登录注册
请使用微信扫一扫
关注公众号完成登录
电力负荷分析是电力系统规划、运行和管理中不可或缺的一环,能够为电力系统高效、可靠和可持续运行提供关键信息。2023年4月25日,国家发改委向国家电网公司、南方电网公司、内蒙古电力公司下发《关于进一步加强用电监测分析工作的函》,要求加强重点行业用电监测分析,加强对夏季降温负荷、冬季采暖负荷等重要负荷监测分析。因此,如何分析负荷波动变化原因,实现负荷变化量化归因是一个具有实践应用价值的工作。
来源:《中国电力》2024年第8期
引文:邱敏, 周颖, 赵伟博, 等. 基于特征构建的区域电力负荷增长归因及量化分析方法[J]. 中国电力, 2024, 57(8): 190-205.
《中国电力》2024年第8期刊发了邱敏等撰写的《基于特征构建的区域电力负荷增长归因及量化分析方法》一文。文章基于区域级电力电量数据,从特征构建的角度,提出了一种区域电力负荷增长归因及量化分析方法。首先,利用鱼骨图定性分析影响电力负荷增长的各种因素,确定负荷增长归因及量化分析方法的研究思路;其次,从数据驱动的角度,构建能够表征气象因素、经济因素和特殊事件的相关指标;然后,对负荷进行分解,提取气象负荷、自然经济负荷、业扩负荷、随机负荷,利用不同负荷增长对总负荷增长的贡献率来定量表征其对负荷增长的影响程度;最后,基于上述电力负荷增长归因及量化分析方法构建负荷增长分析模型,并利用西北某2省的电力营销数据进行算例分析,验证该分析模型的有效性。
摘要
电力负荷由于受到气温、经济、特殊事件等多种因素及多因素耦合影响,增长成因量化分析困难。同时,目前对于电力负荷研究多集中于预测方面,对负荷增长原因分析较少。通过研究电力负荷数据特征构建方法,提出一种电力负荷增长归因分析方法。首先,构建气象相关性指标、基于经济发展的自然负荷增长指标、基于电力电量修正的产业结构变化指标以及事件趋势一致性评价指标;在此基础上,分别提取气象负荷、自然经济负荷、业扩负荷、随机负荷,利用贡献率量化各因素对负荷增长的影响程度。最后,利用西北某2省的电力电量数据进行验证,结果显示所提方法能够很好地量化负荷增长的原因。
01
负荷增长归因及量化分析研究思路
电力负荷一般可分为受气象影响的气象负荷、受社会经济发展的基础负荷和受休息日或特殊事件影响的随机负荷,即
式中:L为总用电负荷;Lm为受气象因素影响的季节性波动负荷,主要指夏季由空调等降温设备产生的降温负荷和冬季的电采暖负荷;Lt为基础负荷,受社会经济发展等因素影响,也称为趋势负荷、经济负荷;A为受休息日或特殊事件影响的随机负荷。气温因素、经济因素与特殊事件对总负荷变化影响如图1所示。
图1 总负荷变化影响因素
Fig.1 Influencing factors of total load change
在图1中,气温主要考虑最高温度、最低温度与平均温度。经济因素主要考虑产业结构调整、三次产业的增加值与人均消费支出,后两者均可在政府官网中查询,特殊事件主要考虑疫情、重要节假日以及常见的周末休息等。
本文提出了负荷增长的量化分析方法,基于气象负荷、基础负荷和随机负荷,分别构建相应的数据指标,定量表征气温、经济、特殊事件3种因素对于负荷变化的影响程度。该负荷增长量化分析研究思路如图2所示。基于负荷增长原因定性分析,从数据驱动的角度,构建能够表征这些影响因素的数据指标,主要包括气象相关性指标、基于经济发展的自然负荷增长指标、基于电力电量修正的产业结构变化指标、事件趋势一致性评价指标;基于这些指标对总负荷进行分解后,利用分负荷对总负荷的贡献率来定量表征其对负荷增长的影响程度。
图2 基于特征构建的负荷增长量化分析研究思路
Fig.2 Research frame for quantitative analysis of load growth based on feature construction
02
基于特征构建的负荷增长量化分析
基于上述负荷增长归因及量化分析方法的研究思路,构建负荷增长量化分析模型。该模型量化分析气象、经济、特殊事件3种因素对负荷增长的影响,通过贡献率指标反映每种因素的影响程度。
由式(1)可知,负荷增长变化量可表示为
图3 负荷增长量化分析模型架构
Fig.3 Architecture of load growth quantitative analysis model
2.1 负荷增长特征构建
2.1.1 特征构建
特征构建需要从原始数据中人为地构建新的特征,这需要大量时间去研究真实的数据样本,思考负荷增长这一问题在电力大数据中的潜在形式,并将其更好地应用于负荷增长分析模型中。通过洞察和分析,对原始电力大数据进行精细特征构建,提取一系列具有物理意义的相关特征指标,辅助负荷增长分析模型获得更好的效果。
2.1.2 气象相关性指标
气象因素主要包括气温、湿度、降雨量等,一般可通过相关性分析来确定气象因素与负荷的相关性,从而排除相关性较小的因素,简化分析过程。常用的相关性方法为皮尔逊相关系数法,通过计算变量直接的皮尔逊相关系数大小,从而确定变量之间的相关性强弱。皮尔逊相关系数r为
式中:Xi为变量1第i个样本数据;为变量1的样本平均值;Yi为变量2第i个样本数据;
为变量2的样本平均值;n为样本数据个数。
考虑到各气象因素在不同时间存在着不同特性,具有一定的时域特性,对负荷影响程度会发生改变。如在7、8月份高温天气下,空调等降温设备的大量使用会增加电力系统的负荷峰值;在1、2月份寒冷天气下,电采暖等采暖设备的使用量巨大,同样会对电力负荷产生影响;而4、5月份天气凉爽,降温、采暖设备使用率低,对负荷影响小。因此,本文以月为单位,将分析时段隔开,分别计算每段时间内负荷与各气象因素的相关性指标,从而分析各气象因素时域特性对负荷的影响。
