登录注册
请使用微信扫一扫
关注公众号完成登录
电力负荷分析是电力系统规划、运行和管理中不可或缺的一环,能够为电力系统高效、可靠和可持续运行提供关键信息。2023年4月25日,国家发改委向国家电网公司、南方电网公司、内蒙古电力公司下发《关于进一步加强用电监测分析工作的函》,要求加强重点行业用电监测分析,加强对夏季降温负荷、冬季采暖负荷等重要负荷监测分析。因此,如何分析负荷波动变化原因,实现负荷变化量化归因是一个具有实践应用价值的工作。
来源:《中国电力》2024年第8期
引文:邱敏, 周颖, 赵伟博, 等. 基于特征构建的区域电力负荷增长归因及量化分析方法[J]. 中国电力, 2024, 57(8): 190-205.
《中国电力》2024年第8期刊发了邱敏等撰写的《基于特征构建的区域电力负荷增长归因及量化分析方法》一文。文章基于区域级电力电量数据,从特征构建的角度,提出了一种区域电力负荷增长归因及量化分析方法。首先,利用鱼骨图定性分析影响电力负荷增长的各种因素,确定负荷增长归因及量化分析方法的研究思路;其次,从数据驱动的角度,构建能够表征气象因素、经济因素和特殊事件的相关指标;然后,对负荷进行分解,提取气象负荷、自然经济负荷、业扩负荷、随机负荷,利用不同负荷增长对总负荷增长的贡献率来定量表征其对负荷增长的影响程度;最后,基于上述电力负荷增长归因及量化分析方法构建负荷增长分析模型,并利用西北某2省的电力营销数据进行算例分析,验证该分析模型的有效性。
摘要
电力负荷由于受到气温、经济、特殊事件等多种因素及多因素耦合影响,增长成因量化分析困难。同时,目前对于电力负荷研究多集中于预测方面,对负荷增长原因分析较少。通过研究电力负荷数据特征构建方法,提出一种电力负荷增长归因分析方法。首先,构建气象相关性指标、基于经济发展的自然负荷增长指标、基于电力电量修正的产业结构变化指标以及事件趋势一致性评价指标;在此基础上,分别提取气象负荷、自然经济负荷、业扩负荷、随机负荷,利用贡献率量化各因素对负荷增长的影响程度。最后,利用西北某2省的电力电量数据进行验证,结果显示所提方法能够很好地量化负荷增长的原因。
01
负荷增长归因及量化分析研究思路
电力负荷一般可分为受气象影响的气象负荷、受社会经济发展的基础负荷和受休息日或特殊事件影响的随机负荷,即
式中:L为总用电负荷;Lm为受气象因素影响的季节性波动负荷,主要指夏季由空调等降温设备产生的降温负荷和冬季的电采暖负荷;Lt为基础负荷,受社会经济发展等因素影响,也称为趋势负荷、经济负荷;A为受休息日或特殊事件影响的随机负荷。气温因素、经济因素与特殊事件对总负荷变化影响如图1所示。
图1 总负荷变化影响因素
Fig.1 Influencing factors of total load change
在图1中,气温主要考虑最高温度、最低温度与平均温度。经济因素主要考虑产业结构调整、三次产业的增加值与人均消费支出,后两者均可在政府官网中查询,特殊事件主要考虑疫情、重要节假日以及常见的周末休息等。
本文提出了负荷增长的量化分析方法,基于气象负荷、基础负荷和随机负荷,分别构建相应的数据指标,定量表征气温、经济、特殊事件3种因素对于负荷变化的影响程度。该负荷增长量化分析研究思路如图2所示。基于负荷增长原因定性分析,从数据驱动的角度,构建能够表征这些影响因素的数据指标,主要包括气象相关性指标、基于经济发展的自然负荷增长指标、基于电力电量修正的产业结构变化指标、事件趋势一致性评价指标;基于这些指标对总负荷进行分解后,利用分负荷对总负荷的贡献率来定量表征其对负荷增长的影响程度。
图2 基于特征构建的负荷增长量化分析研究思路
Fig.2 Research frame for quantitative analysis of load growth based on feature construction
02
基于特征构建的负荷增长量化分析
基于上述负荷增长归因及量化分析方法的研究思路,构建负荷增长量化分析模型。该模型量化分析气象、经济、特殊事件3种因素对负荷增长的影响,通过贡献率指标反映每种因素的影响程度。
由式(1)可知,负荷增长变化量可表示为
图3 负荷增长量化分析模型架构
Fig.3 Architecture of load growth quantitative analysis model
2.1 负荷增长特征构建
2.1.1 特征构建
特征构建需要从原始数据中人为地构建新的特征,这需要大量时间去研究真实的数据样本,思考负荷增长这一问题在电力大数据中的潜在形式,并将其更好地应用于负荷增长分析模型中。通过洞察和分析,对原始电力大数据进行精细特征构建,提取一系列具有物理意义的相关特征指标,辅助负荷增长分析模型获得更好的效果。
2.1.2 气象相关性指标
气象因素主要包括气温、湿度、降雨量等,一般可通过相关性分析来确定气象因素与负荷的相关性,从而排除相关性较小的因素,简化分析过程。常用的相关性方法为皮尔逊相关系数法,通过计算变量直接的皮尔逊相关系数大小,从而确定变量之间的相关性强弱。皮尔逊相关系数r为
式中:Xi为变量1第i个样本数据;为变量1的样本平均值;Yi为变量2第i个样本数据;
为变量2的样本平均值;n为样本数据个数。
考虑到各气象因素在不同时间存在着不同特性,具有一定的时域特性,对负荷影响程度会发生改变。如在7、8月份高温天气下,空调等降温设备的大量使用会增加电力系统的负荷峰值;在1、2月份寒冷天气下,电采暖等采暖设备的使用量巨大,同样会对电力负荷产生影响;而4、5月份天气凉爽,降温、采暖设备使用率低,对负荷影响小。因此,本文以月为单位,将分析时段隔开,分别计算每段时间内负荷与各气象因素的相关性指标,从而分析各气象因素时域特性对负荷的影响。
