登录注册
请使用微信扫一扫
关注公众号完成登录
图1 预钠化原理
1 负极预钠化
负极预钠化按照预钠化方法的原理不同可分为物理预钠化、电化学预钠化以及化学反应预钠化。
1.1 物理预钠化
物理预钠化是将钠粉或钠箔在一定的压力下直接辊压到极片表面,或者将钠金属粉末加入到浆料中,与活性物质、导电剂、黏结剂混合均匀后制成电极,从而实现预钠化的目的。
应用于预钠化的钠金属粉末源于预锂化工艺中的稳定锂金属粉末(SLMP)。稳定锂金属粉末是由FMC Corporation开发并已经实现商业化的预锂化产品,可以在不对电池制造工艺进行较大修改的前提下对电极进行预锂化,已广泛应用于不同负极材料的预锂化工艺中。SLMP在锂金属表面包覆一层Li2CO3保护层,通过隔绝外部环境来保证锂粉的稳定性。而相较于金属锂,金属钠的质地更软,难以形成稳定的粉末。并且与金属锂相同,金属钠的活性极高,难以在空气中稳定和安全地存放,因此使用金属钠粉末的预钠化方法只能够在无氧无水的手套箱中进行。同时,钠金属粉末的制造过程繁琐、难度大,使得制造成本高昂,且当金属钠粉末与负极进行压力涂覆时还存在热失控的风险,安全性也无法得到很好地保障。此外,过量的钠粉投入会促进钠枝晶的生长,引发安全问题,因此金属钠的使用量需要经过精确的计算。因此,考虑到金属钠粉末的成本、安全性等问题,物理预钠化方法尚不成熟,难以实现商业化生产。
正因如此,许多科研人员尝试采用各种方法来改善物理预钠化的上述弊端,例如Tang等开发了一种基于钠粉的预钠化技术(图2),利用脉冲超声分散在矿物油中的熔融金属钠得到钠金属粉末,再将悬浮在己烷中的钠粉作为添加剂滴加到电极上,随后通过真空干燥除去己烷,采用辊压使电极与钠金属粉末接触良好,即可达到预钠化的目的。该方法易于得到分散的钠金属粉末,且能够方便地将钠金属粉末滴加至电极表面。结果发现,钠金属粉末对全电池的循环行为没有不利影响,且缓解了电池极化,提高了电池循环性能。该添加剂应用于葡萄糖衍生硬碳负极(GC1100),可降低开路电位约1 V,并使首次循环的不可逆库仑效率从19.3%降低到8%。应用于GC1100和NaCrO2组成的全电池中,使全电池循环容量提高了10%,能量密度提高了5%。该实验中除离心外的所有环节均在充满氩气的手套箱内完成,以减少在空气中的暴露,如果将钠金属粉末短暂暴露于空气中也会导致钠与氧气、水分或二氧化碳发生反应。总体而言,使用钠金属粉末作为预钠化试剂能够提高电池的综合性能,但提高钠金属粉末的稳定性是未来急需攻克的难题。
图2 超声分散钠金属粉末及极片制备
1.2 电化学预钠化
电化学预钠化是先将电池负极与金属钠辅助电极组装成半电池,经过一定的循环或达到一定的电位后将半电池拆卸,然后与电池正极组装成全电池以达到预钠化的目的。在使用电化学预钠化方法时需要注意几点:①预钠化的循环过程都必须在较低的电流密度下进行,以确保电化学过程的完整性和均匀性;②必须完成足够的循环,使副反应充分完成,保证生成的SEI膜的稳定性。
电化学方法最早被Aida等报道应用于锂离子电池的预锂化,然后被拓展为钠离子电池的预钠化,尤其在负极材料的预钠化中得到广泛研究。其中,Bublil等采用电化学预钠化方法对软碳材料进行预钠化处理,并在该材料上沉积氧化铝薄层(人工SEI膜)以改善其电化学性能。固态核磁共振研究表明,软碳材料的预钠化就是钠离子进入活性储钠位点的过程。在沉积氧化铝薄层前先对软碳材料进行预钠化处理,可以在减少寄生反应的同时保留大量的活性位点。Yang等用电化学预钠化方法对NiCo2O4进行预钠化处理,随后将其作为负极与活性炭正极组成钠离子电容器。实验发现预钠化后电容器的电容、功率密度和能量密度都有大幅提升。预钠化NiCo2O4电容器在0.1 A/g的电流密度下提供的电容为54.2 F/g,在200 W/kg和10000 W/kg的功率密度下分别提供了120.3 Wh/kg和60.0 Wh/kg的能量密度。