2.1.3 基于经济发展的自然负荷增长指标
经济因素是影响电力负荷的另一个重要因素,主要包括国家经济、工业、交通、商业、农业等领域的发展状况以及居民生活水平、用电需求等方面,其对于电力负荷的影响主要体现在基础负荷中。同时,业扩报装作为经济因素的重要体现,在负荷分析中不可忽略,这里将基础负荷分解为自然经济负荷和业扩负荷,分别研究二者对于负荷变化的影响。
自然经济负荷主要指除去业扩报装影响外,受到经济发展影响的负荷,其增长相对稳定。产业增加值和人均消费支出分别作为反映产业发展情况和生活水平的指标,能够在一定程度上反映电力电量的需求情况,因而可使用这些指标去拟合自然经济负荷的变化趋势。本文提出了一种基于经济发展的自然经济负荷变化趋势分析方法,利用产业增加值和人均消费支出推导而来的增长指标对自然经济负荷的增长情况进行表征。基于经济发展的自然负荷增长指标a为
式中:k1、k2、k3、k4分别为第一产业、第二产业、第三产业、城乡居民的用电量占比;W1、W2、W3分别为第一、二、三产业分析期当季产业增加值;分别为第一、二、三产业基准期季度产业增加值;y为分析期人均消费支出;为基准期人均消费支出。
需要注意的是,当用于分析仅相差1个季度时段时(如2季度与1季度),人均消费支出取人均消费支出季度值;当用于分析相差2个及以上季度的时段时(如3季度和1季度),人均消费支出取人均消费支出累计值。
2.1.4 基于电力电量修正的产业结构变化指标
产业结构是指农业、工业和服务业在一国经济结构中所占的比重,也是体现发展中国家和发达国家之间经济发展差距的一个重要指标,合理的产业结构是后发国家赶超先发国家,加快经济发展的必然要求。改革开放之初,中国东部地区依靠自身地理优势,凭借着特殊的政策优势,积极承接发达国家产业转移,产业结构逐步优化,经济得到迅速发展。但由于缺少承接产业转移经验,这种粗放式的承接产业转移导致东部沿海地区出现产业过度聚焦和环境污染问题。相对于东部沿海地区,中国中西部地区有着资源与劳动力的比较成本优势,随着中西部地区基础设施完善,中西部地区逐渐成为承接产业转移的首选地区。因此,在分析区域尤其是中西部地区的电力负荷变化时,需要考虑产业转移带来的产业结构变化影响。
传统的产业结构变化指标为Moore指标,可用于反映产业结构变化快慢,其计算式为
式中:Mt为t期Moore产业结构变化值;Wi,t为t期第i产业所占比重。
在传统产业结构变化Moore指标的基础上,本文提出一种基于电力电量修正的产业结构变化指标。将式(4)中经济数据替换为产业负荷数据,考虑到负荷数据是瞬时值而经济数据是累积值,进一步引入电量进行修正,对负荷与电量分别给予权值,避免瞬时负荷数据引起较大误差。基于电力电量修正的产业结构变化指标为
式中:为t期Moore产业结构变化指数;α为电量系数;β为负荷系数,α和β取值受对负荷和电量关注程度的影响,取值范围为0~1,可结合实际应用场景由专家经验确定;
为t期Moore电量结构变化指数;
为t期Moore负荷结构变化指数。
计算式为
式中:为t期(基准期)第i产业电量所占比重;
为t+1期(分析期)第i产业电量所占比重。
计算方法与
一致,相应数据改为负荷数据即可。
该指标与传统的Moore指标类似,均是以向量空间中夹角为基础,将2个时期内2组向量间的夹角作为表示产业结构变化程度的指标。因此,在表征产业结构变化程度时,须对进行反余弦变换以得到夹角值。
定义产业之间变化的Moore夹角θ为
该Moore夹角越大,说明产业结构变化速率越大。
2.1.5 事件趋势一致性评价指标
对于一些特殊事件,如疫情、重大活动(如奥运会等)、重要节假日(如国庆、春节等)以及常见的周末休息等事件,对于负荷变化的影响往往不可忽略。这些事件往往是抽象的,难以进行量化,因此其是否对负荷变化产生影响常常是通过专家经验进行判断,存在很大的误差。本文提出一种事件趋势一致性评价指标,用来分析事件与负荷变化的相关程度,具体方法如下。
以自然日为单位,构建2个时间序列A、B,并进行标幺化处理,即当第i个自然日为事件发生日时Ai置1,否则置0;当第i个自然日总负荷增长时Bi置1,降低时置0。利用式(2)中的皮尔逊相关系数r计算A、B数据之间的相关性,r越大,说明该事件对负荷变化的影响越大。事件趋势一致性评价指标g为
i的取值视特殊事件持续时间设定,g的取值范围为[?1,1]。参考皮尔逊相关系数的性质,衡量该事件对负荷变化的影响程度时有:0<|g|<0.4为低度线性相关;0.4?|g|<0.7为显著线性相关;0.7?|g|<1为高度线性相关。
2.2 基于特征构建的负荷分解
对负荷增长特征进行构建后,参照图2对总负荷按照影响因素进行分解,为定量分析不同影响因素对负荷增长的影响程度作数据准备。
2.2.1 基于气象相关性指标的气象负荷提取
气象负荷主要指夏季的空调降温负荷和冬季的电采暖负荷,该部分负荷常常难以直接计算,一般采用基准负荷比较法进行估算。
通常情况下春季和秋季不存在气象负荷或者气象负荷很小,因此可选取春季或秋季气象因素与负荷相关性低的日期为典型工作日,认定为该地区春季无降温负荷或秋季无采暖负荷的典型工作日,对典型工作日同一行业同一时刻的负荷数据进行平均,得到相应行业相应时刻下春季工作日基线负荷P1为
式中:Pi,2为第i天工作日的负荷;N为总天数。
同理,休息日基线负荷采用休息日的负荷进行计算即可,并通过分析期的实际负荷减去基线负荷即可得到对应的气象负荷Lm为
式中:L为总负荷;P为对应的工作日基线负荷或休息日基线负荷。
