登录注册
请使用微信扫一扫
关注公众号完成登录
DRB储能系统是一个分布式低压系统,其中MOSFET在关断状态下所承受的最大电压不会超过电池模组的工作电压,典型值为几伏到几十伏,这极大提升了安装和运维过程中的操作安全性。此外,MOSFET的最大工作电流也不会超过电池模组的最大电流,典型值为几十安到几百安。另外,DRBN的重构频率为赫兹级,远低于目前电力电子变换器中百千赫兹级的开关频率,故相较于传统均衡电路中采用的电力电子变换器,DRBN能够有效降低能量管控系统的损耗,提高电池储能系统的能量效率。
DRBN的基本思想与传统BMS的电池均衡思路有着本质上的区别。电池的容量可以表示为电流和时间的乘积,传统的电池均衡方案都是从电流的角度入手,通过调节流经电池单元的电流实现容量的管控,DRBN从时间的维度入手实现了“尽力而为”的电池能量管控模式,即
其中,∆t表示电池接入充放电回路里的时间。DRBN将来自不同电池单元的“能量切片”按照时间轴进行调度排布,可用容量越大的电池单元在时间轴上排布的时隙数越多,即接入充放电回路里的时间越长。这种以时间为中心的电池能量管控方法所采用的频率为赫兹级,从而避免了高频电力电子器件带来的开关损耗。
1.2 系统架构
电池储能系统通常需要将大量电池单元串并联以满足输出电压和电流的要求。然而,由于电池单元之间存在差异性,直接并联会导致环流。因此,传统电池储能系统不允许将电池单元直接并联,而是将电池单元串联构成电池簇,再由许多电池簇通过大功率电力电子变流器(DC/DC或DC/AC)进行簇级并联,如图1所示。每个电池簇的输出端与一个DC/DC变换器连接,用来实现直流电压的变换和电池簇的能量控制。此外,针对电池单元不一致性的问题,传统电池储能系统需要配置主动或被动均衡电路。然而,这种固定串联的电池簇结构无法实现故障电池的精确隔离,当簇内的某个电池单元发生故障时,整个电池簇都必须停止运行,因此电池储能系统在设计时需要留出足够的裕度以防止故障造成的电池簇乃至整个系统停机。
图1 传统电池网络与动态可重构电池网络的架构对比
与传统固定串联叠加电池管理系统的方案不同,DRBN以电池能量数字化为基础,通过电池单元与低压低功耗电力电子器件深度耦合的方式实现电池能量离散化,并通过数字能量交换系统实现电池模块级的数字能量管控,其架构如图1所示。DRB储能系统与传统电池储能系统的区别在于,DRBN通过开关的通断实现电池能量的离散化和数字化,通过控制不同电池单元的充放电时间来实现电池能量均衡,因此DRBN不再需要传统电池储能系统中的均衡电路。此外,数字能量交换系统能够实现电池单元之间的可控并联,从而消除了电池单元直接并联所带来的环流问题。传统电池储能系统中DC/DC环节的作用是控制不同电池簇的出力,实现充放电功率在不同簇间的均衡分布,而在DRBN中,电池单元间实现了可控并联,不存在传统意义上电池簇的概念,因此DRBN不需要DC/DC模块,极大降低了系统造价,提升了系统效率。
2 动态可重构电池储能系统的能量控制
2.1 数字能量交换系统
数字能量交换系统(digital energy switch system,DESS)是DRB储能系统的控制模块,用于实现电池网络的状态监测、一致性管控、安全保护等功能,其理论架构如图2所示。DESS具备测量、计算、控制、保护等功能,首先,电压、电流和温度传感器测量得到的电池数据通过数据总线传输到DESS;接着,DESS根据已知的电池状态信息对电池的性能进行评估,如SOC、健康状态(state of health,SOH)估算;然后,DESS根据负载需求制定充放电方案,使系统在满足负荷的前提下,实现电池的一致性和电热安全管控,并通过数据总线将控制信号下发至各个开关。此外,DESS能够及时监测电池网络的异常状态,若电池出现了电、热、力滥用或其他异常情况,DESS能够操控开关及时切除故障。
