登录注册
请使用微信扫一扫
关注公众号完成登录
图1(b)是电池在不同温度下充电后所对应的放电曲线。充电析锂后,电池放电曲线呈现出两个放电平台,3.30 V左右的高电压平台归因于负极析锂直接参与的电池放电反应,而低电压平台归因于嵌锂石墨参与的电池放电反应。图1(b)中,5 ℃充电后的放电曲线初期呈现出高电压放电平台,说明5 ℃充电时电池负极发生了析锂反应;在更低温度下,高电压平台区的放电容量增加、低电压平台区的放电容量下降,说明更低温度下更多的金属锂参与了放电反应过程,充电时负极发生了更严重的析锂反应。-12 ℃时,3.30 V的高电压平台区放电容量占放电总容量的比值达到了90%,可以推测,-12 ℃电池充放电过程负极主要发生析锂-溶解的电化学反应。
充电后的搁置期间,锂可以嵌入石墨形成嵌锂石墨,还有可能和电解液反应生成“死锂”或其他副产物造成不可逆容量损失。为了观察充电后搁置期间析出金属锂的行为,本工作对比了低温充电后25 ℃下搁置4小时和直接在低温下搁置4小时电池开路电压变化。图1(c)是25 ℃和-8 ℃充电后电池搁置曲线的比较,25 ℃和-8 ℃充电后直接搁置的电池电压呈现相同变化规律,即断电后电压快速下降至稳定值;而-8 ℃充电后在25 ℃下搁置电池断电后电压快速下降、经过较高的电压平台后再下降至较低的稳定值。从图1(c)可以看出,-8 ℃充电后直接搁置电池的电压稳定值与-8 ℃充电后在25 ℃下搁置电池的高平台电压相近(3.40 V左右),归因于析锂嵌入石墨的过程;而-8 ℃充电后在25 ℃下搁置电池在高电压平台之后较低的稳定值(3.31 V左右),归因于25 ℃搁置期间析锂与石墨反应生成了嵌锂石墨。由此,充电后搁置期间析锂嵌入石墨过程受温度影响,低温下不发生析锂嵌入石墨反应或者反应程度低,析出金属锂更多地直接参与了电池放电反应[图1(b)]。-8 ℃充电后在25 ℃下搁置后电池电压稳定值(3.31 V左右)显著低于25 ℃充电后直接搁置电压稳定值(3.425 V左右),反映了前者石墨嵌锂程度低、后者嵌锂程度高,这与低温下电池充放电容量显著低于25 ℃下的充放电容量相符。
同时可以通过库仑效率来判断电池析出金属锂与和电解液反应生成“死锂”或其他副产物的情形,即不可逆析锂。由于电池放电过程受温度影响,为了更准确测量库仑效率,将低温下0.1 C放电至2.2 V后的电池进一步采用0.02 C的电流放电至2.0 V,由此获得的放电容量并计算得出电池充放电的库仑效率,根据计算结果(表1),5 ℃时电池库仑效率下降至98.94%,之后随着温度下降,电池库仑效率快速下降,-12 ℃时,电池库仑效率为87%,较25 ℃未析锂电池库仑效率下降了近13%。由此,更低温下充电时,发生更严重析锂时,析出的金属锂与电解液的副反应更严重,产生更严重的不可逆析锂。
表1 电池在不同温度充放电后的可逆析锂和不可逆析锂容量及其相对占比
图1(b)放电曲线的高电压平台区放电容量被称为“可逆析锂量”(Qre,Li)。基于电池库仑效率可以计算出“不可逆析锂量”(Qirre,Li),Qirre,Li=Qcha×(1-η)(Qcha为充电容量,η为库仑效率),由可逆析锂量与不可逆析锂量还可以计算得出总析锂量(QLi= Qre,Li+ Qirre,Li)。表1是不同温度下可逆析锂量、不可逆析锂量、可逆析锂量和不可逆析锂量在总析锂量中的占比的计算结果。总体上看,随着温度下降,可逆析锂量、不可逆析锂量、总析锂量均呈现增长态势,而在更低温度(-8 ℃及以下)下,增长态势有所减缓;可逆析锂量占比随温度下降呈现降低的态势,而不可逆析锂容量占比增加,温度从5 ℃下降至-5 ℃时,可逆析锂量占比从88.36%下降至87.22%,不可逆析锂容量占比从11.64%增加至12.78%;而当温度从-5 ℃下降至-12 ℃时,可逆析锂量占比下降至82.55%,不可逆析锂容量占比增加至17.45%;更低温度下,可逆析锂量占比降低和不可逆析锂容量占比增加的趋势更加明显。