2.2.2 基于自然负荷增长指标的基础负荷
基础负荷可分为受经济发展影响的自然经济负荷和业扩报装所引起的新增负荷2部分。
自然经济负荷P2可根据基于经济发展的自然负荷增长指标a得到,即
式中:P3为上一季度平均负荷。
业扩报装所产生的业扩负荷为已知数据,无须进行计算。
2.2.3 随机负荷
随机负荷主要指受休息日或特殊事件影响的负荷,该部分负荷通常被作为随机误差项进行处理。然而,实际上该部分负荷在重要节假日、疫情、极端天气等特殊事件的影响下,有时数值并非很小,因此在进行负荷分析时需要考虑该部分负荷。但由于该部分负荷具有随机性,需要通过计算发生事件时的总负荷与事件发生前的总负荷的差值进行估算,即
式中:A为事件引起的随机负荷变化值;L1为事件发生前的负荷;L2为发生该事件时的负荷。
2.3 量化归因
贡献率可用于表征在负荷增长过程中,各项分负荷的变化程度,从而体现出各类影响因素对于负荷增长的作用程度。该指标的核心思想为分量变化值/总变化值,可通过该指标的大小反映出气象、经济和特殊事件对于负荷增长的影响程度。在对总负荷完成分解之后,根据所得气象负荷、自然经济负荷、业扩负荷和随机负荷的变化值可得到对应的贡献率,从而定量分析气象、经济、特殊事件对于负荷增长的影响,对负荷增长进行量化归因。各类负荷的贡献率计算方法如下。
1)气象负荷贡献率η1为
式中:L为气象负荷增加值;L为总负荷增加值。
2)自然经济负荷贡献率η2为
式中:P2为自然经济负荷增加值。
3)业扩负荷贡献率η3为
式中:P4为业扩负荷增加值。
4)随机负荷贡献率η4为
03
算例分析
3.1 数据说明
本文采用西北区域1、区域2实际收集的负荷数据和气象数据,对所提方法进行验证。其中,算例1分析时长为1个季度,用于验证本文所提方法在较短时段内的适用性。该算例负荷数据主要包括2022年区域1、区域2全年负荷数据;气象数据主要包括负荷数据相对应的日最高温度、最低温度、平均温度、平均风速等。考虑到气象负荷主要集中在夏季和冬季,而冬季往往存在跨年问题,因此选取4~7月初作为分析区间,以7月最大负荷发生时刻负荷增长归因为目标展开分析。算例2分析时长为3年,用于验证本文所提方法在较长时段内的适用性。该算例负荷数据主要包括2020年至2023年7月区域1负荷数据,气象数据维度与算例1相同,以2023年7月最大负荷发生时刻的负荷增长归因为目标展开分析。结合实际数据对本文构建的负荷增长特征指标进行算例分析,基于这些指标对总负荷进行分解后,利用贡献率明确各因素对负荷增长的影响程度。
3.2 算例1
3.2.1 基于气象相关性指标的气象负荷计算
不同月份气象因素与负荷的相关性存在较大差异,这里通过计算最高温度、最低温度、平均温度、平均风速4个气象因素与负荷的相关性,分析相关性的时域特性,从而确定气象负荷的基线负荷选取日期,并计算气象负荷数值。具体流程如图4所示。
图4 基于气象相关性指标的气象负荷分析流程
Fig.4 Flow chart of meteorological load analysis based on meteorological correlation index
1)区域1气象负荷计算。区域1最大用电负荷与4个因素的相关性如表1所示。
表1 2022年区域1气象因素与最大用电负荷相关性
Table 1 Correlation between meteorological factors and maximum electricity load in area 1 in 2022
根据表1,风速与负荷之间相关性弱,可忽略;温度与负荷相关性存在明显时域特性。7月和8月相关性较其他月份更加显著,表明这2个月气象负荷数值大,对总负荷作用显著。3月和4月气象相关系数均偏低,表明这2个月气象负荷数值小。根据2.2.1节,结合季节因素,选择4月作为基线负荷选取日期。
根据式(9)可得,2022年区域1工作日全社会用电负荷、第一产业、第二产业、第三产业以及居民用电基线负荷如图5所示。
图5 2022年区域1工作日基线负荷曲线
Fig.5 Baseline load curves of working days in area 1 in 2022
2022年区域1休息日全社会用电负荷、第一产业、第二产业、第三产业以及居民用电基线负荷如图6所示。
图6 2022年区域1休息日基线负荷曲线
Fig.6 Baseline load curves of holidays in area 1 in 2022
4月份区域1最大负荷时刻为2022-04-02 T19:45,7月份最大负荷时刻为2022-07-09 T16:45,负荷增长万kW,根据式(10)与图6可得2022-07-09 T16:45时的气象负荷增长Lm为820.52万kW。
2)区域2气象负荷计算。区域2最大用电负荷与4个气象因素的相关性如表2所示。
表2 2022年区域2气象因素与最大用电负荷相关性
Table 2 Correlation between meteorological factors and maximum electricity load in area 2 in 2022
根据表2,区域2风速与负荷之间的相关性同样较弱,可忽略;温度与负荷相关性存在明显的时域特性。3、4、6、7、10和11月等跨季节月份相关性较其他月份更加显著,表明区域2负荷受气象因素影响较强。其中,5月气象相关系数均偏低,表明该月气象负荷数值小。根据2.2.1节,结合季节因素,选择5月作为基线负荷选取日期。