2.1.3 基于经济发展的自然负荷增长指标
经济因素是影响电力负荷的另一个重要因素,主要包括国家经济、工业、交通、商业、农业等领域的发展状况以及居民生活水平、用电需求等方面,其对于电力负荷的影响主要体现在基础负荷中。同时,业扩报装作为经济因素的重要体现,在负荷分析中不可忽略,这里将基础负荷分解为自然经济负荷和业扩负荷,分别研究二者对于负荷变化的影响。
自然经济负荷主要指除去业扩报装影响外,受到经济发展影响的负荷,其增长相对稳定。产业增加值和人均消费支出分别作为反映产业发展情况和生活水平的指标,能够在一定程度上反映电力电量的需求情况,因而可使用这些指标去拟合自然经济负荷的变化趋势。本文提出了一种基于经济发展的自然经济负荷变化趋势分析方法,利用产业增加值和人均消费支出推导而来的增长指标对自然经济负荷的增长情况进行表征。基于经济发展的自然负荷增长指标a为
式中:k1、k2、k3、k4分别为第一产业、第二产业、第三产业、城乡居民的用电量占比;W1、W2、W3分别为第一、二、三产业分析期当季产业增加值;分别为第一、二、三产业基准期季度产业增加值;y为分析期人均消费支出;为基准期人均消费支出。
需要注意的是,当用于分析仅相差1个季度时段时(如2季度与1季度),人均消费支出取人均消费支出季度值;当用于分析相差2个及以上季度的时段时(如3季度和1季度),人均消费支出取人均消费支出累计值。
2.1.4 基于电力电量修正的产业结构变化指标
产业结构是指农业、工业和服务业在一国经济结构中所占的比重,也是体现发展中国家和发达国家之间经济发展差距的一个重要指标,合理的产业结构是后发国家赶超先发国家,加快经济发展的必然要求。改革开放之初,中国东部地区依靠自身地理优势,凭借着特殊的政策优势,积极承接发达国家产业转移,产业结构逐步优化,经济得到迅速发展。但由于缺少承接产业转移经验,这种粗放式的承接产业转移导致东部沿海地区出现产业过度聚焦和环境污染问题。相对于东部沿海地区,中国中西部地区有着资源与劳动力的比较成本优势,随着中西部地区基础设施完善,中西部地区逐渐成为承接产业转移的首选地区。因此,在分析区域尤其是中西部地区的电力负荷变化时,需要考虑产业转移带来的产业结构变化影响。
传统的产业结构变化指标为Moore指标,可用于反映产业结构变化快慢,其计算式为
式中:Mt为t期Moore产业结构变化值;Wi,t为t期第i产业所占比重。
在传统产业结构变化Moore指标的基础上,本文提出一种基于电力电量修正的产业结构变化指标。将式(4)中经济数据替换为产业负荷数据,考虑到负荷数据是瞬时值而经济数据是累积值,进一步引入电量进行修正,对负荷与电量分别给予权值,避免瞬时负荷数据引起较大误差。基于电力电量修正的产业结构变化指标为
式中:为t期Moore产业结构变化指数;α为电量系数;β为负荷系数,α和β取值受对负荷和电量关注程度的影响,取值范围为0~1,可结合实际应用场景由专家经验确定;
为t期Moore电量结构变化指数;
为t期Moore负荷结构变化指数。
计算式为
式中:为t期(基准期)第i产业电量所占比重;
为t+1期(分析期)第i产业电量所占比重。
计算方法与
一致,相应数据改为负荷数据即可。
该指标与传统的Moore指标类似,均是以向量空间中夹角为基础,将2个时期内2组向量间的夹角作为表示产业结构变化程度的指标。因此,在表征产业结构变化程度时,须对进行反余弦变换以得到夹角值。
定义产业之间变化的Moore夹角θ为
该Moore夹角越大,说明产业结构变化速率越大。
2.1.5 事件趋势一致性评价指标
对于一些特殊事件,如疫情、重大活动(如奥运会等)、重要节假日(如国庆、春节等)以及常见的周末休息等事件,对于负荷变化的影响往往不可忽略。这些事件往往是抽象的,难以进行量化,因此其是否对负荷变化产生影响常常是通过专家经验进行判断,存在很大的误差。本文提出一种事件趋势一致性评价指标,用来分析事件与负荷变化的相关程度,具体方法如下。
以自然日为单位,构建2个时间序列A、B,并进行标幺化处理,即当第i个自然日为事件发生日时Ai置1,否则置0;当第i个自然日总负荷增长时Bi置1,降低时置0。利用式(2)中的皮尔逊相关系数r计算A、B数据之间的相关性,r越大,说明该事件对负荷变化的影响越大。事件趋势一致性评价指标g为
i的取值视特殊事件持续时间设定,g的取值范围为[?1,1]。参考皮尔逊相关系数的性质,衡量该事件对负荷变化的影响程度时有:0<|g|<0.4为低度线性相关;0.4?|g|<0.7为显著线性相关;0.7?|g|<1为高度线性相关。
2.2 基于特征构建的负荷分解
对负荷增长特征进行构建后,参照图2对总负荷按照影响因素进行分解,为定量分析不同影响因素对负荷增长的影响程度作数据准备。
2.2.1 基于气象相关性指标的气象负荷提取
气象负荷主要指夏季的空调降温负荷和冬季的电采暖负荷,该部分负荷常常难以直接计算,一般采用基准负荷比较法进行估算。
通常情况下春季和秋季不存在气象负荷或者气象负荷很小,因此可选取春季或秋季气象因素与负荷相关性低的日期为典型工作日,认定为该地区春季无降温负荷或秋季无采暖负荷的典型工作日,对典型工作日同一行业同一时刻的负荷数据进行平均,得到相应行业相应时刻下春季工作日基线负荷P1为
式中:Pi,2为第i天工作日的负荷;N为总天数。
同理,休息日基线负荷采用休息日的负荷进行计算即可,并通过分析期的实际负荷减去基线负荷即可得到对应的气象负荷Lm为