2.2 折解电池分析
图2所示为不同温度0.1 C充放电后的电池,拆解所得的负极表面照片。可以看出25 ℃充放电后电池[图2(a)]石墨负极表面呈现出较均匀的黑色。而5 ℃充放电后[图2(b)]的电池负极表面呈灰黑色,且不均匀分布着灰白色物质,说明负极表面发生了副反应。当温度继续降低,-8 ℃和-12 ℃[图2(c)、(d)],极片均呈现浅褐色,且表面分布的不均匀灰白色物质明显增多,说明负极表面副反应较为严重。由前述的电化学研究可知,电池在低温充电时会发生析锂,因此可以推测极片表面的灰白色物质对应为电池负极析出的金属锂反应后的沉积物。
25 ℃和低温充放电后,拆解电池获得石墨负极片表面(图3)SEM照片与EDS面/线扫描结果。从图3可以看出,25 ℃下充放电后电池负极片表面仅观察到石墨颗粒;5 ℃充放电后负极表面除石墨颗粒外,还能观察到局部有枝晶状的物质,且主要分布在石墨颗粒之间的孔隙内,由EDS分析结果可以看出,该枝晶状物质含有大量的氧元素,可以推断是由不可逆析锂或金属锂(“死锂”)转化生成含氧物质(如碳酸锂、氢氧化锂);-8 ℃和-12 ℃负极表面未能观察到石墨碳颗粒,-8 ℃充放电后电池极片被含氧的“苔藓状沉积物”全覆盖,-12 ℃时极片表面全面覆盖着“枝晶状物质”的含氧物质。
图4是负极截面SEM和EDS结果,图4~5给出了电极表面EDS面扫描和表层、内层截面的EDS面扫描以及沿电极厚度方向EDS线扫描的结果。25 ℃充放电后电池的负极表层、内层形貌和C、O、F、P等元素分布差异不大;从图4看出,-8 ℃、-12 ℃充电后有沉积层生长在负极表面,电极内部形貌没有观察到明显的差异;从图4~5看出,低温充电后负极不同区域内元素分布表现出差异性。相较于25 ℃时的情形,5 ℃、-8 ℃、-12 ℃时电极的表面扫描的氧元素高,-8 ℃、-12 ℃时氧元素含量甚至高于碳元素的含量,而内层氧元素的含量与25 ℃时的情形基本相当。沿厚度方向EDS线扫描结果与面扫描结果类似,5 ℃时电极表面氧元素含量较高,且沿厚度方向均存在一定的分布;-8 ℃、-12 ℃时负极表层氧元素含量显著高于碳元素。值得一提的是,由图4~5的EDS线扫描结果看出,25 ℃、5 ℃时负极涂层厚度差异不大(88~90 μm),而-8 ℃、-12 ℃充电电后极片涂层厚度明显增加。
拆解电池负极表面与截面的SEM形貌、EDS扫描氧与碳元素分布反映了由不可逆析锂造成负极形貌和组成的改变。依据分析结果,-8 ℃、-12 ℃时负极表面形貌、氧元素含量高,而电极内部形貌、元素分布变化不大;5 ℃时沿电极厚度方向分布着较多氧元素,而从EDS扫描结果(图3、图4)看出,氧元素主要分布在石墨颗粒边缘,即相邻石墨颗粒的空隙内。此外,由于不可逆析锂是由锂参与副反应产生的,可以推测低温充电时析锂反应的差异性,-8 ℃、-12 ℃时负极表面(层)形貌、元素分布的改变反映了锂的析出主要发生在电极表面(层);而5 ℃时锂的析出既发生在电极表面,也发生在电极内层。
图6是5 ℃和-12 ℃低温充放电后拆解电池负极石墨材料表面C1s、O1s、Li1s、F1s的XPS分析及分峰拟合结果。图中,在C1s谱图中,284.8 eV峰归因于C—C键,285.5 eV峰归因于C—H键,286.2 eV峰归因于C—O峰,而290.9 eV归因于CO32-;在O1s谱图中,531.5eV峰归因于CO32-,533 eV峰归因于C—O键,-12 ℃充放电后的电池在530 eV处出现Li—O—Li 的新峰;在Li1s谱图中,55.1 eV处峰归因Li2CO3、LiOH和ROCO2Li等锂沉积物,55.7 eV处峰归因于LiF,54.3 eV处峰归因于Li2O。