根据式(9)可得,2022年区域2工作日全社会用电负荷、第一产业、第二产业、第三产业以及居民用电基线负荷如图7所示。
图7 2022年区域2工作日基线负荷曲线
Fig.7 Baseline load curves of working days in area 2 in 2022
2022年休息日区域2全社会用电负荷、第一产业、第二产业、第三产业以及居民用电基线负荷如图8所示。
图8 2022年区域2休息日基线负荷曲线
Fig.8 Baseline load curves of holidays in area 2 in 2022
4月份区域2最大负荷时刻为2022-04-01 T20:15,7月份最大负荷时刻为2022-07-01 T16:15,负荷增长610.33万kW,根据式(10)与图7可得2022-07-01 T16:15时的气象负荷增长Lm为504.76万kW。
3.2.2 自然经济负荷增长分析
基于省政府及国家统计局公布的经济指标数据,分别计算区域1和区域2的自然经济负荷增长指标,并提取总负荷增长量中的自然经济负荷增长分量。
由于分析区间为4月至7月初,可看作2022年1季度与2季度。2.1.3节中式(3)所用数据如表3所示。
表3 2022年区域1与区域2第1、2季度三次产业的产业增加值与人均消费支出情况
Table 3 Industrial added value and per capita consumption expenditure of the third industry in the first and second quarters of area 1 and area 2 in 2022
1)区域1自然经济负荷增长量。区域1第一产业用电量占比为0.36%,第二产业用电量占比为63.03%,第三产业用电量占比为22.10%,城乡居民用电占比为14.51%,可得自然增长指标a为7.75%。因此,区域1自然经济负荷增长量可由式(11)推导得1804.17×7.75%=139.91万kW。
2)区域2自然经济负荷增长量。区域2第一产业用电量占比为2.36%,第二产业用电量占比为52.06%,第三产业用电量占比为30.43%,城乡居民用电占比为15.15%,可得自然增长指标a为7.86%。因此,区域2自然经济负荷增长量可由式(11)推导得1317.47×7.86%=103.59万kW。
3.2.3 产业结构变化分析
考虑到产业结构变化一般时间较长,这里将分析时段选为2022年1月至2022年7月初。以式(5)中α和β均取0.5为例,实际运用时可根据对负荷和电量的重视程度给予合适权重。
1)区域1产业结构变化分析。根据2.1.4节,区域1产业结构变化值夹角θ如图9所示。可以看出,区域1产业结构夹角值在2左右波动,但在5月份产业结构出现明显变化,产业结构变化值接近6。
图9 区域1产业结构变化值夹角变化趋势
Fig.9 The change trend of the included angle of industrial structure change value in region 1
结合实际数据,区域1各产业的变化情况如图10所示。5月份该区域第二产业最大负荷占比下降近7%,引起产业结构发生变化。
图10 2022年1—7月区域1负荷与电量占比变化情况
Fig.10 Changes in the proportion of load and electricity in area 1 from January to July 2022
2)区域2产业结构变化分析。根据2.1.4节,区域2产业结构变化值夹角θ如图11所示。可以看出,区域2产业结构夹角值在2左右波动,但在3月份和6月份产业结构出现明显变化。
图11 区域2产业结构变化值夹角变化趋势
Fig.11 The change trend of the included angle of industrial structure change value in area 2
结合实际数据,区域2各产业的变化情况如图12所示。3月该区域第二产业最大负荷占比上升近4%,6月该区域第二产业电量占比下降近7%,引起产业结构发生变化。
图12 2022年1—7月区域2负荷与电量占比变化情况
Fig.12 Changes in the proportion of load and electricity in area 2 from January to July 2022
由区域1和区域2产业结构变化情况分析可以验证,本文提出的产业结构变化指标能够从电量和负荷2方面对产业结构变化进行刻画,指标对产业结构变化的敏感性较高。
3.2.4 事件趋势一致性评价分析
分析期与基准期均位于疫情期间,且无重大活动或极端天气发生,这里仅考虑休息日的影响。通过式(8)获取表征事件发生和负荷变化的2个时间序列A、B后,计算序列A与序列B的相关系数结果如表4所示。
表4 休息日与日负荷增长g值
Table 4 The correlation value g between holidays and daily load growth
根据表4,区域1用电负荷与休息日相关系数绝对值普遍低于0.4,相关性较弱。但在2月和6月相关系数绝对值大于0.4,呈现出显著相关性。同样地,区域2用电负荷与休息日相关系数绝对值普遍低于0.4,相关性较弱,但在1月、3月、6月度冬/度夏期间相关性系数相较于其他月份同样偏高。结合经验分析,一般2月份采暖负荷逐渐减少,6月降温负荷逐渐增长,表明休息日对于气象负荷存在一定影响。
3.2.5 负荷增长量化归因