电化学预钠化方法有两个显著的优势:一是可以通过调节放电截止电压来精确控制预钠化程度;二是该方法形成的SEI膜较为均匀和稳定。但组装半电池-拆卸-再组装的复杂工艺流程使得电化学预钠化在大规模生产中的可行性大大降低,严重阻碍了该预钠化方法的商业化。
1.3 化学反应预钠化
1.3.1 液相浸泡
该方法将金属钠浸入含有萘或联苯的醚类有机溶剂中,金属钠与萘或联苯发生电子转移生成高活性多环芳香基钠,随后与醚类溶剂形成络合物,如果将电池负极浸泡于该溶液中,则可实现预钠化并在负极表面预先形成致密的SEI膜,从而减少后续循环中活性钠离子的损失。
该方法首先被应用于预锂化,近年来在预钠化领域也逐渐得到关注。Cao等[54]利用该性质将萘加入乙二醇二甲醚(DME)中搅拌至完全溶解后,再加入金属钠,得到较为稳定的液态钠源Na-Naph-DME,随后将Na2Ti6O13极片在该溶液中浸泡10 min,再用DME溶液洗涤完成预钠化处理(图3)。结果表明,预钠化Na2Ti6O13负极的首次库仑效率从65%提高至100%。在Na3V2(PO4)3//Na2Ti6O13全电池中,预钠化可将全电池的首效由40%提高至80%,预钠化后的电极仍具有良好的倍率性能和循环性能。液相浸泡方法可通过改变溶液中钠离子的浓度和浸泡时间来控制预钠化程度,与金属钠相比,液态钠源的安全性大大提高,该溶液能够在干燥空气中较长时间稳定存在,即使在有水的极端环境下也较为安全。这种预钠化方法预计能够广泛应用于各种不同的负极材料,具有一定的应用潜力。
图3 预钠化过程示意图:(a) 金属钠;(b) Na-Naph-DME溶液;(c) 卷对卷工艺
利用液相浸泡法进行负极预钠化有几个优点:首先,采用该方法在负极表面形成的SEI膜是均匀且致密的,液相浸泡保证了钠离子和负极表面接触的均匀性和连续性,确保了SEI膜的均匀致密;其次,液相浸泡法的过程简单,且可在较短的时间内完成,大大提高了效率。最后,可通过调节试剂浓度或浸泡时间来控制预钠化的程度。虽然有上述的优点,但萘和联苯等有机试剂比较昂贵,这将大大增加生产成本,且溶剂对保存环境的水分要求较为严格,是阻碍该方法应用的重要因素。
1.3.2 化学喷涂
化学喷涂法的原理与液相浸泡法相同,是液相浸泡的衍生方法,只是将浸泡的方式改为喷涂。该方法将金属钠浸入含有萘或联苯的醚类有机溶剂中,形成预钠化溶液,然后将其喷涂于负极表面,从而在负极表面形成SEI膜。与液相浸泡法相比,化学喷涂法的特点在于:首先,喷涂法中形成的SEI膜的均匀性不如液相浸泡法,但也减少了预钠化试剂的用量,降低了预钠化过程的成本;其次,喷涂法操作过程简单,效率高,且可通过调节试剂浓度或喷涂剂量来控制预钠化程度,有望实现连续生产。
为了避免预钠化溶液过量,化学喷涂法需要严格控制溶液中的钠含量。Liu等将适量的萘晶体溶解在四氢呋喃中,然后添加与萘1/1摩尔比的金属钠,得到四氢呋喃-萘钠溶液(Naph-Na),最后将溶液喷涂到硬碳负极上实现预钠化(图4)。结果表明预钠化后Na0.9[Cu0.22Fe0.30Mn0.48]O2//HC全电池的可逆容量提高了60 mAh/g,首次库仑效率提高了20%,能量密度从141 Wh/kg提高至240 Wh/kg,而且预钠化对全电池循环性能也有一定提高。
图4 (a) 溶液预钠化过程示意图;(b) 使用Naph-Na-THF溶液的硬碳负极预钠化机制
2 正极预钠化
2.1 正极添加剂
