台表示,中能瑞新厦门储能项目分期推进,一期项目投资约17亿元,主要生产及研发储能电芯、电池及系统集成产品等;中能瑞新无锡储能项目计划建设储能电芯研发生产基地,进行储能电芯和集成产品的研发、生产,并开展测试认证。上述项目正在前期推进中
数据中心用锂电池正在崛起成为新的市场增量。近日,宁德时代在业绩说明会上表示,数据中心及配储需求较大将成为未来优质的增量市场,大型项目带动的数据中心储能电池出货也将快速增长。近年来,随着人工智能的发展热潮,带动了云计算、大模型、AI智能体的发展,相应的对于算力需求也越来越高,根据市场
北极星储能网获悉,近日,公主岭经开区党工委书记、管委会主任、范家屯镇党委书记孙胜军、管委会副主任杜克远接待了到访的安徽巡鹰集团北方区总经理戴笠及项目合作方吉林省鸿秀项目管理有限公司总经理李秀英一行,就储能电池组装与回收利用项目进行了深入交流与洽谈。戴笠首先介绍了储能电池组装与回收
北极星储能网获悉,近日,贵州大龙开发区北部工业园区的贵州嘉尚新能源材料有限公司年产25万吨锂离子电池正极材料产业园项目二期的厂房钢结构主体已全部完工,项目整体综合完成率达96%左右,现正在做一些收尾工作,室内在进行吊顶装修、地坪硬化等,室外在进行附属设施施工,包含室外管网、室外绿化、
3月20日,格林美发布《第七届董事会第二次会议决议公告》。公告显示,此次会议的审议通过了多项重要议案,对公司管理层进行了调整,总共涉及到23位高层的任命。01重量级的内部调整作为锂电行业的重要参与者,格林美此次调整或将对其未来发展战略产生一定影响。在此次调整中,格林美决定聘任许开华先生
3月10日上午,国家绿色发展基金战略投资湖北重大项目签约活动在武汉隆重举行,国家绿色发展基金联合长江产业集团湖北生态公司签署股权投资合作协议。湖北省省委常委、常务副省长邵新宇出席活动。项目签约活动中,副区长王海兵代表区政府与湖北生态公司签订《共建全国大宗固废循环利用基地战略合作协议
北极星储能网获悉,3月17日,自然资源部发布《中华人民共和国矿产资源法实施条例(征求意见稿)》。其中列举了矿产资源目录,金属矿产中包括铁、铬、钒、钛;铜、铅、锌、锂等涉及电池材料的金属类型。以下为政策原文:中华人民共和国矿产资源法实施条例(征求意见稿)第一章总则第一条【制定依据】根
中国三元材料将有望通过韩企于2025-2027年在全球市场放量,尤其是在北美市场。近期,韩国电池厂接连与中国三元材料企业签发订单。结合行业动向,中国三元材料将有望通过韩企于2025-2027年在全球市场放量,尤其是在北美市场。3月10日,当升科技宣布与LG新能源(LGES)签订长期供货协议,约定2025-2027年
中/高镍电池“技术池”正泛起层层涟漪,变数中蕴藏新的发展格局。进入3月以来,中/高镍正极材料采购大单频现,反映出中/高镍电池的市场需求持续增长趋势下,上游材料市场形成强烈共振,这也成为行业关注的一大焦点。中/高镍正极材料采购大单频现3月10日晚,当升科技发布公告称,该公司及其子公司与韩国
北极星储能网获悉,3月10日富临精工公告称,控股子公司江西升华与宁德时代签署《战略合作协议》,双方就磷酸铁锂正极材料产品研发、产能投建等开展长期深度合作,同时江西升华拟以增资扩股的方式引入战略投资者宁德时代。根据合作协议,江西升华与宁德时代将在磷酸铁锂材料产品研发、产能投建、国际化
北极星储能网获悉,3月10日,当升科技发布公告称与LG新能源签订11万吨锂电正极材料订单,按照当前市场价格估算,协议总金额预计人民币140亿元。本次签订的协议为锂电正极材料长期供货协议。根据协议约定,LGES预计在2025年至2027年向当升科技采购110,000吨高镍及中镍等多型号锂电正极材料,协议约定的
北极星储能网获悉,3月5日,国内最大的镍钴金属生产商金川集团镍钴股份有限公司(简称“金川镍钴”)向提交IPO辅导备案资料、启动上市,这也意味着锂电材料上市企业军团或将再迎来国企猛将。据悉,金川镍钴成立于2013年5月2日,为甘肃省国有企业,是甘肃省国有资产投资集团成员。2023年12月金川镍钴重
钴,这个曾被戏称为“钴奶奶”的矿产资源,再次用剧烈的价格波动,彰显其在新能源产业中的重要地位。行业数据显示,3月7日国内硫酸钴均价为3.67万元/吨,相较2月25日2.665万元/吨的价格,短短数日累计涨幅超37%,最高涨幅近50%。突如一记惊雷,在新能源产业界炸响。相关信息显示,本轮钴盐价格飙涨,主
3月10日,云南省工业和信息化厅关于申报2025年省级工业和信息化领域专项资金的通知(云工信规划【2025】63号)。其中提到,支持以铝和铜为主的有色金属精深加工项目、以铟、锗、铂族金属、钛、镓为主的稀贵金属新材料项目、发挥磷和锂资源优势的新能源电池产业深度延链项目、中药材精深加工项目、智能
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!