式中:L为总负荷;P为对应的工作日基线负荷或休息日基线负荷。
2.2.2 基于自然负荷增长指标的基础负荷
基础负荷可分为受经济发展影响的自然经济负荷和业扩报装所引起的新增负荷2部分。
自然经济负荷P2可根据基于经济发展的自然负荷增长指标a得到,即
式中:P3为上一季度平均负荷。
业扩报装所产生的业扩负荷为已知数据,无须进行计算。
2.2.3 随机负荷
随机负荷主要指受休息日或特殊事件影响的负荷,该部分负荷通常被作为随机误差项进行处理。然而,实际上该部分负荷在重要节假日、疫情、极端天气等特殊事件的影响下,有时数值并非很小,因此在进行负荷分析时需要考虑该部分负荷。但由于该部分负荷具有随机性,需要通过计算发生事件时的总负荷与事件发生前的总负荷的差值进行估算,即
式中:A为事件引起的随机负荷变化值;L1为事件发生前的负荷;L2为发生该事件时的负荷。
2.3 量化归因
贡献率可用于表征在负荷增长过程中,各项分负荷的变化程度,从而体现出各类影响因素对于负荷增长的作用程度。该指标的核心思想为分量变化值/总变化值,可通过该指标的大小反映出气象、经济和特殊事件对于负荷增长的影响程度。在对总负荷完成分解之后,根据所得气象负荷、自然经济负荷、业扩负荷和随机负荷的变化值可得到对应的贡献率,从而定量分析气象、经济、特殊事件对于负荷增长的影响,对负荷增长进行量化归因。各类负荷的贡献率计算方法如下。
1)气象负荷贡献率η1为
式中:L为气象负荷增加值;L为总负荷增加值。
2)自然经济负荷贡献率η2为
式中:P2为自然经济负荷增加值。
3)业扩负荷贡献率η3为
式中:P4为业扩负荷增加值。
4)随机负荷贡献率η4为
03
算例分析
3.1 数据说明
本文采用西北区域1、区域2实际收集的负荷数据和气象数据,对所提方法进行验证。其中,算例1分析时长为1个季度,用于验证本文所提方法在较短时段内的适用性。该算例负荷数据主要包括2022年区域1、区域2全年负荷数据;气象数据主要包括负荷数据相对应的日最高温度、最低温度、平均温度、平均风速等。考虑到气象负荷主要集中在夏季和冬季,而冬季往往存在跨年问题,因此选取4~7月初作为分析区间,以7月最大负荷发生时刻负荷增长归因为目标展开分析。算例2分析时长为3年,用于验证本文所提方法在较长时段内的适用性。该算例负荷数据主要包括2020年至2023年7月区域1负荷数据,气象数据维度与算例1相同,以2023年7月最大负荷发生时刻的负荷增长归因为目标展开分析。结合实际数据对本文构建的负荷增长特征指标进行算例分析,基于这些指标对总负荷进行分解后,利用贡献率明确各因素对负荷增长的影响程度。
3.2 算例1
3.2.1 基于气象相关性指标的气象负荷计算
不同月份气象因素与负荷的相关性存在较大差异,这里通过计算最高温度、最低温度、平均温度、平均风速4个气象因素与负荷的相关性,分析相关性的时域特性,从而确定气象负荷的基线负荷选取日期,并计算气象负荷数值。具体流程如图4所示。
图4 基于气象相关性指标的气象负荷分析流程
Fig.4 Flow chart of meteorological load analysis based on meteorological correlation index
1)区域1气象负荷计算。区域1最大用电负荷与4个因素的相关性如表1所示。
表1 2022年区域1气象因素与最大用电负荷相关性
Table 1 Correlation between meteorological factors and maximum electricity load in area 1 in 2022
根据表1,风速与负荷之间相关性弱,可忽略;温度与负荷相关性存在明显时域特性。7月和8月相关性较其他月份更加显著,表明这2个月气象负荷数值大,对总负荷作用显著。3月和4月气象相关系数均偏低,表明这2个月气象负荷数值小。根据2.2.1节,结合季节因素,选择4月作为基线负荷选取日期。
根据式(9)可得,2022年区域1工作日全社会用电负荷、第一产业、第二产业、第三产业以及居民用电基线负荷如图5所示。
图5 2022年区域1工作日基线负荷曲线
Fig.5 Baseline load curves of working days in area 1 in 2022
2022年区域1休息日全社会用电负荷、第一产业、第二产业、第三产业以及居民用电基线负荷如图6所示。
图6 2022年区域1休息日基线负荷曲线
Fig.6 Baseline load curves of holidays in area 1 in 2022
4月份区域1最大负荷时刻为2022-04-02 T19:45,7月份最大负荷时刻为2022-07-09 T16:45,负荷增长万kW,根据式(10)与图6可得2022-07-09 T16:45时的气象负荷增长Lm为820.52万kW。
2)区域2气象负荷计算。区域2最大用电负荷与4个气象因素的相关性如表2所示。
表2 2022年区域2气象因素与最大用电负荷相关性
Table 2 Correlation between meteorological factors and maximum electricity load in area 2 in 2022
根据表2,区域2风速与负荷之间的相关性同样较弱,可忽略;温度与负荷相关性存在明显的时域特性。3、4、6、7、10和11月等跨季节月份相关性较其他月份更加显著,表明区域2负荷受气象因素影响较强。其中,5月气象相关系数均偏低,表明该月气象负荷数值小。根据2.2.1节,结合季节因素,选择5月作为基线负荷选取日期。