将补钠试剂与正极材料混合制成浆料,并涂覆在集流体上制成电极能够实现预钠化的目标,通常将这样的补钠试剂称为正极添加剂。正极添加剂在第一次充放电过程中被电化学氧化,从而不可逆地释放出额外的钠离子来补偿在循环中损失的活性钠离子。在理想情况下,用于补钠的正极添加剂应满足以下要求:
(1)正极添加剂的脱钠电位应低于全电池的工作电位,以保证全电池在正常工作循环中能够使正极添加剂被完全电化学氧化,释放出所有钠离子。
(2)在全电池的正常工作电位窗口下,正极添加剂的氧化还原反应为不可逆过程,以确保钠离子在被释放后能够在电池正负极之间正常工作,而不会被还原到正极添加剂当中。
(3)正极添加剂的选取应当符合当前的工业标准和加工技术,以保证所选取的正极添加剂能够应用于大规模生产当中,为正极添加剂的商业化提供可能。
(4)正极添加剂应当具有实现高效预钠化的高比容量,使得单位质量以及单位体积的正极添加剂能够释放更多的钠离子,以减少正极添加剂在完成预钠化过程后残留物的“死质量”和“死体积”。
目前已经被报道的正极添加剂种类繁多,包括Na2S、NaN3、Na2O、Na2NiO2、NaCrO2、Na3C6H5O7、Na2C6O6、Na2CO3等,不同的正极添加剂应用于不同电池时也可能表现出不同的性能。更多性能优异的正极添加剂有待研究者的开发,更加深入的机理也有待进一步的研究和拓展。目前对于正极添加剂的一些研究成果如下。
Pan等以硫化钠(Na2S)作为正极牺牲添加剂加入到活性炭(AC)正极材料中以实现对AC//Sn4P3钠离子电容器的预钠化。结果表明,预钠化后的钠离子电容器在1 kW/kg的功率密度下具有约48 Wh/kg的高比能量,且在180 mA/g下循环3500次后放电容量仅下降了3%。因此,Na2S是一种优良的正极补钠添加剂,可以提高钠离子电容器的综合性能。Xu等在合成碳包覆二硫化铁材料(FeS2@C)时加入硫化钠(Na2S)添加剂,以获得预钠化碳包覆二硫化铁(NaFeS2@C)作为正极材料。研究表明,NaFeS2@C//Na全电池获得了96.7%的极高初始库仑效率和751 mAh/g的高比容量,而未添加Na2S的全电池仅有68.7%的较低首效。预钠化后的电池在5.0 A/g的电流密度下循环2500次后依然表现出323 mAh/g的可逆容量。
Martinez De Ilarduya等将NaN3作为正极添加剂作用于Na0.67[Fe0.5Mn0.5]O2//HC钠离子全电池中。正极添加剂的反应方程式为:2NaN3→3N2↑+2Na++2e-。在添加10% NaN3的情况下,可逆容量增加了60%,而不会影响电池的循环寿命,且NaN3可在空气中处理。值得注意是过量的NaN3添加剂对循环稳定性产生一定负面影响。
Zhang等采用电催化驱动Na2O分解以补偿Na[Li0.05Mn0.50Ni0.30Cu0.10Mg0.05]O2//HC软包电池的钠离子损失(图5)。添加剂的反应方程式为:2Na2O→4Na++O2↑。结果表明,预钠化后该全电池的初始库仑效率可达90%,能量密度可高达295 Wh/kg,循环性能也有明显提升,且该方法解决了正极添加剂分解释放气体以及添加剂残留等问题。
图5 基于软包电池的Na2O添加剂预钠化过程
Park等将Na2NiO2作为正极添加剂应用于NaCrO2//Sb/C全电池。结果表明,Na2NiO2不可逆地转化为NaNiO2,在正极中用Na2NiO2替代10%的NaCrO2后,全电池首圈可逆容量从74.6 mAh/g提升至92.1 mAh/g。Shen等采用NaCrO2添加剂,使Na3V2O2(PO4)2F//HC全电池获得了更高的容量、更少的极化、更高的能量密度和优异的循环稳定性(图6)。无添加剂的全电池在首次循环过程中分别显示出132 mAh/g和50.7 mAh/g的充放电容量,而有添加剂的全电池分别显示出308 mAh/g和118 mAh/g的充放电容量。有添加剂的全电池在50次循环后表现出90 mAh/g的容量和80%的容量保持率,远远高于没有添加剂全电池的10.7 mAh/g的容量和21.4%的容量保持率。