在F1s谱图中,686.4 eV峰归因于P—F峰,而685.3 eV峰归因于Li—F峰。综合上述分析结果,低温充电后,石墨表面SEI膜含有ROCO2Li、(—CH2CH2O—)n (PEO)、ROLi等有机成分和Li2CO3、LiOH、LiF等无机成分。比较5 ℃、-12 ℃充放电后负极表面元素的相对含量(表2),-12 ℃时C元素含量相对较低、Li、O、F元素含量相对较高,表明SEI膜中以LiF为代表的无机成分更多。由此,5 ℃、-12 ℃充放电后电池负极表面SEI膜组分基本一致,由于-12 ℃时负极表面析锂更严重,SEI膜中含有的无机锂盐成分更多。
表2 电池在不同温度下充放电后对应石墨负极的XPS测试结果
2.3 低温充放电后的电池性能
将在低温充放电后的电池进行25 ℃常温下0.1 C充放电,可以分析低温充放电后电池容量变化、充放过程和活性锂损失、活性物质损失。图7(a)是不同的低温充放电后,电池在常温25 ℃下0.1 C放电曲线的微分容量曲线。可以看出,更低温度下充放电后,电池常温0.1 C的放电容量更低;而图7(a)中观察到4个峰,对应于嵌锂石墨脱锂过程中的4个相变过程,反映出低温充放电后石墨材料结构和性能没有改变。图7(a)中,为便于识别活性锂损失(LLI)和活性物质损失(LAM),对齐微分容量曲线低电位峰(峰I),这样,图7(a)中的Q1、Q2分别反映了LLI、LAM的变化,不同低温充放电后LLI、LAM的相对值计算结果如图7(b)所示。图7(b)中,随着温度降低,LLI和LAM相对值呈现增加态势,5 ℃时LLI和LAM相对值基本相当,更低温度下,LLI远高于LAM,反映出在低温充放电后,电池发生了活性锂损失和活性物质损失,且活性锂损失占主导。
在活性锂损失占主导的情形下,由图7(a)还可以大致推测出不同低温充放电后电池负极嵌脱锂电位范围的变化。图7(a)中,微分曲线的Q3反映了LiC24与石墨C相变的转化过程,由于Q4基本一致,可以推测,不同充放电后电池负极嵌脱锂最高电位基本一致;而Q1反映了LiC6与LiC12相变的转化过程,更低温度下Q1较低,说明LiC6脱锂贡献容量较少,负极嵌脱锂最低电位较高,由此,低温下充放电后,负极最低嵌脱锂电位偏高,嵌脱锂电位范围收窄,预期可以降低析锂风险,提高电池循环性。由图7(a)的Q1值的变化,5 ℃充放电后电池负极嵌脱锂电位范围变化不大,从5 ℃下降至-8 ℃时变化较大,-8 ℃到-12 ℃时变化较小。
图8(a)是25 ℃电池0.5 C的充放电循环过程的容量保持率和5 ℃、0 ℃、-8 ℃、-12 ℃低温充放电后电池在25 ℃下0.5 C循环过程的容量保持率。可以看出,低温充放电后,5 ℃充放电后的电池容量保持率较未经低温充放电的电池容量保持率低,而0 ℃、-8 ℃、-12 ℃低温充放电后电池容量保持率较高,且充放电温度愈低,充放电后电池的容量保持率愈高。按照容量衰减至其初始容量80%的循环周次计算,5 ℃、25 ℃、0 ℃、-8 ℃、-12 ℃充放电后,电池循环次数分别是557周、631周和686周、740周、753周。
图8(b)是循环过程中库仑效率的变化。从图中可以看出,库仑效率从循环初期(<150周内)的增加到中后期(>150周)基本稳定,反映出循环初期以负极SEI膜生长到逐步稳定的过程。5 ℃充放电后电池库仑效率在整个循环过程中最低,说明其SEI膜稳定性较差;而-8 ℃、-12 ℃充放电后电池库仑效率较高,说明其SEI膜稳定性较好。比较循环过程中放电曲线中值电压的变化[图8(c)],在循环初期观察到类似的升高后达到稳定的变化规律,但在循环300周左右后,5 ℃充放电后电池和直接在25 ℃下循环电池的中值电压呈现下降的趋势;整个循环过程中,5 ℃时的中值电压最低、-8 ℃和-12 ℃的较高。由于中值电压变化反映了电池极化变化,可以认为,循环过程中,5 ℃充电后和未经低温充放电的电池经历了极化减少—稳定—增加的变化过程,而在其他温度下充放电后的电池在循环初期极化减少至稳定至基本不变。由此,5 ℃充放电后电池循环过程中SEI膜稳定性较差、极化增加较大,循环过程中容量衰减更快。