图2基于数字能量交换系统的DRBN的能量控制
2.2 运行优化方法
电池单体的非线性效应会影响系统的能量控制。非线性效应包括电流效应和恢复效应,电流效应指电池单体的可用容量随着电流倍率的增加而减少,恢复效应指当电流突降为零时电池单体的容量会少量恢复。在DRBN中,每个电池单体都工作在脉冲放电模式下,因此电流效应和恢复效应更为显著。在运行控制过程中考虑电池的非线性效应,有助于提高系统的整体性能。
3 系统级本质安全控制
系统级本质安全强调从根源上消除部分危险、降低事故发生的概率,而不是发生事故后尽可能减低故障带来的损失。DRB储能系统从三个层面保证了储能系统的本质安全:可控并联降低热损耗、动态重组防止热堆积、故障电池的快速切除。
DRBN由于具备电池模组间的均衡能力,故可以实现电池单元的可控并联,这是实现工作电流级均衡和消除环流的重要手段。理论分析表明,对于n并的系统,DRBN的发热功率是传统电池网络的1/n³,这表明DRBN的柔性连接方式能够有效降低电池单元的产热功率,抑制温度的升高,从而降低故障发生的概率。此外,可控并联技术可以从根本上杜绝电池单体发生热堆积和热失控的风险。如图3所示,传统固定串联电池储能系统中的电池单体差异性会导致温度的不一致。而DRBN会根据负载情况自适应地采用N选k的控制策略,即从N个并联的电池单元中选择k个接入系统。未被选中的电池单元没有电流经过,不会产生新的热量,因此在闲置的时间内电池单元能够散热,从而避免热堆积。除了电池单元级的可控并联外,DRBN还可以实现电池单元的可控串联,即在串联方向上选中任意数量的电池单元接入系统。可控串联可以在串联的维度上消除电池差异性,有助于实现电池储能系统的智能运维。
图3 动态可重构电池网络防止热堆积的原理
除了通过可控串并联技术实现热管控外,数字能量交换系统还能够快速切除故障电池模组,故障电池被切除后,与电池网络的其他部分相互隔离,故障模组上不会流过工作电流,从而避免由于工作电流的产热导致故障的进一步恶化。此外,锂电池从微短路发展到热失控实际上是一个比较漫长的过程,磷酸铁锂电芯的自发热起点温度一般在100~130 ℃,储能电池正常使用温度在50 ℃以下,那么在50~100 ℃的温度变化过程是对电芯进行温控处理的关键窗口,这个窗口时间是小时级。动态可重构电池储能系统能够在早期对电池进行提前预警和快速隔离,实现毫秒级故障检测、微秒级快速切除,在电池达到热失控临界温度前就将其从网络中断开,从而可以有效防止热失控的发生。在电池故障发生后,传感器会继续采集故障电池模组的电压、电流、温度等数据,并反馈到数字能量交换系统。系统会对故障模组的状态进行判断,包括是否误判、是否出现新的异常情况等。最后,故障电池模组通过智能运维平台实现定期更换。
4 实例分析
本节将根据基于DRB电池储能技术建设的10 MW/34 MWh数字无损梯次利用储能示范工程的测试和运行数据进一步对动态可重构电池储能系统的性能进行验证,该储能电站位于内蒙古达茂旗,其现场如图4所示。
图4动态可重构电池储能系统现场图
4.1 场站简介
该10 MW/34 MWh储能电站由20个数字储能集装箱构成,每个数字储能集装箱包含4个数字储能子系统,每个子系统由电池单元、数字能量交换系统和分布式PCS系统组成,直流侧电气规格为716 V/480 Ah。具体来说,每个子系统由42个51.2 V/200 Ah的退役动力电池模组按照3并14串的拓扑连接而成。每个电池模组为磷酸铁锂电池,包含16个串联的200 Ah电池单体,电池单体的规格为3.2 V/206 Ah,充电截止电压3.65 V,放电截止电压2.0 V。储能电站各个组成部分的具体参数如表2所示。
表2储能电站的参数指标