图6 电池循环示意图:(a) 常规电池;(b) 使用正极添加剂的电池
柠檬酸钠(Na3C6H5O7)被Zhang等用作正极添加剂以改善Na3V2(PO4)2F3/rGO//HC全电池的电化学性能。该添加剂的反应方程式为:2C6H5O7Na3→C6H4O8+6CO↑+3H2↑+6Na++6e-。结果发现,全电池的能量密度明显提高了28.9%。在半电池中,相比于不含添加剂的NVPOF/rGO电极,含有10%柠檬酸钠添加剂的电极的首次充电容量从136 mAh/g提升至180 mAh/g。全电池在添加10%添加剂后,可逆容量提高了22 mAh/g,在50次循环后的容量保持率也从83%提升至95%,能量密度增加28.9%。
正极添加剂预钠化机理的研究也逐渐深入。最近,Zou等通过实验和理论计算深入分析了有机补钠添加剂的预钠化原理。分析表明,羧酸钠的电化学氧化电位由HOMO能级决定,较高的HOMO能级可以导致正极添加剂获得较低的氧化电位。具有p-π共轭结构、取代基的强给电子效应、共振效应都能有效提高HOMO能级,降低添加剂的氧化电位,可以获得更好的预钠化性能。这一研究揭示了官能团的电子效应与有机添加剂的氧化电位之间的关系,为将来预钠化正极添加剂的设计提供了理论参考。
正极添加剂拥有诸多的优点,首先,正极预钠化工艺简单,其总成本取决于添加剂材料本身的成本,因此能够应用于工业生产;其次,部分正极添加剂对环境要求低,与现有的电池生产工艺高度兼容。此外,正极预钠化可通过控制用量来准确调节预钠化程度,操作简单且安全。目前,正极预钠化的缺点主要是在完成预钠化后,正极添加剂的残留物将会保留在电池内部,带来无用的“死质量”和“死体积”,从而降低电池的能量密度。由于正极预钠化方法具有低成本、高性能、操作简单和安全性高等优点,因此是目前最具有商业化潜力的预钠化方法。
但目前正极预钠化仍然存在一些挑战。首先,目前对正极添加剂的残留物和部分添加剂释放的气体对整个电池体系的影响还缺乏系统地研究,特别是释放的气体很可能会影响正极活性材料的微观结构,对电池的长期运行有较大的影响。因此,为避免添加剂产生的气体对电池的不利影响,应采用小电流使添加剂在化成阶段充分反应以便于排出气体,同时获得良好的预钠化效果;还应根据产生的气体类型开发合适的添加剂,避免产生高活性气体与电解液发生反应;其次,目前还没有成功商业化的正极补钠添加剂,应结合其对钠离子电池物化性能的综合影响,开发可实际应用的正极添加剂预钠化方法。
2.2 富钠正极
除了正极添加剂之外,富钠正极也是正极预钠化的方法之一。富钠正极即通过一定方法在正极材料中加入过饱和的钠,并使过饱和的钠在循环过程中不可逆地释放到电解液中以实现对活性钠离子的补偿。
该方法需要所使用的正极材料能够储存过量的钠离子,Na4V2(PO4)3就是一种富钠材料。Mirza等采用电化学方法将Na3V2(PO4)3(Na3VP)转化为Na4V2(PO4)3(Na4VP),并将Na4VP作为正极直接应用于钠离子电池,从而提高了钠离子电池的综合性能(图7)。在首次循环中,Na4VP将不可逆地脱钠转变为Na3VP,脱出的钠离子将补偿首次循环中损耗的钠离子,进而提高全电池的首次库仑效率。结果表明,Na4VP//HC全电池获得了265 Wh/kg的高比能量,比Na3VP//HC全电池高76%。Na4VP//HC全电池及Na3VP//HC全电池的可逆容量分别为103.76 mAh/g和51.02 mAh/g,Na4VP//HC全电池首次库仑效率约为95%,几乎两倍于Na3VP//HC全电池。