结合低温充放电过程中锂析出-溶解行为和拆解电池负极形貌、元素分布的分析结果,可以对不可析锂对于电池性能的影响机制进行探讨。不同低温下,充放电过程中锂的析出-溶解产生不可析锂,由于不可逆析锂量及其形成的副产物在负极内分布不同,对于充放电后的电池性能影响及其影响机制也不同。更低温度下不可析锂量较大,产生更严重的活性锂损失,电池容量降低更多;另一方面,不可逆析锂形成产物主要分布在负极表面(层),电极内部结构、组成变化不大,而活性锂损失诱发负极最低嵌脱锂电位升高、嵌脱锂范围收窄,电池具有较好的循环稳定性。5 ℃充放电后电池的不可逆析锂较少,容量降低有限,但是不可逆析锂形成的副产物分布在电极表面、内部石墨颗粒表面和颗粒间的孔隙内,循环过程中SEI膜和电池极化的稳定性较差,电池表现出较差的循环性能。
3 结 论
本工作研究了低温下磷酸铁锂电池充放电过程中的析锂及其溶解行为,分析了低温充放电后拆解电池负极的形貌变化和元素分布、表面组成,探究了低温充放电后电池的充放电性能与循环性能和不可逆析锂的影响机制,主要结论如下。
(1)低温下,充电时磷酸铁锂电池负极发生析锂反应,搁置期间析出金属锂未回嵌入石墨,放电时发生电化学溶解反应。基于低温下电池析锂-溶解行为,计算得出可逆析锂容量、不可逆析锂容量和总析锂容量,结果表明,总析锂容量较大时的不可逆析锂容量占比较高,而更低温度区间内的总析锂容量更高、不可逆析锂容量占比增长较快。
(2)拆解低温充放电后的电池,发现5 ℃时的负极形貌变化不明显,而在表面和表层、内层分布着含氧物质,且主要分布在石墨颗粒间的孔隙内;而-8 ℃、-12 ℃时负极表面覆盖了含氧化合物,电极内层的形貌和元素分布基本没有发生改变。分析认为,5 ℃充电时在负极所有区域发生了轻微的析锂反应,而-12 ℃充电时析锂反应主要发生在负极表面。
(3)低温充放电后电池的充放电容量降低,且随着充放电温度的下降,容量下降愈显著;5 ℃充放电后电池较原始电池0.5 C循环容量衰减更快,而更低温度充放电后电池较原始电池0.5 C循环性能更好。低温充放电后电池容量降低主要缘于活性锂损失,更低温度充放电后电池活性锂损失较严重,电池负极石墨最低嵌脱锂电位升高、嵌脱锂范围收窄,循环性能较好。5 ℃充放电后电池的循环容量衰减更快,缘于不可析锂改变了负极的元素分布、孔隙结构和表面组成,循环过程中SEI膜稳定性较差、极化增加较大。
第一作者:李义函(1999-),女,硕士,研究方向为锂离子电池,E-mail:liyihansolar@163.com;
通讯作者:卢世刚,教授,研究方向为动力与储能电池,E-mail:slu@shu.edu.cn。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
近期一系列积极信号的释放,预示着锂电产业链正步入触底反弹的关键阶段。据最新市场动态,比亚迪于12月15日临时决定率先启动磷酸铁锂招标。有分析指出,出现品控问题后,比亚迪对一季度供应安全的担忧,促使它提前布局,以确保原材料的稳定供应。同时,磷酸铁锂预计于12月19日启动招标,尝试开放2025半
近日,由中国电建参与设计的世界已完工项目中最大单体电化学储能项目沙特比沙500兆瓦/2000兆瓦时电化学储能项目投产送电将为沙特经济社会发展注入强大动力沙特比沙500兆瓦/2000兆瓦时电化学储能项目是世界目前已完工项目中最大的单体电化学储能项目,对中沙两国在共建“一带一路”倡议下的能源合作具有