数字能量交换系统中包含电池能量交换机、电池能量集线器、电池能量适配器、电池能量网卡等4个核心设备,用于系统的状态检测和运行控制,实现电池模组级充放电均衡以及疑似故障电池模组的在线诊断和自动隔离,如图5所示。
图5 动态可重构电池储能集装箱内部场景图
4.2 SOC均衡效果验证
在本例中,储能系统工作在满充满放的工况下,本节取3并14串动态可重构电池网络的一个充放电循环进行分析。充电过程先采用160 A恒流充电,当电池电压达到充电截止电压后转为恒压充电,当充电电流减小到6.18 A(0.01 C)时认为充电终止。放电过程采用180 A恒流放电,当存在一个电池单体达到放电截止电压时认为放电终止。系统工作的环境温度为12 ℃,采用的冷却方式为风冷。
图6给出了场站中的某个DRBN在充放电过程中模组SOC的变化情况。在充电开始时,42个电池模组的SOC具有较大的差异性,SOC的最大值为20%,最小值为6%。当充电过程结束后,SOC最大值变为99%,最小值为93%,模组SOC的方差从开始的15.1185降至2.7738,极差从14%降至6%。对于放电过程,起始时刻SOC的最大和最小值分别为98%和59%,放电结束后最大和最小SOC分别为8%和3%,SOC方差从96.3362降至2.0862,极差从39%降至5%。这些数据表明,无论是充电过程还是放电过程,经过DRBN的一致性管控后电池模组的SOC差异性均减小,这验证了DRB储能系统的均衡能力。
图6某个DRBN中42个电池模组SOC的变化情况
4.3 电热一体化管控性能验证
DRBN能够在线实现电热一体化管控,即在保证温度稳定的情况下实现电压的均衡。图7(a)给出了某个DRBN在充电过程中模组电压的变化情况。在充电开始时,模组电压最大值为51.5 V,最小值为48.3 V,当充电过程结束后,电压最大值为54.0 V,最小值为53.3 V,模组电压方差从501降低至22.6,极差从3.2 V降低至0.7 V,这表明充电过程中的模组差异性在减小。此外,图7(b)给出了温度曲线,温度传感器的精度为1 ℃。随着充电过程的进行,模组温度的方差从初始值0.4263下降到0.3362,最大温差保持稳定。尽管在充电过程中电池网络的整体温度呈上升趋势,但从温度曲线的变化中不难看出,DRBN始终保持着良好的热均衡状态。
图7充电过程42个电池模组电压和温度的变化情况
图8给出了放电过程中的电压和温度曲线。初始时刻最大和最小模组电压分别为52.9 V、51.3 V,由于终止时刻电池的电压特性变化较大,故取SOC为20%左右时的电压数据作为对比。此时最大和最小电压分别为50.7 V、49.5 V,电压方差从209降低至148,极差从1.6 V降低至1.2 V。此外,42个模组的温度曲线呈现平稳上升的趋势,初始时刻和放电结束时温度的方差分别为1.0113和1.0612,这表明尽管放电过程电池产热导致系统整体温度上升,但是模组间的温度差异性始终维持在一个稳定的范围内,不会出现电池模组的热滥用。因此,通过对储能场站实际运行数据的分析,动态可重构电池储能系统电热一体化管控的能力得到了验证。
图8 放电过程42个电池模组电压和温度的变化情况
4.4 故障工况下的安全性验证
在4.2节所述的工作模式下,数字储能系统采集到一次电池模组发生故障时的数据。图9是动态可重构电池储能系统隔离故障模组的全过程。电池储能系统原本工作在恒功率放电模式,在492 s时,某个电池模组发生故障,表现为模组的开路电压(open circuit voltage,OCV)从52 V跌落至20 V左右,明显低于安全电压范围的下限值。此时开关阵列立刻动作,将故障模组切除。此时系统仍处于正常运行状态,故障模组的出力由系统中其他健康模组承担。然而,当该故障模组被切除后模组电压发生了自恢复。因此,在切除后经过48 s的时间,DESS对该电池模组作尝试性接入。此时模组电压再次发生跌落,并在较低的电压区间内不断振荡,这表明该模组发生了不可逆的损伤,需要进行运维更换。系统停止运行后,用万用表测量故障模组的端口电压为9 V,证实了模组的故障情况。