1)区域1负荷增长量化归因。根据3.2节可知,区域1在所选取的分析区段内最大负荷发生在7月9日,增长量L=1028.31万kW,气象负荷增长L=820.52万kW,自然经济负荷增长量139.91万kW。对于业扩负荷,7月与4月区域1业扩负荷差值
22.59万kW。考虑休息日的影响,由于7月9日为周六,根据式(12)可得休息日引起的负荷增长A=50.34万kW。因此,计算基于贡献率的区域1负荷增长量化归因情况如表5所示。
表5 基于贡献率的区域1负荷增长量化归因情况
Table 5 Quantitative attribution of load growth in area 1 based on contribution rate
2)区域2负荷增长量化归因。根据3.2节可知,区域2在所选取的分析区段内最大负荷发生在7月1日,增长量L=610.33万kW,气象负荷增长L=504.76万kW,自然经济负荷增长量103.59万kW。对于业扩负荷,7月与4月区域2业扩负荷差值
7.77万kW。考虑休息日的影响,7月1日为周五,无休息日影响,即A=0。因此,计算基于贡献率的区域2负荷增长量化归因情况如表6所示。
表6 基于贡献率的区域2负荷增长量化归因情况
Table 6 Quantitative attribution of load growth in area 2 based on contribution rate
虽然各类负荷贡献率之和与理论值100%有所不同,但其差值在可接受范围之内,该问题主要由于各类负荷解耦不充分,仍存在一定交叉,如业扩报装产生的负荷与气象负荷、自然经济负荷均可能存在重叠部分,自然经济负荷与气象负荷也可能存在重叠部分等。
在表5和表6中,区域1和区域2负荷增长的主要原因均是气象负荷增长显著,即气象因素是引起区域1和区域2负荷增长的主要因素。由于分析区段位于夏季,天气炎热,空调等气象负荷增长显著,该分析结论符合客观事实,从而验证了本文所提负荷增长分析模型的有效性。
3.3 算例2
3.3.1 气象负荷变化分析
不同于算例1,算例2分析周期延伸至3年,从长期负荷分析角度对本文方法进行验证。本算例分析目标为2020年7月区域1最大负荷(即2020-07-09 T16:15)至2023年7月最大负荷(即2023-07-12 T13:15)增长量化归因。所选时期均位于夏季,故须分别计算2个时期的气象负荷。
1)2020年区域1气象负荷计算。2020年区域1负荷与气象因素相关性情况如表7所示。
表7 2020年区域1气象因素与最大用电负荷相关性
Table 7 Correlation between meteorological factors and maximum electricity load in area 1 in 2020
根据表7,2020年5月区域1各气象指标与负荷相关系数均偏低,表明该月气象负荷数值小。根据2.2.1节,结合季节因素,可选择5月作为基线负荷选取日期。
根据式(9)可得,2020年区域1工作日全社会用电负荷、第一产业、第二产业、第三产业以及居民用电基线负荷如图13所示。
图13 2020年区域1工作日基线负荷曲线
Fig.13 Baseline load curves of working days in area 1 in 2020
2020年休息日区域1全社会用电负荷、第一产业、第二产业、第三产业以及居民用电基线负荷如图14所示。
图14 2020年区域1休息日基线负荷曲线
Fig.14 Baseline load curves of holidays in area 1 in 2020
2020年7月区域1最大负荷时刻为7月9日16:15,根据式(10)与图13可得7月9日16:15气象负荷Lm=556.12万kW。
2)2023年区域1气象负荷计算。2023年区域1负荷与气象因素相关性情况如表8所示。
表8 2023年区域1气象因素与最大用电负荷相关性
Table 8 Correlation between meteorological factors and maximum electricity load in area 1 in 2023
根据表8,2023年4月区域1各气象指标与负荷相关系数均偏低,表明该月气象负荷数值小。根据2.2.1节,结合季节因素,可选择4月作为基线负荷选取日期。
根据式(9)可得,2023年区域1工作日全社会用电负荷、第一产业、第二产业、第三产业以及居民用电基线负荷如图15所示。
图15 2023年区域1工作日基线负荷曲线
Fig.15 Baseline load curves of working days in area 1 in 2023
2023年休息日区域1全社会用电负荷、第一产业、第二产业、第三产业以及居民用电基线负荷如图16所示。
图16 2023年区域1休息日基线负荷曲线
Fig.16 Baseline load curves of holidays in area 1 in 2023
2023年7月区域1最大负荷时刻为7月12日13:15,根据式(10)与图14可得7月9日16:15气象负荷Lm=万kW。因此,气象负荷增长L为万kW。
3.3.2 自然经济负荷变化分析
算例2经济数据获取途径与算例1相同。由于分析区间为2020年7月初至2023年7月初,可看作2020年2季度与2023年2季度。2.1.3节中式(3)所用数据如表9所示。
表9 2020年与2023年区域1第2季度三次产业的产业增加值与人均消费支出情况