近期,清洁能源协会(CEA)的储能市场信息情报总监DanFinn-Foley在撰写的文章中深入分析和展望了美国电池储能行业的未来发展。清洁能源协会(CEA)是美国太阳能、绿色氢能和电池储能系统的咨询机构。随着新的政治、政策和监管环境的出现,美国清洁技术革命的轨迹正在受到前所未有的关注。这并不是美国
北极星储能网获悉,1月14日,赣锋锂业发布《关于控股子公司南昌赣锋锂电增资扩股引入产业基金涉及担保的进展公告》,已通过股东大会审议。公告显示,其全资子公司南昌赣锋锂电科技有限公司拟引入南昌市新建区平台公司出资设立的产业基金5亿元人民币用于南昌赣锋锂电新建区新能源项目建设。本次增资扩股
2024年12月动力电池月度信息产量方面:12月,我国动力和其他电池合计产量为124.5GWh,环比增长5.7%,同比增长60.2%。1-12月,我国动力和其他电池累计产量为1,096.8GWh,累计同比增长41.0%。销量方面:12月,我国动力和其他电池销量为126.6GWh,环比增长7.0%,同比增长40.4%。其中,动力电池销量为96.4G
北极星储能网获悉,中国汽车动力电池产业创新联盟发布2024年1-12月动力电池数据,显示,2024年度我国动力电池累计装车量548.4GWh,累计同比增长41.5%。其中三元电池累计装车量139.0GWh,占总装车量25.3%,累计同比增长10.2%;磷酸铁锂电池累计装车量409.0GWh,占总装车量74.6%,累计同比增长56.7%。简要
北极星储能网获悉,1月10日,冠盛股份在其2024年12月份的投资者活动中透露,冠盛股份聚焦固态电池作为其第二增长曲线,认为固态电池为下一代锂电池产业创新技术。冠盛股份采用固体电极材料和固体电解质材料,摒弃了传统液态电池的液态电解质,在能量密度、安全性、充放电速度等关键技术指标上实现了质
磷酸铁锂电池行业概述磷酸铁锂电池,是一种使用磷酸铁锂(LiFePO₄)作为正极材料,碳作为负极材料的锂离子电池,单体额定电压为3.2V,充电截止电压为3.6V~3.65V。磷酸铁锂电池采用橄榄石结构的LiFePO₄作为电池的正极,由铝箔与电池正极连接,中间是聚合物的隔膜,它把正极与负极隔开,但锂离子可以
北极星储能网获悉,12月24日,江西星能装备技术发展有限公司2025年储能系统零部件(电芯)集中采购项目招标公告发布。宣布采购280Ah314Ah共4GWh,采用磷酸铁锂锂离子电池,其额定充放电倍率为0.5P。投标人拟供储能系统设备中电芯应具有由第三方CNAS实验室和CMA检验检测机构出具的符合GB/T36276-2023《
北极星储能网获悉,湖南裕能12月18日发布公告,计划向特定对象发行股票,募集资金总额不超过48亿元,主要用于年产32万吨磷酸锰铁锂项目、年产8万吨超长循环磷酸铁锂项目、年产10万吨磷酸铁项目及补充流动资金。具体资金使用中,28亿元将投入磷酸锰铁锂项目,5亿元用于超长循环磷酸铁锂项目,6亿元用于
12月14日上午,江苏省连云港市连云区举行“1+4”百亿产业项目签约仪式,其中包括10万吨/年电池级新能源材料循环利用项目。据介绍,10万吨/年电池级新能源材料循环利用项目,由烟台凯实工业有限公司投资建设,总投资11.8亿元,占地面积150亩(盘活园区僵尸企业)。该项目与园区16.8万吨电池关键材料项目
2025年开年,磷酸铁锂频传好消息。近期,磷酸铁锂行业频频公告的大订单、持续回升的产能利用率反映了磷酸铁锂市场加速回暖的态势。01湖南裕能销量大涨磷酸铁锂行业TOP1——湖南裕能在日前公布了2024年度业绩预告,信息量很大。业绩方面,公司预计归母净利润为5.6亿~6.6亿元,同比下降58.24%~64.57%;扣