图9 动态可重构电池储能系统实现故障模组的快速隔离
4.5 系统寿命与经济性分析
动态可重构系统能够克服电池网络的“短板效应”,实现电池模组间的均衡,因此其可靠性和系统寿命相较于传统电池系统有明显的提升。储能系统寿命的评价依据为整个系统当前时刻的健康状态(系统SOH),系统可靠性评价依据为系统当前时刻任意电池模组的SOH不低于某一阈值的概率。文献[21]给出了不同策略控制下的储能寿命衰退及可靠性变化情况,固定拓扑的储能系统运行寿命仅为1929天,可靠性阈值为50%SOH时,可靠性为87.95%;相较于传统网络,动态可重构拓扑下储能系统的运行寿命延长至3614天,可靠性阈值为30% SOH时,可靠性为95.82%。可以看出,动态可重构电池网络可以有效延长储能系统的使用寿命和可靠性。
对动态可重构电池储能系统经济性的分析可以从建设成本和全生命周期成本两个方面展开。针对建设成本,动态可重构电池的储能系统造价与传统方案的电池储能系统造价基本持平。第一,在电池本体层面,动态可重构的储能方案能够兼容不同种类、不同特性的电池模组,具备管控退役电池梯次利用的能力,对电池出厂时的一致性没有严格要求,因此降低了电池选购的成本;第二,在电池管理系统层面,对于具有相似管控能力的电池储能系统,动态可重构的储能方案主要通过电池能量交换系统等二次设备实现电池均衡和能量管控,不需要配备传统储能方案的电池均衡电路和电力电子变换器模块。
针对全生命周期成本,动态可重构电池储能系统相较于传统方案具有更明显的经济优势。第一,在系统效率层面,动态可重构的方案能够克服“短板效应”,使电池的容量和电量得到更充分的利用,从而提高系统的整体运行效率;第二,在电池寿命层面,动态可重构的方案能够实现模组级均衡,避免出现过充、过放、过温等削弱电池寿命的工况,从而提高电池系统的循环次数和使用寿命,降低储能系统的平均度电成本;第三,在系统运维层面,动态可重构的方案能够识别出电池网络中的故障模组和性能较差的模组,且由于系统具备自动隔离故障的功能,因此不需要实时运维,降低了运行维护的成本;第四,在系统安全层面,动态可重构的方案可以实现系统级本质安全,不仅降低了故障发生的概率,还能够精准切除故障电池模组,这降低了潜在的事故成本。
5 进一步讨论
当前在电池储能系统设计的过程中,存在着一系列迷思,值得我们深入探讨。
首先是“大与小”的问题,即电池储能系统采用的电芯容量多大是合适的。大容量的电芯优势主要集中在电池能量管控节点相对较少,系统集成难度低,同时电池组零部件使用量少,降低储能系统集成难度和单位造价成本。然而,目前市面上的大容量电芯内部是由多个70 Ah或140 Ah的卷绕单元采用内部直接并联的模式共用一个电池外壳组装而成,并不能从根本上克服环流等安全性问题,在某种程度上反而会加大安全隐患。此外,由于电芯体积和容量增大,导致电芯自身散热性能差,系统集成中的电热安全管控难度增大。目前大容量电芯主要应用于电力储能领域,大容量电芯成本的降低尽管可以直接带来首次投资成本的降低,但是并不能推导出电池储能系统全生命周期度电成本降低的结论。相较于追求电芯的大容量,基于动态可重构电池网络的电池储能系统架构能够兼容多种容量规格的电芯,在提升储能系统全生命周期的容量利用率和系统循环寿命方面具有优势。