图7 使用Na4VP的预钠化示意图
此预钠化方法对正极材料的结构几乎没有任何负面影响,制备的中间产物在脱钠后无任何残留物,这对于能够形成过饱和产物的钠离子正极材料而言是一种优异的预钠化方法。但是其特殊的选择性也导致该方法难以得到广泛地应用,更多的富钠正极材料有待开发,在将来有一定的商业化前景。
3 总结与展望
钠离子电池为电化学储能提供了一种低成本、可持续的替代方案,但其应用受到首次循环效率低等多因素的限制。预钠化是缓解这些问题的重要手段,不仅能够补偿不可逆钠的损失,而且可提高能量密度、倍率性能和循环寿命。
基于金属钠粉末或钠箔的物理方法是最直接的预钠化方法,但也是气氛要求最严苛的方法。由于金属钠的活性极高,暴露在空气中就会发生激烈反应,使得该方法很难实现大规模的商业化应用。电化学方法能够形成均匀的SEI膜,获得较好的预钠化效果,但繁琐的工艺过程极大增加了该方法的成本。此外,电解锂盐溶液的预锂化方法也有望在钠离子电池的预钠化中得到尝试。通过液相浸泡和化学喷涂的方法对钠离子电池负极进行预钠化显示出较好的补偿活性钠离子损失的能力,但溶液中阴离子的种类有进一步调整的空间,这可能会影响到SEI膜的均匀性和致密性,该方法有较大的应用潜力。
正极添加剂预钠化方法具有低成本、高性能、操作简单和安全性高等优点,是目前最具有商业化潜力的预钠化方法。但该预钠化方法不可避免地会受到正极添加剂产生的“死质量”“死体积”或是释放的气体造成的不利影响,如何缓解这些缺点带来的不良后果是将来的重点研究方向。
总之,预钠化将在钠离子储能器件的推广应用方面发挥关键作用,在新型预钠化技术的研究和开发中,应当综合考虑以下要求。
(1)安全性好。物理预钠化中可能产生的钠枝晶和热失控等问题,以及部分正极添加剂产生的气体等问题都是未来预钠化研究亟需解决的重点。
(2)环保。主要针对采用有机溶剂的预钠化方法,确保在预钠化过程中不会产生有害物质。
(3)稳定性好。特别是采用钠粉及其衍生物的方法,对气氛要求极高,改善其在空气中的稳定性也是重要且艰巨的挑战。
(4)工艺简单。简单的工艺有助于降低成本,而电化学预钠化正因其工艺的繁琐而不利于大规模生产。
第一作者:陈杰(2000—),男,硕士研究生,研究方向为钠离子电池,E-mail:836326106@qq.com;
通讯作者:张五星,博士,副教授,研究方向为锂离子电池、钠离子电池及其在动力与储能上的应用,E-mail:zhangwx@hust.edu.cn。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
北极星储能网获悉,4月24日,交通运输部政策研究室副主任李颖在新闻发布会表示,交通运输行业标准《船舶载运锂电池安全技术要求》2025年5月1日起实施。锂电池产品作为我国外贸“新三样”,近年来的产量稳居世界第一。据统计,2024年我国锂电池出口量达到了39.1亿个,创历史新高。海运是锂电池出口运输
北极星储能网获悉,4月24日,鹏辉能源发布2024年度业绩报告。报告期内,公司实现营业收入79.61亿元,同比增长14.83%;归属于上市公司股东的净利润-2.52亿元。报告期末,公司资产总额168.68亿元,同比增长7.66%;归属于上市公司股东的净资产为50.88亿元,同比下降5.82%。报告显示,公司主营锂离子电池、