北极星储能网获悉,1月21日晚间,恩捷股份发布公告,公司控股子公司上海恩捷新材料科技有限公司(以下简称“上海恩捷”)与LGEnergySolution,Ltd.(以下简称“LGES”)签订《供应协议》,基于双方长期稳定的全球战略合作,LGES预计2025年至2027年在全球市场向上海恩捷(含其控制的关联公司)采购约35.5
全固态锂金属电池被认为是未来最具前景的储能技术之一,其具有高能量密度、长循环寿命和高安全特性等优势。其中,石榴石基Li7La3Zr2O12(LLZO)氧化物电解质因其对锂金属的化学和电化学稳定,以及在室温下近1mS/cm的高离子电导率而备受关注。然而,如何改善固态电解质与锂金属负极的界面接触成为一个挑
北极星储能网获悉,近日,中国化学六化建华南分公司承建的中色正元(安徽)新能源科技有限公司年产6万吨锂电正极材料前驱体项目(一期工程)二标段项目收到业主感谢信并进入收尾阶段。该项目是国家级重点项目,位于安徽省铜陵市经开区东部工业园区。项目总投资100亿元,占地约992亩,是中国有色集团、厦门
北极星储能网获悉,1月14日,贝特瑞发布公告,公司董事长贺雪琴夫妇因涉嫌违法违规内幕交易“龙蟠科技”,收到中国证券监督管理委员会的行政处罚决定书。公告显示,涉嫌违法违规的事实为:因贺雪琴内幕交易“龙蟠科技”及贺雪琴、罗某某共同内幕交易“龙蟠科技”的行为违反了《证券法》第五十条、第五
北极星储能网获悉,1月14日晚间,恩捷股份发布公告,公司控股子公司上海恩捷于1月13日与北京卫蓝新能源签订《采购框架协议》。根据协议,2025年至2030年,北京卫蓝新能源将其80%的材料采购份额指定向上海恩捷及其关联公司采购,用于半固态和全固态电池的电解质隔膜和电解质膜。预计期间内将下达不少于3
根据ICC鑫椤锂电数据显示,2024年中国三元前驱体产量为85.1万吨,同比增长0.7%;全球三元前驱体产量为96.3万吨,同比下滑1.7%,中国企业的全球份额从2023年的61.3%提升至2024年的64.4%。中国企业份额达到88.4%,同比提高2个百分点左右,创下新高记录。从型号占比来看ICCSINO中高镍型产品渗透率在2024年
锂、钴、镍等金属矿产是动力电池的重要原材料。随着我国新能源汽车产业的快速发展,动力电池装机呈规模化增长,带动关键金属矿产资源需求倍增,其全球供应的稳定性与安全性日益凸显。车百智库发布《新国际环境下动力电池关键金属矿产博弈与我国供应链风险》分析了此类关键金属矿产的国际新形势。PART.0
随着固态电池产业的发展,高镍、超高镍材料应用正被加速导入,助力电池能量密度突破350Wh/kg,向400Wh/kg及以上进发。“公司研制的20Ah全固态电池基于超高镍三元正极和限域生长的硅碳负极体系,能量密度可达350Wh/kg,循环寿命2000次,目前已经建成了固态锂离子电池制造中试示范线。”近期,南都电源对
根据ICC鑫椤资讯统计,2024年锰酸锂出货量为11.5万吨,同比增长27.6%,保持较高的增速。这主要得益于上半年两轮车市场大爆发及全年数码市场稳中有升。从各企业出货量看,梯队效应明显。博石高科以超过3.5万吨出货量连续四年遥遥领先市场,位于第一梯队;新乡弘力、广西立劲、赣州捷兴出货量均超过1万吨
北极星储能网获悉,1月9日,帕瓦股份在投资者互动平台上回答固态电池材料进展、给一些电池厂商送样测试的问题。帕瓦股份表示,公司深耕新能源电池材料领域,高度重视固态电池的迭代趋势,充分发挥产学研紧密结合的优势,对固态电池及相关正极材料、电解质及添加剂材料等进行了布局,在该些方向上已累计
北极星储能网获悉,1月25日,广东省普路通供应链管理股份有限公司披露2024年度业绩预告,预计净利润为负值,归属于上市公司股东的净利润亏损6,100万元–10,800万元。公司归属于上市公司股东的净利润为负的主要原因为,报告期内,基于公司供应链业务特性,其他应收款大幅上升,导致计提信用减值损失相应