其次是“高与低”的问题,即电池储能系统究竟需要选用多大的直流侧电压等级。基于目前“只串不并”的成组方式,提高电池簇级功率密度只能通过采用大容量电芯和高等级簇级电压的方法。目前典型的高压系统是单串1500 V或级联式/高压直挂式等更高电压等级的电池储能系统,其优势在于简化场站设计,降低并网成本。然而,将3 V左右的低压电池单体应用于高电位的工作环境下,高电磁场会对电池内部电化学反应产生影响,使得电池的老化机制和安全边界严重偏离电池型式试验的结果,对电池储能系统的安全性和可靠性形成巨大挑战。在电力系统中,电池储能系统的设计不仅要考虑系统的电压输出,还要考虑电池的电化学反应特性,从电池系统的本质安全出发才能给出电池储能系统的最优化设计。相较于追求采用大容量电芯和提高簇级电压等级以提升电池簇功率密度的做法,基于动态可重构电池网络的电池储能系统架构通过可控并联,在1000 V电压等级实现电池储能系统的高功率密度,极大提升了系统的本质安全和安全电压下的操作运维。
第三是“新与旧”的问题,即如何准确评价一个电池单元的状态。电池作为一个电化学反应装置,受充放电倍率、环境温度、循环次数等多种工况因素的影响,其存放和使用过程中的非线性、不确定性和老化是必然的,这与电池的出厂一致性是完全不同的两个概念。此外,目前电池寿命通常指出厂时采用加速老化测试得出来的循环寿命,而电池储能系统作为一种新型能源基础设施,其运行时间要达到20年,且在此期间会面临多种动态工况环境,因此采用出厂一致性和循环寿命来测算电池储能系统在20年中的使用效果、系统安全边界、经济性和可靠性等指标是不合理的,也是不可能的。此外,随着越来越多的动力电池从电动汽车上退役下来,未来海量退役动力电池的绿色高效利用也是一个关系到电动汽车产业链和价值链闭环的重大课题。基于动态可重构电池网络的电池储能系统架构通过对电池储能系统进行时空细粒度感知和控制,类比于计算机硬盘的使用过程就是检测过程也是计量过程,可以实现电池单元的“用检一体”的在线精准状态估算和运行潜力评估及容量计量。此外,基于动态可重构电池网络的电池储能系统可以有效地屏蔽电池本体在物理和化学上的差异性,实现了退役动力电池“车上-车下”的无缝衔接,极大提升了退役动力电池储能系统的安全性和经济性,有力支撑了面向全生命周期的电池资产绿色高效利用的新模式。
6 结论
本文针对传统电池储能系统的“短板效应”,提出了动态可重构电池储能技术,以提高电池储能系统的安全性和能量效率。主要贡献包括以下几个方面:①分析了动态可重构电池储能系统的原理和架构,DRBN将电池网络的连接方式由传统固定串并联的刚性连接改变为程序控制的柔性连接,创造性地开辟了从时间维度实现电池网络能量管控的路径;②提出了基于动态可重构电池储能技术的能量控制和系统级本质安全控制方法,能量控制以系统能量效率为目标设计优化算法,系统级本质安全控制从可控串并联的角度提高安全性;③大量实际运行数据验证了动态可重构电池储能技术具备SOC均衡和电热一体化管控能力,充放电过程中的最大SOC差值控制在5%以内,模组最大温差控制在5 ℃以内;此外,故障前后的运行数据表明,动态可重构电池储能技术能够及时切断故障电池单元,保证系统的安全可靠运行。
通讯作者:慈松(1970—),男,博士,研究员,主要研究方向为信息-能源交叉技术、嵌入式人工智能、能源互联网,E-mail:sci@ tsinghua.edu.cn。
第一作者:慈松(1970—),男,博士,研究员,主要研究方向为信息-能源交叉技术、嵌入式人工智能、能源互联网,E-mail:sci@ tsinghua.edu.cn。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
“电池行业正突破单一化学体系束缚,进入真正以用户需求为核心的多核时代。”宁德时代创始人曾毓群在今年4月的公开演讲中曾阐述上述观点。他强调,多核时代是宁德时代的新阶段,无论是追求极致性能,还是强调性价比,多核技术都能让定制化成为现实,消费者无需在续航、寿命、安全、快充等维度进行妥协
今年上海SNEC光伏展,几乎成了储能企业的主场。各大厂商轮番上阵推出储能新品,尤其是针对第三代储能电芯定义权之争的序幕就此拉开。尤其宁德时代、海辰储能587Ah之间的角力,成为“赛事焦点”。但我们应该看到,这并不是单纯的数字游戏,而是行业热盼的一场“技术”亮剑。市场驱动力切换,产品研发逻