根据式(9)可得,2022年区域2工作日全社会用电负荷、第一产业、第二产业、第三产业以及居民用电基线负荷如图7所示。
图7 2022年区域2工作日基线负荷曲线
Fig.7 Baseline load curves of working days in area 2 in 2022
2022年休息日区域2全社会用电负荷、第一产业、第二产业、第三产业以及居民用电基线负荷如图8所示。
图8 2022年区域2休息日基线负荷曲线
Fig.8 Baseline load curves of holidays in area 2 in 2022
4月份区域2最大负荷时刻为2022-04-01 T20:15,7月份最大负荷时刻为2022-07-01 T16:15,负荷增长610.33万kW,根据式(10)与图7可得2022-07-01 T16:15时的气象负荷增长Lm为504.76万kW。
3.2.2 自然经济负荷增长分析
基于省政府及国家统计局公布的经济指标数据,分别计算区域1和区域2的自然经济负荷增长指标,并提取总负荷增长量中的自然经济负荷增长分量。
由于分析区间为4月至7月初,可看作2022年1季度与2季度。2.1.3节中式(3)所用数据如表3所示。
表3 2022年区域1与区域2第1、2季度三次产业的产业增加值与人均消费支出情况
Table 3 Industrial added value and per capita consumption expenditure of the third industry in the first and second quarters of area 1 and area 2 in 2022
1)区域1自然经济负荷增长量。区域1第一产业用电量占比为0.36%,第二产业用电量占比为63.03%,第三产业用电量占比为22.10%,城乡居民用电占比为14.51%,可得自然增长指标a为7.75%。因此,区域1自然经济负荷增长量可由式(11)推导得1804.17×7.75%=139.91万kW。
2)区域2自然经济负荷增长量。区域2第一产业用电量占比为2.36%,第二产业用电量占比为52.06%,第三产业用电量占比为30.43%,城乡居民用电占比为15.15%,可得自然增长指标a为7.86%。因此,区域2自然经济负荷增长量可由式(11)推导得1317.47×7.86%=103.59万kW。
3.2.3 产业结构变化分析
考虑到产业结构变化一般时间较长,这里将分析时段选为2022年1月至2022年7月初。以式(5)中α和β均取0.5为例,实际运用时可根据对负荷和电量的重视程度给予合适权重。
1)区域1产业结构变化分析。根据2.1.4节,区域1产业结构变化值夹角θ如图9所示。可以看出,区域1产业结构夹角值在2左右波动,但在5月份产业结构出现明显变化,产业结构变化值接近6。
图9 区域1产业结构变化值夹角变化趋势
Fig.9 The change trend of the included angle of industrial structure change value in region 1
结合实际数据,区域1各产业的变化情况如图10所示。5月份该区域第二产业最大负荷占比下降近7%,引起产业结构发生变化。
图10 2022年1—7月区域1负荷与电量占比变化情况
Fig.10 Changes in the proportion of load and electricity in area 1 from January to July 2022
2)区域2产业结构变化分析。根据2.1.4节,区域2产业结构变化值夹角θ如图11所示。可以看出,区域2产业结构夹角值在2左右波动,但在3月份和6月份产业结构出现明显变化。
图11 区域2产业结构变化值夹角变化趋势
Fig.11 The change trend of the included angle of industrial structure change value in area 2
结合实际数据,区域2各产业的变化情况如图12所示。3月该区域第二产业最大负荷占比上升近4%,6月该区域第二产业电量占比下降近7%,引起产业结构发生变化。
图12 2022年1—7月区域2负荷与电量占比变化情况
Fig.12 Changes in the proportion of load and electricity in area 2 from January to July 2022
由区域1和区域2产业结构变化情况分析可以验证,本文提出的产业结构变化指标能够从电量和负荷2方面对产业结构变化进行刻画,指标对产业结构变化的敏感性较高。
3.2.4 事件趋势一致性评价分析
分析期与基准期均位于疫情期间,且无重大活动或极端天气发生,这里仅考虑休息日的影响。通过式(8)获取表征事件发生和负荷变化的2个时间序列A、B后,计算序列A与序列B的相关系数结果如表4所示。
表4 休息日与日负荷增长g值
Table 4 The correlation value g between holidays and daily load growth
根据表4,区域1用电负荷与休息日相关系数绝对值普遍低于0.4,相关性较弱。但在2月和6月相关系数绝对值大于0.4,呈现出显著相关性。同样地,区域2用电负荷与休息日相关系数绝对值普遍低于0.4,相关性较弱,但在1月、3月、6月度冬/度夏期间相关性系数相较于其他月份同样偏高。结合经验分析,一般2月份采暖负荷逐渐减少,6月降温负荷逐渐增长,表明休息日对于气象负荷存在一定影响。