Table 9 Industrial added value and per capita consumption expenditure of the third industries in the second quarters of area 1 in 2020 and 2023
区域1第一产业用电量占比为0.86%,第二产业用电量占比为56.50%,第三产业用电量占比为20.08%,城乡居民用电占比为22.56%,可得自然增长指标a为28.16%。因此,区域1自然经济负荷增长量可由式(11)推导得1480.68×28.16%=417.03万。
3.3.3 长周期产业结构变化分析
由于算例2选取时间较长,这里以季度为组分析产业结构变化,式(5)中α和β均取0.5为例。
根据2.1.4节,区域1产业结构变化值夹角θ如图17所示。可以看出,区域1产业结构夹角值在2020年4季度至2021年1季度明显上升,在2021年2季度至3季度显著下降,而后逐渐趋于稳定。
图17 区域1产业结构变化值夹角季度变化趋势
Fig.17 The quarterly change trend of the included angle of the industrial structure change value in the area 1
结合实际数据,区域1各产业的变化情况如图18所示,2020年4季度至2021年1季度该区域第三产业用电量占比下降超过5%,2021年2季度至2021年3季度该区域第三产业最大负荷占比下降近14%,引起产业结构发生变化。
图18 2020年7月至2023年7月区域1负荷与电量占比变化情况
Fig.18 Changes in the proportion of load and electricity in area 1 from July 2020 to July 2023
3.3.4 长周期事件趋势一致性评价分析
分析期与基准期跨度较大,且无重大活动或极端天气发生,这里考虑以季度为组分析休息日的影响。通过式(8)获取表征事件发生和负荷变化的2个时间序列A、B后,计算序列A与序列B的相关系数结果如表10所示。
表10 2020年第3季度至2023年第2季度区域1休息日与日负荷增长g值
Table 10 The correlation value g between holidays and daily load growth from the second quarter of 2020 to the second quarter of 2023
根据表10,区域1用电负荷与休息日相关系数绝对值普遍低于0.4,相关性较弱。但在2020年3季度和2023年2季度相关系数明显高于其他季度,推测可能是由于其他季度新冠疫情防控力度较这2个季度更为强力所导致。
3.3.5 负荷增长量化归因分析
根据3.2节可知,区域1在所选取的分析区段最大负荷增长量L=1441.58万kW,气象负荷增长L=1004.41万kW,自然经济负荷增长量417.03万kW。对于业扩负荷,由于数据限制,未获取该分析时段内业扩数据,暂取零处理,即
0。考虑休息日的影响,由于2020年7月9日和2023年7月12日均为工作日,无休息日影响,即A=0。因此,计算基于贡献率的区域1负荷增长量化归因情况如表11所示。
表11 2020年7月至2023年7月区域1负荷变化量化归因
Table 11 Quantitative attribution of load changes in area 1 from July 2020 to July 2023
虽然各类负荷贡献率之和与理论值100%有所不同,但其差值在可接受范围之内。其中,算例1由于各类负荷解耦不充分,仍存在一定交叉,故各类负荷贡献率之和超过100%;算例2则是受限于数据原因,未考虑业扩影响,故各类负荷贡献率之和低于100%。
04
结论
本文提出了一种基于电力数据特征构建的电力负荷增长归因及量化分析方法,利用鱼骨图定性分析影响电力负荷的各种因素,结合实际采集的电力电量数据,构建了能够表征气象因素、经济因素和特殊事件的相关指标。通过对总负荷进行分解,提取气象负荷、自然经济负荷、业扩负荷、随机负荷,利用不同负荷增长对总负荷增长的贡献率,定量表征其对负荷增长的影响程度,得出如下结论。
1)该负荷增长特征构建方法能够精细化表征气象因素、经济因素和特殊事件对负荷变化产生的影响。
2)从自然经济增长的角度,提出了一种基于经济发展的自然负荷增长指标,利用产业增加值和人均消费支出对自然经济负荷的增长情况进行表征。
3)考虑产业结构对负荷的影响,提出了一种基于电力电量修正的产业结构变化指标,从不同产业电力电量所占比重的角度分析产业结构变化。
4)考虑到特殊事件对负荷的影响,通过构建事件趋势一致性评价指标来表征事件和负荷波动的关联关系。
5)利用西北2个区域的电力电量数据分别进行了较短周期和长周期算例验证。本文的分析思路和方法也适应于其他区域的负荷增长成因分析。
本文提出的负荷增长量化归因分析方法对于气象负荷以及随机负荷均采用了估算方法,后续可进一步探究更为精准的计算方法。同时,对于业扩报装产生的负荷与基础负荷、气象负荷、随机负荷解耦并不充分,仍存在部分重叠,因此对于该部分的负荷解耦,确保其能够被有效量化是后续研究需要解决的问题。此外,在不同时间尺度上各影响因素的权重如何分配也是后续研究的重点。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