2024年1-12月我国锂离子电池累积出口额为611.21亿美元,2023年同期为650.04亿美元,同比下降6%;2024年1-12月我国锂离子电池累积出口数量为39.14亿个,同比增长8.1%。其中,2024年12月锂离子电池出口额为60.48亿美元,同比增加14.5%;2024年12月锂离子电池出口数量为3.51亿个,同比增加17.1%。据分析,
北极星储能网获悉,近日,江苏省工业和信息化厅会同省委金融办、省发展改革委、省科技厅、省商务厅、省市场监管局、省知识产权局、人民银行江苏省分行等部门制定《加快推进新能源产业集群高质量发展行动方案》,实施期为2025年至2027年。以下为解读:一、总体目标《行动方案》提出,到2027年,我省新能
北极星储能网获悉,1月25日,四川金时科技股份有限公司披露2024年度业绩预告,预计净利润为负值。归属于上市公司股东的净利润亏损400.00万元–600.00万元。公司认为业绩变动的主要原因是:扣除后营业收入为29,000.00万元–40,000.00万元,相比去年同期2,986.32万元营收大幅提升,主要贡献来自公司储能
北极星储能网获悉,1月25日,海目星激光科技集团股份有限公司披露2024年年度业绩预告,经海目星激光科技集团股份有限公司初步测算,预计2024年度实现营业收入440,000.00万元至470,000.00万元。净利润-17,000.00万元到-12,000.00万元。公告显示。其净利润同比呈现较大幅度下降的原因为:2024年,在国内
固态电池正被加速导入火热的eVTOL市场。近日,上海洗霸科技与中国科学院上海硅酸盐研究所固态电池先进材料联合创新实验室和上海科源固能,已完成高比能固态电池软包锂电池联合设计工作,目前已进入小批量生产阶段。据悉,该款产品设计的能量密度超过320Wh/kg,合格产品理论上将率先应用于eVTOL场景。近
北极星储能网获悉,1月24日,液流储能科技有限公司完成了数亿元B轮融资。本轮融资由中金资本领投,山东财金资本、滨州国投国富共同投资。据了解,液流储能科技有限公司已建成四条电堆自动化生产线,已成功研发16kW、45kW、83.5kW系列电堆和多套kW级、MW级液流电池储能系统,涵盖新能源发电侧、电网侧以
北极星储能网获悉,近日,中资环电芯科技(天津)有限公司成立,注册资本3亿人民币,经营范围含电池制造、新兴能源技术研发、资源再生利用技术研发、资源循环利用服务技术咨询、储能技术服务、合同能源管理等,由华润环保发展有限公司全资持股。据了解,华润环保发展有限公司成立于2020年4月,法定代表
北极星储能网讯:近日,首批由楚能新能源携手中车株洲所合作开发的新一代688Ah储能专用电芯顺利下线。本次合作不仅展现了双方在储能技术领域的深厚积累,更为行业高质量发展带来强劲新动力,推动储能领域全面迈入“双六”时代新阶段。“双六”时代即单颗电芯容量超过600Ah、系统集成能量超过6MWh。楚能
北极星储能网讯:近日,瑞浦兰钧与中车株洲电力机车研究所有限公司深度合作研发的结晶——688Ah储能电芯正式下线,标志着公司在储能技术领域迈出了重要一步。该款电芯的推出,不仅满足了市场对于高性能、高可靠性储能解决方案的需求,而且与其配套的6.9MWh储能电池系统一起,预示着储能领域“双6”时代
近年来,磷酸铁锂电池在下游装机不断突破。根据市场数据,2024年,国内磷酸铁锂电池装机占比超过70%,磷酸铁锂装机占比上升趋势不改,预计2025年国内磷酸铁锂电池在下游装机占比有望超过80%。国内市场应用增长,磷酸铁锂电池在海外也不断开拓。近日,德方纳米公告,与ICL签署合资协议,合资公司ICL拟在
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!