北极星储能网获悉,近日,中科能源发展(辽宁)有限公司与大连金帝建设工程有限公司正式签署战略合作协议。标志着辽宁省新能源产业建设迈出关键一步,为打造新能源全产业链生态体系奠定了坚实基础。合作将重点聚焦于中科能源发展在辽宁本溪投资20亿建设的准固态动力电池与储能电池生产基地项目需求。大
近日,福建龙岩市生态环境局就年产1GWh三维固态锂电池项目环评文件审批意见进行公示。文件显示,项目位于龙岩高新区(经开区)高陂镇平在村北环路,主要建设标准化厂房1栋7层、办公综合楼、原料库、产品库及配套建设环保工程和纯水制备、制氮相关辅助工程,用地面积27675平方米。项目以磷酸铁锂、NMP、
深圳证券交易所发行上市审核信息公开网站显示,杭州高特电子设备股份有限公司创业板上市注册于今日(2025年6月23日)被受理,正式开启上市新征程!招股说明书显示,高特电子成立于1998年,自成立以来始终聚焦于电池监测和电池管理相关领域,从铅酸电池监测起步到锂电池管理系统,紧跟全球电池技术和新
近日,天合储能Elementa金刚2储能系统顺利通过了TV南德颁发的IEC62619认证,以及SGS通标颁发的NFPA68与NFPA855两项北美消防认证报告。天合储能始终秉持对产品质量与安全的极致追求,致力于为全球客户提供安全可靠、高效经济的储能系统解决方案。随着全球新能源行业加速迈向市场化交易新阶段,对储能系
北极星储能网获悉,6月21日,火爆出圈的“苏超”迎来第五轮首场比赛。小编注意到,龙蟠科技、理想皆在苏超1-4轮品牌赞助名单中。据了解,龙蟠科技成立于2003年,位于江苏省南京市,注册资本66507.8903万人民币,实缴资本56507.89万人民币,并已于2025年完成了战略融资,交易金额1597.09万美元。主要从
6月20日,三峡集团旗下长峡电力工程(安徽)有限公司全资子公司中卫市利浩综合能源服务有限公司发布利浩能源穆和200MW/400MWh新能源共享储能项目EPC总承包工程项目招标公告。项目位于宁夏中卫,建设200MW/400MWh储能电站一座,配套建设配电室、二次设备室等建筑,购置安装储能成套系统预制舱、箱式变压
作者:汪红辉1,3李嘉鑫1,3储德韧1,2,3李彦仪1,3许铤2,3单位:1.上海化工研究院有限公司;2.上海化工院检测有限公司;3.工信部工业(电池)产品质量控制和技术评价上海实验室引用本文:汪红辉,李嘉鑫,储德韧,等.磷酸铁锂电池存储失效机理及热安全性研究[J].储能科学与技术,2025,14(5):1797-1805.DOI:10.1
北极星储能网获悉,6月23日消息,大连融科储能集团股份有限公司全钒液流电池电解液生产线项目(一期)在大连北黄海经开区正式投产。据了解,全钒液流电池电解液生产线项目(一期)总投资4亿元,建设年产1.5GWh钒电解液、钒电解液晶体生产线。项目于2023年7月开工建设,2025年3月完成设备调试,目前已正
北极星储能网获悉,6月20日,中铁九局尚义300MW/1200MWh独立储能电站(二期)210MW/840MWh储能电站项目、90MW/180MWh储能电站扩容工程总承包项目储能系统公开招标。项目招标人为中铁九局集团电务工程有限公司,建设单位为尚义县朗能新能源开发有限公司,项目位于河北省张家口市。本期建设规模为新建210
近日,天合储能Elementa金刚2储能系统顺利通过了TV南德颁发的IEC62619认证,以及SGS通标颁发的NFPA68与NFPA855两项北美消防认证报告。天合储能始终秉持对产品质量与安全的极致追求,致力于为全球客户提供安全可靠、高效经济的储能系统解决方案。随着全球新能源行业加速迈向市场化交易新阶段,对储能系