3.2.5 负荷增长量化归因
1)区域1负荷增长量化归因。根据3.2节可知,区域1在所选取的分析区段内最大负荷发生在7月9日,增长量L=1028.31万kW,气象负荷增长L=820.52万kW,自然经济负荷增长量139.91万kW。对于业扩负荷,7月与4月区域1业扩负荷差值
22.59万kW。考虑休息日的影响,由于7月9日为周六,根据式(12)可得休息日引起的负荷增长A=50.34万kW。因此,计算基于贡献率的区域1负荷增长量化归因情况如表5所示。
表5 基于贡献率的区域1负荷增长量化归因情况
Table 5 Quantitative attribution of load growth in area 1 based on contribution rate
2)区域2负荷增长量化归因。根据3.2节可知,区域2在所选取的分析区段内最大负荷发生在7月1日,增长量L=610.33万kW,气象负荷增长L=504.76万kW,自然经济负荷增长量103.59万kW。对于业扩负荷,7月与4月区域2业扩负荷差值
7.77万kW。考虑休息日的影响,7月1日为周五,无休息日影响,即A=0。因此,计算基于贡献率的区域2负荷增长量化归因情况如表6所示。
表6 基于贡献率的区域2负荷增长量化归因情况
Table 6 Quantitative attribution of load growth in area 2 based on contribution rate
虽然各类负荷贡献率之和与理论值100%有所不同,但其差值在可接受范围之内,该问题主要由于各类负荷解耦不充分,仍存在一定交叉,如业扩报装产生的负荷与气象负荷、自然经济负荷均可能存在重叠部分,自然经济负荷与气象负荷也可能存在重叠部分等。
在表5和表6中,区域1和区域2负荷增长的主要原因均是气象负荷增长显著,即气象因素是引起区域1和区域2负荷增长的主要因素。由于分析区段位于夏季,天气炎热,空调等气象负荷增长显著,该分析结论符合客观事实,从而验证了本文所提负荷增长分析模型的有效性。
3.3 算例2
3.3.1 气象负荷变化分析
不同于算例1,算例2分析周期延伸至3年,从长期负荷分析角度对本文方法进行验证。本算例分析目标为2020年7月区域1最大负荷(即2020-07-09 T16:15)至2023年7月最大负荷(即2023-07-12 T13:15)增长量化归因。所选时期均位于夏季,故须分别计算2个时期的气象负荷。
1)2020年区域1气象负荷计算。2020年区域1负荷与气象因素相关性情况如表7所示。
表7 2020年区域1气象因素与最大用电负荷相关性
Table 7 Correlation between meteorological factors and maximum electricity load in area 1 in 2020
根据表7,2020年5月区域1各气象指标与负荷相关系数均偏低,表明该月气象负荷数值小。根据2.2.1节,结合季节因素,可选择5月作为基线负荷选取日期。
根据式(9)可得,2020年区域1工作日全社会用电负荷、第一产业、第二产业、第三产业以及居民用电基线负荷如图13所示。
图13 2020年区域1工作日基线负荷曲线
Fig.13 Baseline load curves of working days in area 1 in 2020
2020年休息日区域1全社会用电负荷、第一产业、第二产业、第三产业以及居民用电基线负荷如图14所示。
图14 2020年区域1休息日基线负荷曲线
Fig.14 Baseline load curves of holidays in area 1 in 2020
2020年7月区域1最大负荷时刻为7月9日16:15,根据式(10)与图13可得7月9日16:15气象负荷Lm=556.12万kW。
2)2023年区域1气象负荷计算。2023年区域1负荷与气象因素相关性情况如表8所示。
表8 2023年区域1气象因素与最大用电负荷相关性
Table 8 Correlation between meteorological factors and maximum electricity load in area 1 in 2023
根据表8,2023年4月区域1各气象指标与负荷相关系数均偏低,表明该月气象负荷数值小。根据2.2.1节,结合季节因素,可选择4月作为基线负荷选取日期。
根据式(9)可得,2023年区域1工作日全社会用电负荷、第一产业、第二产业、第三产业以及居民用电基线负荷如图15所示。
图15 2023年区域1工作日基线负荷曲线
Fig.15 Baseline load curves of working days in area 1 in 2023
2023年休息日区域1全社会用电负荷、第一产业、第二产业、第三产业以及居民用电基线负荷如图16所示。
图16 2023年区域1休息日基线负荷曲线
Fig.16 Baseline load curves of holidays in area 1 in 2023
2023年7月区域1最大负荷时刻为7月12日13:15,根据式(10)与图14可得7月9日16:15气象负荷Lm=万kW。因此,气象负荷增长L为万kW。
3.3.2 自然经济负荷变化分析
算例2经济数据获取途径与算例1相同。由于分析区间为2020年7月初至2023年7月初,可看作2020年2季度与2023年2季度。2.1.3节中式(3)所用数据如表9所示。
表9 2020年与2023年区域1第2季度三次产业的产业增加值与人均消费支出情况