分时电价政策设立的目的之一是为了引导用户进行负荷调整,而调整负荷这个个体行为,必然会有多方受到影响。而围绕着终端工商业用户的电力供给和消费,绕不开电力用户,电网公司,售电公司,光伏储能以及政府这几个角色。本文就来分析一下,负荷调整对于各方都会带来何种影响,以及相关利益方需要怎样的
北极星售电网获悉,6月9日,宁夏自治区发展改革委发布关于印发《宁夏回族自治区2025年迎峰度夏有序用电(负荷管理)实施方案》(以下简称《方案》)的通知。《方案》指出,根据电力供需形势,在电力出现不同的短缺等级时,实施相应的有序用电(负荷管理)方案,原则上优先选择铁合金、电石、碳化硅、电
近年来,随着新型电力系统和电力市场建设加快推进,虚拟电厂作为电力系统新业态、新模式,作用日益显著,需求日益增长,发展条件日益成熟。在上海,一场“虚拟电厂”的能源革命正加速从蓝图走向现实。虚拟电厂成“智慧管家”“虚拟电厂,顾名思义,它并没有实体,而是一个零散电力资源的‘智慧聚合系统
“储能市场化”这一美好愿景,终于将照进现实、加速落地。但就当下而言,其实大多数储能企业并没有做好应对市场化的准备,政策的迅猛推进将倒逼储能技术快速迭代,尤其将压力传导给电池管理系统BMS。在此过程中,以协能科技为首的BMS企业,有望成为储能变革新时代的探路先锋!多次“首”创!“三代”BM
“十五五”是推动能源转型、实现“双碳”目标的关键时期,新型电力系统发展面临系列不确定因素以及新形势新挑战,规划的目标、边界、要素都将发生深刻变化。从源侧看,新能源装机保持快速增长,2024年全国新增新能源装机3.6亿千瓦,预计“十五五”年均仍将保持2亿千瓦以上的增量。新能源发电具有“时-
随着数字经济的加速发展以及生成式人工智能在商业和日常生活中的深入嵌入,支持这些技术的物理基础设施正在经历一场变革性的爆炸式增长。如今,数据中心约占美国总电力消耗的4%。然而,根据麦肯锡的预测,预计到2030年,这一比例将上升到12%,这是由于计算能力、存储需求以及人工智能模型训练的前所未
5月29日,重庆市能源局发布关于公开征求《重庆市分布式光伏发电开发建设管理实施细则》意见的通知,通知指出,采用自发自用余电上网的一般工商业分布式光伏项目,根据市内电力负荷分布确定不同上网电量比例,其中:位于主城都市区22个区县行政区域内的项目年自发自用电量比例原则上不低于20%,其余区县
随着上海SNEC展会临近,行业再次聚焦“技术创新”与“系统价值”的深度融合。“430政策”与“531政策”的相继实施,标志着行业加速迈向高质量发展新阶段。在能源结构优化与降本增效的双重驱动下,工商业光伏朝着更高的安全性、经济性与智能化方向演进。为了顺应政策导向与市场趋势,上能电气将携全新工
北极星售电网获悉,5月29日,重庆市能源局关于公开征求《重庆市分布式光伏发电开发建设管理实施细则》意见的通知。文件明确,备案信息应当包括项目名称、投资主体(自然人投资或企业投资)、建设地点(具体到红线范围)、项目类型、建设规模(交流侧容量)、建设内容(需说明自建或是租赁场地建设)、
5月27日,上海融和元储能源有限公司与襄阳国铁机电股份有限公司、湖北国铁轨道交通研究院有限公司(以下分别简称为襄阳国铁、湖北国铁)正式签署战略合作协议。襄阳国铁董事长曾建勇、副董事长鲁再平、湖北国铁总经理王金陡、融和元储董事长张涛、总经理施婕和副总经理夏雨、融和元储绿电交通事业部总
今年以来,新型储能在136号文与394号文政策叠加影响下面临结构性变革。年初的136号文要求新能源全量入市,敦促储能行业重新审视自身发展模式;4月发布的394号文又明确2025年底前实现电力现货市场全覆盖,则意味着新能源和储能都将迎来真正的市场化调整,未来收益到底增还是减,将取决于储能产品的运营
6月10日,山西电力交易中心公示拟参与山西电力市场售电公司(2025年第八批)名单,山西电力交易中心有限公司受理了下列售电公司的注册申请,对售电公司提交的市场注册申请材料进行了完整性审查,现将企业名单及基本情况予以公示。公示期为2025年6月10日至2025年7月9日。
分时电价政策设立的目的之一是为了引导用户进行负荷调整,而调整负荷这个个体行为,必然会有多方受到影响。而围绕着终端工商业用户的电力供给和消费,绕不开电力用户,电网公司,售电公司,光伏储能以及政府这几个角色。本文就来分析一下,负荷调整对于各方都会带来何种影响,以及相关利益方需要怎样的
近日,2025年6月陕西送北京月度省间绿色电力集中竞价交易结束,最终成交电量457万千瓦时,陕西绿电实现首次进京。为确保这次交易顺利开展,国网陕西省电力有限公司前期与国网北京市电力公司进行多轮次协商,就送电曲线、量、价、通道等信息达成一致,在北京电力交易中心统一组织下,陕西9家新能源发电
6月5日,内蒙古电力交易公司配合协同广州电力交易中心、北京电力交易中心,成功组织2025年6月蒙西、甘肃等省份送广东跨经营区绿电交易,首次实现“三网”市场联合组织,电力资源协同优化配置,有效促进绿电要素在全国范围流动竞争,加快推动全国统一电力市场建设,为“双碳”目标落地注入市场新动能。
北极星售电网获悉,6月10日,重庆电力交易中心转发重庆电力市场管理委员会关于征集重庆电力市场成员自律公约意见的通知,其中提到,发电侧、售电侧相关经营主体之间不得通过线上、线下等方式在中长期双边协商交易外统一约定交易价格、电量等申报要素实现特定交易。拥有售电公司的发电企业,不得利用“
中国南方电网公司消息,自6月13日起至6月30日,来自甘肃、青海、内蒙古等地以及华北直调的风光新能源,将通过坤渝直流等输电通道输送至广东,为广东省内数据中心、外贸企业等重点用户提供绿色电力保障,助力粤港澳大湾区高质量发展。绿电指在生产电力过程中,二氧化碳排放量为零或近于零,对环境冲击影