4月21日以来,碳酸锂期货价格再次连续大跌!21日跌破7万元/吨心理防线,22日跌破6.9万元/吨,23日一度跌破6.8万元/吨。海外矿价下跌,美国关税带来的需求增量担忧,以及宁德时代“钠电池”的量产与技术替代,这三大因素的叠加导致碳酸锂市场接连遭遇成本坍塌、需求未卜、技术替代的“打击”。下一步,
根据CNESADataLink全球储能数据库的不完全统计,2025年第一季度,国内新增投运新型储能项目装机规模5.03GW/11.79GWh,同比-1.5%/-5.5%。其中表前新增装机规模4.46GW/10.57GWh,同比-0.2%/-4.4%,用户侧新增装机规模575MW/1124MWh,同比-10.9%/-11.6%。图12025年1-3月中国新增投运新型储能项目装机规模
北极星储能网获悉,2025年4月19日,由中国化工学会指导,中国化工学会储能工程专业委员会和中国可再生能源学会氢能专业委员会联合主办的“2025长三角(绍兴)氢能+储能产业技术交流与发展大会”在浙江省绍兴市上虞区隆重举行。大会上,一批高质量的氢能与储能项目正式签约,落户国家级杭州湾上虞经济技
北极星储能网获悉,4月21日,山东省能源局印发《山东省2025年新能源高水平消纳行动方案》,明确提出要开展新型储能提振行动,其中完善储能市场交易机制方面,适当放开现货市场限价,拉大充放电价差。支持储能自主参与实时电能量市场和调频、爬坡、备用等辅助服务市场,建立“一体多用、分时复用”交易
北极星储能网获悉,4月21日,宁德时代在“超级科技日”上正式发布名为“钠新”的钠离子电池,并推出了第一款产品——宁德时代钠新24V重卡启驻一体蓄电池,使用寿命突破8年,全生命周期总成本较传统铅酸蓄电池降低61%,将于今年6月正式量产。该款电池的最高能量密度达到175Wh/kg,为纯电动车型提供了超
北极星储能网获悉,4月22日,派能科技发布2025年第一季度的业绩报告,显示其2025年第一季度,公司实现营业收入39,219.95万元,同比增长1.72%;实现归属于上市公司股东的净利润-3,817.32万元,同比下降1,054.23%。报告称,报告期内,公司实现销售量401MWh,同比增长60.28%。销售量增长的核心驱动因素主
近年来,新疆依托丰富的新能源资源,加快建设“沙戈荒”大型风电光伏基地。在广袤的新疆大地上,戈壁荒漠源源不断汇聚绿色动能,新能源及储能等新兴产业正蓬勃发展。2024年年底,新疆新能源发电装机规模在西北地区省份中率先突破1亿千瓦,达到1.003亿千瓦。新能源电源大规模并网给电网调峰和系统安全稳
4月21日,山东省能源局印发山东省2025年新能源高水平消纳行动方案。文件明确,2025年,完成煤电灵活性改造2000万千瓦左右,建成新型储能300万千瓦,全省新能源利用率保持较高水平。重点任务方面,新能源结构优化行动:1.加快发展风电。快速提升风电装机规模,减少电力系统调节压力。海上风电建成华能半
北极星售电网获悉,4月21日,山东省能源局发布山东省2025年新能源高水平消纳行动方案。文件明确,2025年,完成煤电灵活性改造2000万千瓦左右,建成新型储能300万千瓦,全省新能源利用率保持较高水平。文件提出,大力推动源网荷储一体化试点。支持采用就地就近消纳、绿电交易、虚拟电厂、分布式自发自用
5月7日-9日,2025年欧洲智慧能源展览会(TheSmarterEEurope2025)将在德国慕尼黑新国际展览中心盛大开幕。作为欧洲最大的能源行业展览联盟,展会汇集了全球能源领域的领先企业、专家和创新者,共同探讨能源行业的最新趋势、技术和政策。作为新能源领域的佼佼者,德赛电池将携新一代超长寿命储能系统、
北极星储能网获悉,4月25日,高澜股份发布终止投资建设全场景热管理研发与储能高端制造项目的公告。公告显示,高澜股份分别于2023年1月10日、2023年2月7日召开第四届董事会第二十四次会议和2023年第一次临时股东大会,审议通过了《关于投资建设全场景热管理研发与储能高端制造项目的议案》。同意公司与