Table 9 Industrial added value and per capita consumption expenditure of the third industries in the second quarters of area 1 in 2020 and 2023
区域1第一产业用电量占比为0.86%,第二产业用电量占比为56.50%,第三产业用电量占比为20.08%,城乡居民用电占比为22.56%,可得自然增长指标a为28.16%。因此,区域1自然经济负荷增长量可由式(11)推导得1480.68×28.16%=417.03万。
3.3.3 长周期产业结构变化分析
由于算例2选取时间较长,这里以季度为组分析产业结构变化,式(5)中α和β均取0.5为例。
根据2.1.4节,区域1产业结构变化值夹角θ如图17所示。可以看出,区域1产业结构夹角值在2020年4季度至2021年1季度明显上升,在2021年2季度至3季度显著下降,而后逐渐趋于稳定。
图17 区域1产业结构变化值夹角季度变化趋势
Fig.17 The quarterly change trend of the included angle of the industrial structure change value in the area 1
结合实际数据,区域1各产业的变化情况如图18所示,2020年4季度至2021年1季度该区域第三产业用电量占比下降超过5%,2021年2季度至2021年3季度该区域第三产业最大负荷占比下降近14%,引起产业结构发生变化。
图18 2020年7月至2023年7月区域1负荷与电量占比变化情况
Fig.18 Changes in the proportion of load and electricity in area 1 from July 2020 to July 2023
3.3.4 长周期事件趋势一致性评价分析
分析期与基准期跨度较大,且无重大活动或极端天气发生,这里考虑以季度为组分析休息日的影响。通过式(8)获取表征事件发生和负荷变化的2个时间序列A、B后,计算序列A与序列B的相关系数结果如表10所示。
表10 2020年第3季度至2023年第2季度区域1休息日与日负荷增长g值
Table 10 The correlation value g between holidays and daily load growth from the second quarter of 2020 to the second quarter of 2023
根据表10,区域1用电负荷与休息日相关系数绝对值普遍低于0.4,相关性较弱。但在2020年3季度和2023年2季度相关系数明显高于其他季度,推测可能是由于其他季度新冠疫情防控力度较这2个季度更为强力所导致。
3.3.5 负荷增长量化归因分析
根据3.2节可知,区域1在所选取的分析区段最大负荷增长量L=1441.58万kW,气象负荷增长L=1004.41万kW,自然经济负荷增长量417.03万kW。对于业扩负荷,由于数据限制,未获取该分析时段内业扩数据,暂取零处理,即
0。考虑休息日的影响,由于2020年7月9日和2023年7月12日均为工作日,无休息日影响,即A=0。因此,计算基于贡献率的区域1负荷增长量化归因情况如表11所示。
表11 2020年7月至2023年7月区域1负荷变化量化归因
Table 11 Quantitative attribution of load changes in area 1 from July 2020 to July 2023
虽然各类负荷贡献率之和与理论值100%有所不同,但其差值在可接受范围之内。其中,算例1由于各类负荷解耦不充分,仍存在一定交叉,故各类负荷贡献率之和超过100%;算例2则是受限于数据原因,未考虑业扩影响,故各类负荷贡献率之和低于100%。
04
结论
本文提出了一种基于电力数据特征构建的电力负荷增长归因及量化分析方法,利用鱼骨图定性分析影响电力负荷的各种因素,结合实际采集的电力电量数据,构建了能够表征气象因素、经济因素和特殊事件的相关指标。通过对总负荷进行分解,提取气象负荷、自然经济负荷、业扩负荷、随机负荷,利用不同负荷增长对总负荷增长的贡献率,定量表征其对负荷增长的影响程度,得出如下结论。
1)该负荷增长特征构建方法能够精细化表征气象因素、经济因素和特殊事件对负荷变化产生的影响。
2)从自然经济增长的角度,提出了一种基于经济发展的自然负荷增长指标,利用产业增加值和人均消费支出对自然经济负荷的增长情况进行表征。
3)考虑产业结构对负荷的影响,提出了一种基于电力电量修正的产业结构变化指标,从不同产业电力电量所占比重的角度分析产业结构变化。
4)考虑到特殊事件对负荷的影响,通过构建事件趋势一致性评价指标来表征事件和负荷波动的关联关系。
5)利用西北2个区域的电力电量数据分别进行了较短周期和长周期算例验证。本文的分析思路和方法也适应于其他区域的负荷增长成因分析。
本文提出的负荷增长量化归因分析方法对于气象负荷以及随机负荷均采用了估算方法,后续可进一步探究更为精准的计算方法。同时,对于业扩报装产生的负荷与基础负荷、气象负荷、随机负荷解耦并不充分,仍存在部分重叠,因此对于该部分的负荷解耦,确保其能够被有效量化是后续研究需要解决的问题。此外,在不同时间尺度上各影响因素的权重如何分配也是后续研究的重点。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