为切实提高电力市场服务质量,更好地帮助经营主体了解交易规则、参与电力交易,河南电力交易中心汇总分析了5月份各类经营主体较为集中的主要诉求、问询内容,现统一解释答复如下:01问:企业名称与营销绑定户号的名称不一致可以入市吗?这个需要怎么操作变更?答:根据《电力市场注册基本规则》(国能
为稳步推进湖南电力现货市场建设,近日,湖南能源监管办会同湖南省能源局组织完成了湖南电力现货市场技术支持系统第三方校验。根据《电力现货市场基本规则(试行)》及有关政策文件要求,此次校验工作由未参与湖南电力市场规则编制、技术支持系统建设的第三方机构实施,对湖南电力现货技术支持系统的算
6月6日,湖北电力现货市场转入正式运行,成为全国第二批电力现货市场试点中首个转正省份,标志着湖北电力市场化改革迈出关键一步。湖北电力现货市场结合本省能源结构,强化市场供给,推动各类电源“能入尽入”,全省90%以上火电、80%以上用户、70%以上新能源均直接进入现货市场运行;创新引导新型储能
北极星售电网获悉,贵州省人民政府发布关于征求《贵州省虚拟电厂参与电力市场交易实施方案(征求意见稿)》的通知,虚拟电厂是指运用数字化、智能化等先进技术,将可调节负荷、分布式电源、储能等资源进行聚合、协调、优化,结合相应的电力市场机制,具备参与电网运行调节能力的系统。根据资源禀赋条件
6月10日,由虹桥国际中央商务区管理委员会、闵行区人民政府指导,上海南虹桥投资开发(集团)有限公司协办的“智慧能源,驱动零碳未来”天合光能智慧能源解决方案全球发布会顺利举行。大会汇聚政府机构、能源领域专家、光储产业链业界代表,以及天合光能新场景解决方案、数字能源中心、产品与解决方案
分时电价政策设立的目的之一是为了引导用户进行负荷调整,而调整负荷这个个体行为,必然会有多方受到影响。而围绕着终端工商业用户的电力供给和消费,绕不开电力用户,电网公司,售电公司,光伏储能以及政府这几个角色。本文就来分析一下,负荷调整对于各方都会带来何种影响,以及相关利益方需要怎样的
6月6日18时43分,惠来电厂5、6号机组扩建工程项目(以下简称“惠来电厂扩建工程”)厂用电系统受电一次成功,标志着项目具备分部试运条件,工程由静态安装转化为动态试运,为推进机组整套启动、向投产目标奋进奠定了坚实基础。惠来电厂扩建工程是广东省重点建设项目,规划建设两台100万千瓦燃煤机组,
6月9日,为确保高考期间电力稳定供应,国家电网冀北电力(唐山“钢铁之魂·丰润”)共产党员服务队银城铺镇供电所分队在高温酷暑下坚守岗位,以高度的责任感和专业精神,全力做好高考保电工作。高考前夕,银城铺镇供电所分队提前谋划、精心部署。组织专业技术人员对辖区内考点的配电设备、线路进行全面
5月29日,安徽宣城110千伏阳德变电站投运。该变电站坐落于宣城市现代服务业产业园内,是宣城供电公司今年投运的迎峰度夏重点工程之一,于2024年4月开工建设。工程本期投运容量5万千伏安主变压器1台,新建110千伏进线2回、10千伏出线12回,同时投运10千伏配套送出工程3项,进一步优化电网网架结构,缩短
主产区煤价稳中小幅调整,近期环保安全检查频繁,少数煤矿停产减产,对整体供应影响有限。冶金、化工及站台大户采购需求稳定,煤矿产销平衡,价格较为坚挺。环渤海港口低硫低灰煤种价格率先上涨,表明环保政策下,性价比占优的资源供不应求;而中高卡煤性价比偏弱,下游接受度有限。(来源:鄂尔多斯煤
北极星售电网获悉,贵州省人民政府发布关于征求《贵州省虚拟电厂参与电力市场交易实施方案(征求意见稿)》的通知,虚拟电厂是指运用数字化、智能化等先进技术,将可调节负荷、分布式电源、储能等资源进行聚合、协调、优化,结合相应的电力市场机制,具备参与电网运行调节能力的系统。根据资源禀赋条件
据中国铁建港航局消息,在广东省阳江市粤西海域,三峡阳江青洲五海上风电项目正以“加速度”模式全力推进,现场多个作业面正同时作业,掀起大干热潮。5月份期间,仅“铁建起重5000”船就完成12套钢管桩沉桩和3台导管架安装,其中最快以32小时完成一套钢管桩施工,效率达到行业领先水平。青洲五项目装机
6月5日,云南省能源局发布关于云南省第十四届人大三次会议第0823号代表建议的答复,其中提到,支持曲靖市推动“源网荷储”一体化发展。省能源局正在组织开展“源网荷储”一体化试点工作,支持曲靖市按照申报条件,组织项目申报试点,先行先试,建设一批“源网荷储”一体化项目。加快推进电网网架建设。
“十五五”电力规划需打出全要素协同“组合拳”——第三届新型电力系统高质量发展研讨会观察在日前举办的第三届新型电力系统高质量发展研讨会上,记者获取了一组数据:2024年山东省电力现货市场负电价频率达14%;光伏大规模发展导致蒙东地区电力系统存在130万千瓦的爬坡里程缺口;“十五五”期间,预计
北极星售电网获悉,6月10日,贵州贵阳市人民代表大会常务委员会发布关于《贵阳市算力产业促进条例》公告。《贵阳市算力产业促进条例》经2025年4月29日贵阳市第十五届人民代表大会常务委员会第二十六次会议通过,2025年5月29日贵州省第十四届人民代表大会常务委员会第十七次会议批准,现予公布,自2025
“供电公司的同志们辛苦了,看到你们一直在这里值守,我们心里特别踏实,孩子们考试也很安心!”6月9日下午6时30分,在玉田县第二中学高考考点,随着最后一科高考考试的结束,考生们陆续离开考场,玉田公司驻守保电的工作人员齐春山、赵旺圆满完成高考保电任务,为广大考生营造了安全稳定的用电环境。
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!