北极星储能网获悉,4月25日晚间,科信技术发布公告,公司控股子公司广东科信聚力新能源有限公司(以下简称“科信聚力”)与韩国S客户、国内T客户、国内M客户分别签署的框架合同截至2024年底的履行进展不达预期。据了解,科信聚力是科信技术的控股子公司,定位用户侧储能市场,主要产品为家庭储能、工商
北极星储能网获悉,4月24日,亿纬锂能发布2025年第一季度报告,公司当季实现营业收入127.96亿元,同比增长37.34%;实现归属于上市公司股东的净利润11.01亿元,同比增长3.32%;实现归属于上市公司股东的扣除非经常性损益的净利润8.18亿元,同比增长16.6%。亿纬锂能介绍,业绩增长得益于产品的高质量及稳
近日,国际权威机构PVTech发布了2025年第一季度全球电池储能系统制造商可融资性评级报告。天合储能凭借优异系统集成解决方案、稳健的财务表现、全球化市场领导力以及超高的可融资性,在本次评级中实现跃升,也被提名“欧洲主要市场供应商”,巩固了其作为全球领先储能系统集成商的行业地位。PVTech可融
北极星储能网获悉,4月25日,国轩高科发布2024年度业绩报告。报告称,2024年,公司实现营业收入3,539,181.71万元,同比上升11.98%;实现营业利润128,344.97万元,同比上升31.58%;实现利润总额126,310.97万元,同比上升33.22%;实现净利润115,413.42万元,同比上升19.09%,其中,实现归属于母公司所有
亮点:1.提出了一种采用电热膜对电池模组快速加热的方法。2.研究了电池加热功率、加热部位及模组多维度错位协同加热方法对电池温度场及其升温速率的影响。摘要在低温环境下,电池加热是提升储能系统性能、延长电池寿命以及确保其安全性的重要技术手段。针对储能用高容量锂离子电池的低温加热问题,本工
4月22日,中国绿发天目湖先进储能技术研究院投资合作启动仪式在江苏省溧阳市举行。中国工程院院士陈立泉,中国绿发副总经理邵长忠,溧阳市委副书记、市长周永强,中科院物理所研究员、天目湖先进储能技术研究院创始人李泓,溧阳市委常委、溧阳高新区管委会主任朱威,南京绿发投资公司董事长马小刚等100
北极星储能网获悉,4月24日,鹏辉能源发布2024年度业绩报告。报告期内,公司实现营业收入79.61亿元,同比增长14.83%;归属于上市公司股东的净利润-2.52亿元。报告期末,公司资产总额168.68亿元,同比增长7.66%;归属于上市公司股东的净资产为50.88亿元,同比下降5.82%。报告显示,公司主营锂离子电池、
4月21日以来,碳酸锂期货价格再次连续大跌!21日跌破7万元/吨心理防线,22日跌破6.9万元/吨,23日一度跌破6.8万元/吨。海外矿价下跌,美国关税带来的需求增量担忧,以及宁德时代“钠电池”的量产与技术替代,这三大因素的叠加导致碳酸锂市场接连遭遇成本坍塌、需求未卜、技术替代的“打击”。下一步,
2023年8月17日,欧盟新电池法正式生效,对电池企业提出了全生命周期的严格约束,涵盖碳足迹、回收责任、材料使用、安全标准等多个维度。其中,储能电池属于工业电池范畴,从时间节点来看,进入欧盟市场需要在2026年2月前提供产品碳足迹报告。具体来看,欧盟新电池法要求电池制造商必须提供包括电池材料
北极星储能网获悉,4月25日,国轩高科发布变更募集资金用途的公告,在其第九届董事会第十二次会议和第九届监事会第十二次会议上,审议通过了《关于变更募集资金用途的议案》,公司拟将原募投项目名称“年产20GWh大众标准电芯项目”变更为“大众标准电芯产线项目”,项目实施内容由“年产20GWh动力锂离