自2024年5月,连续几次复燃,火灾最终足足持续了16天之久的美国加州圣地亚哥市OtayMesa(奥泰梅萨)Gateway储能电站(锂电池)火灾事故后,2025年美国MossLanding储能电站两次起火以及德国、英国储能项目火灾事故,再次将储能安全问题推向风口浪尖。截至2025年1月,全球储能事故发生超过100起,储能系
被业界称为“史上最严电池安全令”的《电动汽车用动力蓄电池安全要求》(GB38031-2025)近日发布,并将于2026年7月实施。新国标首次将动力电池热失控后“不起火不爆炸”纳入强制标准,一场关乎“安全”的技术竞赛已经展开。标准全面升级!热失控后“不起火不爆炸”日前,工业和信息化部组织制定的强制
【中国,上海,2025年6月12日】华为数字能源和德国莱茵TV集团(以下简称“TV莱茵”)于上海SNEC展会期间,联合重磅发布《工商业储能C2C双链安全白皮书》,旨在通过双方在储能安全设计、安全标准方面的探索研究和协同创新成果,提升工商业储能的安全水平和标准,为行业可持续发展奠定坚实基础。同时,倡
从引发行业巨震的136号文,到后来的394号文、411号文,除了“强制配储”政策的退出,政策的有形之手与市场的无形之手,始终在协力重塑中国电力市场格局,同时也深刻影响了新能源储能市场的“底层逻辑”。当行业由“政策驱动”迈向“价值驱动”之时。2025年6月12日,在SNEC2025展会现场,阳光电源举办主
北极星储能网讯:2025年6月11-13日,SNECPV+第十八届(2025)国际太阳能光伏与智慧能源(上海)大会暨展览会在上海国家会展中心盛大举行。美的集团旗下能源业务品牌美的能源(美的能源是科陆电子、合康新能、美的楼宇科技、库卡等品牌的联合体)首次亮相并发布“储能+热泵+AI”三维驱动的能源战略。作为美
北极星储能网讯:2025年6月16日上午8时32分许,韩国庆尚北道浦项市南区大松面东国制钢浦项工厂的62MWh储能电站突发火灾,在经过约28小时后,火势得到初步控制。起火建筑为两层钢结构(面积约1125平方米),内部安装8392个电池模块。消防部门接到报告后,于16日上午10点04分发布第一阶段响应,紧急调动
在第十八届(2025)国际太阳能光伏和智慧能源amp;储能及电池技术与装备(上海)大会(简称“SNEC光伏大会”)上,华为董事、华为数字能源总裁侯金龙发表了“铸就高质量,激发AI潜能,开启全面构网新时代”的主题演讲,系统阐述了华为在新能源领域的战略布局和技术创新。随着全球能源转型加速,新能源产
2025年6月11日至13日,全球瞩目的SNECPVPowerExpo在上海国家会展中心隆重举行。浙江奔一新能源有限公司携带着全新力作#x2014;#x2014;BB1-80直流微型断路器(DCMCB)以及一系列领先的智慧新能源解决方案盛装亮相,展位号为7.1H-E670,为这场新能源行业的盛会注入了强劲的动力与创新活力。重磅新品发布,
13家联合发出构网倡议,捅破能源转型天花板!全球绿色能源的确已经成为不可逆转的时代潮流,而传统燃煤电厂在历史洪流中开始大规模“退役潮”。有数据显示,在2020-2023年间全球退役燃煤机组超100GW,相当于德国全年发电量的1.5倍,而据华泰证券预测,2025到2030年我国每年将有12GW左右的燃煤电厂退役
2025年6月11日,上海国际光伏储能展览会上(SNECPV+2025),三晶电气与亿纬锂能正式签署战略合作协议。双方就储能电芯达成了规模2GWh的项目合作意向,此次合作标志着双方在储能领域的技术创新与产业协同迈入全新阶段,通过整合三晶电气在储能系统集成领域的核心优势与亿纬锂能在储能电池研发的领先技术
北极星储能网获悉,6月24日,易成新能披露投资者关系管理信息,回答投资者关于新型储能、源网荷储项目的布局。在新型储能布局方面,易成新能按照技术融合+场景贯通原则,近期收购了主要生产、销售智能锂离子电池储能系统的储能公司,加上已经拥有的行业先进的全钒液流储能系统,公司将实现全钒液流电池