6月30日,从浙江电力交易中心获悉,1-6月浙江在省间交易市场中,通过月度、月内集中竞价交易,组织开展省间绿电交易15场,共计成交绿电13.82亿千瓦时,较2024年全年增长154%。为推动省间绿电交易,国网浙江电力在消纳省内新能源的同时,通过内部挖掘低谷消纳空间,主动联系有关新能源外送大省,先后促
北极星售电网获悉,山东省2025年夏季午峰最高负荷1.22亿千瓦,晚峰最高负荷1.13亿千瓦。午峰、晚峰全网供应能力分别为1.37亿千瓦和1.16亿千瓦。
北极星售电网获悉,6月30日,浙江温州平阳县发展和改革局发布关于公开征求《平阳县迎峰度夏(冬)电力保供补贴实施方案》意见的通知。文件提出,省级电力保供前置措施(移峰填谷、集中检修,下同)执行期间,对工商业企业开展电力保供用电生产进行补助。1.错避峰补贴:对参与电力紧张时段有效压降的工
北极星储能网获悉,2025年6月,我国大型储能项目迎来集中开工潮,据北极星储能网不完全统计,当月新开工100MWh以上储能项目总规模达3.75GW/16.3GWh,总投资额突破211亿元。这一现象的背后是多重因素的共同推动。第二季度末作为传统能源项目开工旺季,符合电力行业建设周期规律,很多新能源储能项目都会
6月27日,江苏500千伏觅瞿变电站投运,国能常州电厂2×100万千瓦机组扩建项目首台机组迎来并网发电。这标志着江苏迎峰度夏支撑性煤电项目配套送出工程全部投运。据了解,数据显示目前江苏电网最高负荷达1.27亿千瓦,同比增长9.25%。据气象部门预测,2025年江苏全省夏季高温天比往年同期偏多,这也将带
当Agent网络、分布式电源、虚拟电厂和微电网结合的时候,我认为最值得讨论的,是一种新的电力经济模式。(来源:鱼眼看电改作者:俞庆)传统的电力系统运行了上百年,作为工业2.0的产物,与钢铁、石油、铁路、传统汽车制造一样,以规模经济理论为基础,秉承了戴明质量管理和福特生产模式。小米Yu7的发
最近《人民日报》通过专访任正非对外释放了重要信号。其中也讲到了,AI竞争的背后,是要有充足的电力、发达的信息网络,而中国有这样的优势。可以说,AI的尽头是算力,算力的尽头是电力,这已成为科技行业的共识。本期「电网深谈」邀请了阿里云能源行业首席架构师黄振、浙江省电力负荷管理中心孙钢、浙
北极星电力网获悉,近日,中国能建江苏院作为牵头方与江苏电建三公司、安徽电建二公司组成联合体中标江阴苏龙2×66万千瓦四期扩建项目工程EPC总承包项目,中标金额约50.0508亿元。据悉,该项目位于苏南电力负荷核心区,建设内容包括新建2台66万千瓦超超临界、二次再热燃煤发电机组,同步安装建设烟气脱
近日,安徽亳州市发展和改革委员会、国网安徽省电力有限公司亳州供电公司发布关于印发2025年亳州电网迎峰度夏电力负荷管理方案的通知。2025年迎峰度夏期间,亳州电网预计最大负荷约340万千瓦,同比增长11.66%(2024迎峰度夏年最大304.5万千瓦)。亳州市大中型企业少,峰期居民负荷占比65%以上,可调控
6月26日,宁波前湾新区经济和信息化局印发《2025年宁波前湾新区迎峰度夏电力保供方案》。其中提到,根据省电力公司预测,今夏全省全社会最高负荷约1.33亿千瓦,最大用电缺口800万千瓦,新区约占1/100,即最大缺口8-10万千瓦。方案中明确移峰填谷方案安排:1.方案安排2025年新区移峰填谷方案共安排移峰
6月26日,浙江省丽水市景宁畲族自治县发展和改革局等4部门发布关于印发《景宁畲族自治县电力负荷管控措施和绿电近零碳微电网群建设补贴实施办法》的通知,对2025年至2028年迎峰度夏(冬)期间,注册地在景宁县,企业有效参与由供电公司发起的移峰填谷、集中检修且拥有独立用电户号、满足计量采集要求的
北极星售电网获悉,近日,全国各地2025年7月电网企业代理购电价格陆续公布。(详见:全国各地2025年7月电网企业代理购电价格公布!)北极星电力市场网汇总了2025年7月各地区峰平谷电价并计算了峰谷价差。其中22个地区峰谷价差超过500元/兆瓦时,相较于上月增加1个。浙江、安徽、重庆、深圳、湖南、海南
山东电力交易市场的结算内容涵盖中长期和现货两个部分。用户在持仓方面,每月至少需保持80%的中长期电量,剩余的20%则通过现货市场进行申报交易。电力现货价格在年度、月度、日度三个时间维度上表现出不同的变化特征,影响其背后的主要原因也不尽相同。从年度视角分析,近三年来电力现货价格的走势主要
在推动能源绿色低碳转型的浪潮中,“绿电直连”与“源网荷储”作为两种备受关注的能源发展模式,正以前所未有的态势重塑着新型电力系统的格局。尽管两者都是旨在提升可再生能源的利用率,但它们在核心理念、实现路径及优势侧重上存在显著差异。(来源:北极星电力市场网作者:Chloe)核心差异与优势:
源网荷储一体化作为新型电力系统的核心架构,正加速从政策蓝图迈向实践落地。这一创新模式打破了传统电力系统“发-输-变-配-用”的单向运行逻辑,通过电源、电网、负荷、储能四大要素的深度协同与互动,构建起能源高效利用的闭环体系。然而,在各地项目批复数量持续增长的繁荣表象下,实际落地进度却呈
“‘十四五’期间,煤电供热板块累计亏损超千亿元。”炎炎夏日,会议室里却因讨论热电亏损的议题,而平添了几分寒意。“在‘双碳’目标下,热电正面临三重攻坚,一是煤电需从基础电源转向调峰电源的定位重构,二是多能互补系统中新能源消纳与供热稳定的平衡难题,三是数字化技术如何深度赋能传统机组智
2025年7月1日,江西省将正式执行《关于进一步完善分时电价机制有关事项的通知》(赣发改价管〔2025〕463号),优化后的分时电价机制适应了新能源大规模发展、电力市场加快建设、电力系统峰谷特性变化等新形势新要求。工商业用户可通过调整用电时段安排,增加谷段用电、减少峰段用电,整体降低用电成本