被称为“白色石油”的锂辉石已探明储量达6000万吨,平均品位1.3%,按照一辆新能源电车需40公斤碳酸锂计算,可建造4000余万辆汽车。这是24日记者从四川省政府新闻办召开的“万千气象看四川·县域经济高质量发展”系列主题新闻发布会金川专场获悉的信息。四川省阿坝藏族羌族自治州金川县地处高原,坐拥“
北极星储能网获悉,4月22日,中伟股份正式向香港联交所递交境外上市股份(H股)发行并上市申请并刊发申请资料。据公告显示,本次H股上市,募集到的资金将用作韩国生产基地第一期项目,以扩大镍系材料产能,预计镍系pCAM年产能为36000公吨。还将用作新能源电池材料的研发及推进。及镍系材料、钴系材料、磷
2025年一季度,中国储能行业在资本市场表现活跃。据CESA储能应用分会产业数据库不完全统计,该季度内储能领域共发生92起融资事件,单笔金额最高达14.2亿元,显示出资本对该领域的强劲信心。宁德时代、中金资本、长江资本等资本巨头持续加码,重点布局电池技术、氢能储能、智慧能源三大赛道,推动行业快
北极星氢能网获悉,4月23日,在江苏南京举办的2025第二届绿氢产业创新发展大会上,亿纬氢能凭借在AEM制氢领域的突破性技术与规模化应用实践,一举摘得“氢能优秀实践奖”和“氢能行业影响力企业”两项重磅殊荣,以技术领跑者姿态为全球能源转型注入新动能。在“双碳”战略加速推进的背景下,绿氢产业化
近日,湖南省湘乡市人民政府官网发布了“湖南裕能循环科技有限公司年产2万吨废旧锂离子电池拆解回收利用项目”环境影响审批决定公示。从公示信息来看,湖南裕能拟投资15000万元,在现有厂区预留的二期用地范围内建设2万吨废旧锂离子电池拆解回收利用项目,项目建成后生产规模为年拆解回收2万吨废旧锂电
4月21日以来,碳酸锂期货价格再次连续大跌!21日跌破7万元/吨心理防线,22日跌破6.9万元/吨,23日一度跌破6.8万元/吨。海外矿价下跌,美国关税带来的需求增量担忧,以及宁德时代“钠电池”的量产与技术替代,这三大因素的叠加导致碳酸锂市场接连遭遇成本坍塌、需求未卜、技术替代的“打击”。下一步,
4月22日,特斯拉发布2025年度财报,这也被称为是有史以来“最差”成绩单。季度总营收193.35亿元、同比下降9%,而净利润则仅有4.2亿元、同比下降七成,这也是近五年来首次降至个位数,还不及2021年一季度的水平,与此同时运营利润率也降至2.1%的历史最低。而且特斯拉还在本次财报中披露,因采用了新的加
作为极具前景的下一代电池技术,固态电池具备令人惊叹的能量密度和优异的高安全性能,未来市场应用潜力巨大,已成为全球新能源企业技术竞逐的焦点。截至目前,包括比亚迪、长安、东风、吉利、蔚来、上汽、广汽、丰田、现代等车企,以及宁德时代、亿纬锂能、LG新能源、国轩高科、欣旺达、正力新能、孚能
新能源电池产业作为“绿电+先进制造”的优质赛道,是云南省近3年来增速最快的产业之一,工业增加值增速均保持在20%以上。依托良好的资源禀赋和产业基础,全省新能源电池产业今年1至2月持续走高,工业总产值同比增长45.1%,工业增加值同比增长79.2%,发展势头强劲,彰显了中国新能源电池产业重要基地的
LG新能源周一宣布,已正式退出在印度尼西亚的一个价值142万亿印尼盾(617亿人民币)的电动汽车电池制造项目,该项目旨在建立一条完整的电动汽车电池供应链。LG新能源在一份声明中表示,“考虑到市场条件和投资环境等多种因素,我们同意正式退出印尼GrandPackage项目。不过,我们将继续以印尼电池合资企
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!