北极星储能网获悉,近日,中船风帆承建的华润沧州多能互补一体化储能项目成功并网,为华北地区绿色能源转型注入了新动力。该项目是中船风帆承建的首个工程总承包项目,集“光、火、储、氢”于一体的综合能源示范项目,总储能规模达60MW/120MWh,采用5MWh储能系统,搭载储能专用磷酸铁锂314Ah电芯,每个
近日,全球领先的储能企业晶科储能宣布与山东省滨耀售电有限公司达成合作,正式签约68台261kWh工商业储能系统,项目总规模达17.74MWh,其中首批64台已完成交付。此次合作聚焦化工厂区配件储能场景,旨在通过高效储能技术助力客户构建源网荷储协同互动的智慧能源体系,提升工业场景下的能源利用效率与电
晶科储能(JinkoESS)与希腊能源公司Metlen集团签署了具有里程碑意义的框架协议,正式确立了双方在电网侧储能系统领域的战略合作伙伴关系。该协议在Metlen集团希腊雅典总部签署,双方将在智利和欧洲市场部署超过3吉瓦时的储能项目。此次合作基于双方当前正在智利推进的1.6吉瓦时标杆项目——晶科储能正
在SNEC2025光伏与智慧能源大会上现场,远东储能携全新源网侧解决方案——PowerSTROM7000液冷储能集装箱重磅亮相,并在同期举办的储能新品发布会上正式发布,引发了业界的广泛关注。远东电池合伙人、产品及方案部高级总监马成龙在发布现场分享了对当前储能行业趋势的深入判断。他指出:“储能市场已从价
北极星储能网讯:6月23日,郑州永耀绿色能源有限公司发布芦沟煤矿6.68MW/20.06MWh储能项目、新郑煤电公司13.36MW/40.12MWh储能项目EPC招标,储能规模合计为20MW/60MWh,项目位于河南省新密市,资金来源为自筹资金。标段一最高投标限价1580万元,约合0.79元/Wh。标段二最高投标限价3120万元,约合0.78元
素有“中原腹地”之称的河南,自古便是战略要冲。如今,在蓬勃发展的新型储能产业版图上,河南再次成为企业竞相布局的关键区域。近日,由采日能源提供核心储能系统解决方案的济源5.9MW/11.9MWh储能项目和兰考7.8MW/15.63MWh储能项目相继实现并网投运。这不仅标志着采日能源在河南工商储市场取得重大突
6月23日,阳春海螺新能源有限公司源网荷储一体化项目EPC总承包工程(项目编号:25AT137075803544)按照招标文件规定的评审方式,最终确定:第一中标候选人:信息产业电子第十一设计研究院科技工程股份有限公司;第二中标候选人:湖南红太阳新能源科技有限公司;阳春海螺新能源有限公司源网荷储一体化项目
储能系统的复杂,往往不是出在核心设备本身,而是“连接”出的难题。每一套工商业储能项目,你可能都遇到过类似的画面:PCS、电池、高压配电、BCU、通信线缆纵横交错,空间拥挤,布线冗长,调试周期一拖再拖。看似每个模块都在各司其职,但系统却变得越来越难以整合。这不是一个企业所面临的难题,而是
理解光伏电站的AGC(自动发电控制)和AVC(自动电压控制)是掌握其参与电网运行和支撑电网稳定性的关键。这两者都是电网调度机构用来远程、自动控制电站出力(有功或无功)的核心手段。一、AGC-自动发电控制1.AGC系统概述核心目标:维持电网频率稳定,平衡电网的有功功率供需。控制对象:电站输出的有
近日,云南电网公司计量中心(以下简称“计量中心”)凭借其近零碳示范园区的创新实践,成功通过南方电网公司验收,并荣获优秀评级,成为南方电网首个获得“碳中和认证”的计量中心。这一成果不仅为云南省绿色低碳转型提供了示范样板,也为南方电网生产类园区的近零碳建设探索出一条可复制、可推广的路径
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!