中共中央总书记、国家主席、中央军委主席、中央财经委员会主任习近平7月1日上午主持召开中央财经委员会第六次会议,研究纵深推进全国统一大市场建设、海洋经济高质量发展等问题。习近平在会上发表重要讲话强调,建设全国统一大市场是构建新发展格局、推动高质量发展的需要,要认真落实党中央部署,加强
作者:陈海生1李泓2徐玉杰1徐德厚3王亮1周学志1陈满4胡东旭1林海波1,2李先锋5胡勇胜2安仲勋6刘语1肖立业7蒋凯8钟国彬9王青松10李臻11康飞宇14王选鹏15尹昭1戴兴建1林曦鹏1朱轶林1张弛1张宇鑫1刘为11岳芬11张长昆5俞振华11党荣彬2邱清泉7陈仕卿1史卓群1张华良1李浩秒8徐成8周栋14司知蠢14宋振11赵新宇16
6月27日,海南电力交易中心印发《海南电力市场售电公司履约风险管理实施细则(试行)》的通知。履约保障凭证金额为售电公司提交的有效履约保障凭证总金额,按以下公式计算得到:履约保障凭证金额=首缴金额+补缴金额-退还金额-已执行金额(1)缴纳标准为8元/兆瓦时,根据市场风险状况,交易中心报请政府
政策助力虚拟电厂迈入规模化发展新阶段“碳中和,碳达峰”深入推进,新型电力能源发展日益壮大。国家层面已将虚拟电厂纳入能源战略体系,并出台多项政策为其发展提供制度保障。在3月25日发布的《关于加快推进虚拟电厂发展的指导意见》蓝图指引中,明确到2030年,全国虚拟电厂调节能力将达到5000万千瓦
天合富家售电业务火热招募中!详情请关注天合富家官方公众号
近日,国网涡阳县供电公司聚焦居民用电场景,积极开展“e起节电”及居民侧需求响应专项宣传活动,引导用户科学用电、错峰用电,推动形成全社会节能降耗的良好氛围。该公司组织工作人员深入社区、企业、商城等场所,通过发放宣传手册、开展现场讲解等方式,与居民“面对面”交流。工作人员结合夏季用电
北极星输配电网整理了6月23日~6月27日的一周电网项目动态。安徽安徽500千伏金牛输变电工程6月20日,安徽500千伏金牛输变电工程正式投运。安徽500千伏金牛输变电工程属于陕北—安徽±800千伏直流特高压的配套送出工程之一,线路全长152.8千米,新建500千伏变电站1座,新建铁塔370基。浙江浙江衢州衢江横
北极星风力发电网获悉,6月30日,江苏省招标投标公共服务平台发布《江苏龙源振华海洋工程有限公司国信大丰85万千瓦海上风电项目升压站上部组块安装施工船舶租赁中标结果公示》的公告。公告显示,上海振华海洋工程服务有限公司成功中标该项目,中标价格为1600万元。此次招标拟租赁一套施工船组,用于江
6月30日,辽阳市人民政府关于加强协作合力推进全市电网建设的通知(辽市政规发〔2025〕3号),本通知自发布之日起实施。其中指出,精简优化小微企业配套电网工程行政审批流程,通过告知承诺、审批改备案或取消审批等方式,加快行政审批速度。同步核准电源与配套送出工程,同步办理行政审批要件。同时,
中国电煤采购价格指数(CECI)编制办公室发布的《CECI指数分析周报》(2025年第23期)显示,CECI沿海指数中高热值煤种现货成交价格小幅上涨。曹妃甸指数中低热值煤种涨幅近10元/吨,高热值煤种价格相对稳定。进口指数现货成交价除到华南5500千卡/千克环比上涨5元/吨,其它煤种持续下降,降幅继续收窄。
新一轮电改开启十年来,中国电力现货市场建设正经历从安全验证向机制优化的深刻转型。在市场起步阶段,“安全”是市场建设的核心关切,即如何在新的市场框架下保障电力系统安全,这是一种偏重于技术验证和保障系统可靠性的思路。“工程师思维”让我国长期保持着特大规模电网安全运行的世界纪录,各试点
又到迎峰度夏时,煤炭价格会否大涨?#x2014;#x2014;煤炭市场研报(2025年6月)(来源:中能传媒研究院作者:刘纯丽)#x25C6;5月关税冲击显现,我国经济顶住压力,多数指标实现超预期增长。“两重”“两新”政策效能持续释放,产业转型升级提速支撑工业生产平稳增长。另一方面,中美关税摩擦对部分中下
“AI的尽头是算力,算力的尽头是电力”已成行业流行语。近年来,在国家“东数西算”工程和AI大模型技术应用的双重驱动下,全国算力产业的用电需求呈现爆发式增长。随着以阿里和杭州六小龙等为代表的一批人工智能产业的不断升温,据统计,今年以来,浙江算力产业带来的用电增长已超过20%。算力“吃电”
随着气温逐渐升高,怀来县用电负荷持续攀升,6月23日,国网怀来县供电公司积极采取多项措施,确保夏季高峰期间电力供应稳定,满足广大居民和企业的用电需求,擦亮叫响“绿色希冀”品牌。夏季高温天气导致空调等制冷设备使用频率大幅增加,全县用电负荷急剧上升,为应对这一挑战,分公司提前谋划,精心
夏至已至,暑期渐浓,蔬菜瓜果正值生长关键时期,6月24日,国网张家口市万全区供电公司宣平堡供电所工作人员来到李杏庄蔬菜种植基地,帮助客户排查大棚用电线路、供电设施等安全隐患,检查巡视保温、水泵等设备,确保客户安全可靠用电。万全公司工作人员对大棚客户温控设备等进行安全检查。(陈亚静摄
当地时间6月26日上午,中广核巴西Lagoinha光伏项目全容量投运暨可持续发展报告发布活动在项目现场举行,标志着中广核在巴西首个自主建设的绿地光伏项目正式投运。该项目是中广核能源国际践行中国-拉美和加勒比国家共同体论坛精神、深耕拉美清洁能源市场的重要成果,为深入推进金砖国家务实合作、共建中
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!